This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear...This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation.展开更多
The nonlinear dynamics of permanent-magnet synchronous motor(PMSM) with v/f control signals is investigated intensively.First,the equilibria and steady-state characteristics of the system are formulated by analytical ...The nonlinear dynamics of permanent-magnet synchronous motor(PMSM) with v/f control signals is investigated intensively.First,the equilibria and steady-state characteristics of the system are formulated by analytical analysis.Then,some of its basic dynamical properties,such as characteristic eigenvalues,Lyapunov exponents and phase trajectories are studied by varying the values of system parameters.It is found that when the values of the system parameters are smaller,the PMSM operates in stable domains,no matter what the values of control gains are.With the values of parameters increasing,the unstability appears and PMSM falls into chaotic operation.Furthermore,the complex dynamic behaviors are verified by means of simulation.展开更多
基金Project supported by the Hi-Tech Research and Development Program of China (863) (Grant No 2007AA05Z229)National Natural Science Foundation of China (Grant Nos 50877028, 60774069 and 10862001)Science Foundation of Guangdong Province (Grant No 8251064101000014)
文摘This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation.
基金Supported by the Key Program of National Natural Science Foundation of China under Grant No. 50937001the National Natural Science Foundation of China under Grant Nos. 10947011,11262004,61263021,and 50877028
文摘The nonlinear dynamics of permanent-magnet synchronous motor(PMSM) with v/f control signals is investigated intensively.First,the equilibria and steady-state characteristics of the system are formulated by analytical analysis.Then,some of its basic dynamical properties,such as characteristic eigenvalues,Lyapunov exponents and phase trajectories are studied by varying the values of system parameters.It is found that when the values of the system parameters are smaller,the PMSM operates in stable domains,no matter what the values of control gains are.With the values of parameters increasing,the unstability appears and PMSM falls into chaotic operation.Furthermore,the complex dynamic behaviors are verified by means of simulation.