Organic solar cells(OSCs)have been developed rapidly in past years,due to the fast evolution of wide-bandgap copoly-mer donors and low-bandgap non-fullerene acceptors[1−9].At present,the highest power conversion effic...Organic solar cells(OSCs)have been developed rapidly in past years,due to the fast evolution of wide-bandgap copoly-mer donors and low-bandgap non-fullerene acceptors[1−9].At present,the highest power conversion efficiencies(PCEs)for single-junction OSCs and tandem OSCs exceed 19%and 20%,respectively[10,11].These OSCs are typically fabricated by us-ing low-boiling-point solvent chloroform(CF)with an effect-ive area<0.1 cm^(2).The doctor-blading deposition is the most advantageous technique to fabricate OSCs with low-boiling-point solvent for upscaling lab cells to industrial-scale mod-ules[12],exhibiting simple operation,low cost,and high materi-al utilization[13−15].Herein,a typical OSC material system PM6:Y6(Fig.1(a))was used to fabricate OSCs modules via doc-tor-blading deposition in ambient condition,and the influ-ence of the ambient temperature and substrate temperature on the film quality was investigated.展开更多
Polyethylenimine(PEI) interlayer rinsing with different solvents for inverted organic light emitting diodes(OLEDs)is systematically studied in this paper. In comparison with the pristine one, the maximum current effic...Polyethylenimine(PEI) interlayer rinsing with different solvents for inverted organic light emitting diodes(OLEDs)is systematically studied in this paper. In comparison with the pristine one, the maximum current efficiency(CE) and power efficiency(PE) are enhanced by 21% and 22% for the device rinsing by ethylene glycol monomethyl ether(EEA).Little effect is found on the work function of the PEI interlayer rinsed by deionized water(DI), ethanol(EtOH), and EEA.On the other hand, the surface morphologies of PEI through different solvent treatments are quite different. Our results indicates that the surface morphology is the key to improving the device performance for IOLED as the work function of PEI keeps stable.展开更多
A series of boron- and phosphorus-doped silicon wafers are used to prepare a series of doped silicon nanocrystals (nc-Si) by high-energy ball milling with carboxylic acid-terminated surface. The sizes of the nc-Si s...A series of boron- and phosphorus-doped silicon wafers are used to prepare a series of doped silicon nanocrystals (nc-Si) by high-energy ball milling with carboxylic acid-terminated surface. The sizes of the nc-Si samples are demonstrated to be 〈 S nm. The doping levels of the nc-Si are found to be nonlinearly dependent on the original doping level of the wafers by x-ray photoelectron spectroscopy measurement. It is found that the nonlinear doping process will lead to the nonlinear chemical passivation and photoluminescence (I3L) intensity evolution. The doping, chemical passivation and PL mechanisms of the doped nc-Si samples prepared by mechanochemical synthesis are analyzed in detail.展开更多
Large-area AgNWs electrodes(25 cm×10 cm)were fabricated through roll-to-roll printing on the polyvinyl alcohol(PVA)modified water and oxygen barrier substrate.The modification of the barrier film with PVA improve...Large-area AgNWs electrodes(25 cm×10 cm)were fabricated through roll-to-roll printing on the polyvinyl alcohol(PVA)modified water and oxygen barrier substrate.The modification of the barrier film with PVA improved the wettability of silver nanowires on the barrier films and led to the formation of homogenous large-area AgNWs networks.The mechanical flexibility,especially the adhesion force between the silver electrode and the barrier film substrate was dramatically improved through PVA modification.The efficiency of 13.51%for the flexible OSCs with an area of 0.64 cm2 was achieved based on the PET/barrier film/PVA/AgNWs electrode.The long-term stability showed the flexible OSCs based on the PET/barrier film/PVA/AgNWs electrode have a significantly improved stability relative to the device on PET/AgNWs electrode,and comparable air stability as the rigid device with glass/ITO device.The unencapsulated devices maintained nearly 50%of the original efficiency after storage for 600 h in air.After a simple top encapsulation,the flexible devices remained at 60%of the initial efficiency after 2000 h in the air.Therefore,the flexible AgNWs electrode based on the barrier film would have the potential to improve the air storage stability of organic flexible solar cells.展开更多
Flexible electrochromic devices (FECDs) are promising candidates for the next generation of wearable electronics due to their low operating voltage and energy consumption. For the flexible electrochromic devices, the ...Flexible electrochromic devices (FECDs) are promising candidates for the next generation of wearable electronics due to their low operating voltage and energy consumption. For the flexible electrochromic devices, the electrolyte is an important component. Typically, the electrolyte needs to be formulated according to the device structure and usage scenario. A high-performance electrolyte involves consideration of many factors, including choosing the right polymer, solvent, curing agent, and ion type to satisfy particular device specifications. In this work, a ultraviolet-curable solid–liquid host–guest (UV-SLHG) electrolyte is developed. Several aspects of performance are improved by introducing the solid–liquid coexisting microstructure without changing the electrolyte formulation, including excellent adhesion, a 30% increase in tensile characteristics, and a seven-fold increase in ionic conductivity when compared to a fully cured solid-state electrolyte. More importantly, the unique advantage of SLHG electrolytes lies that the thickness will not change significantly during bending. The FECD made by using the UV-SLHG-based electrolyte sustained 10,000 bending cycles at the bending radius of 2.5 mm while maintaining outstanding optical modulation. A wearable ring-type ECD and a battery-free FECD wine label were made as demonstrators. The UV-SLHG strategy is not only suitable for the FECDs but also universally applicable to other electrolyte-based of flexible electronics such as flexible capacitors and batteries.展开更多
Inkjet-printed quantum dot light-emitting diodes(QLEDs)are emerging as a promising technology for next-generation displays.However,the progress in fabricating QLEDs using inkjet printing technique has been slower comp...Inkjet-printed quantum dot light-emitting diodes(QLEDs)are emerging as a promising technology for next-generation displays.However,the progress in fabricating QLEDs using inkjet printing technique has been slower compared to spin-coated devices,particularly in terms of efficiency and stability.The key to achieving high performance QLEDs lies in creating a highly ordered and uniform inkjet-printed quantum dot(QD)thin film.In this study,we present a highly effective strategy to significantly improve the quality of inkjet-printed CdZnSe/CdZnS/ZnS QD thin films through a pressure-assisted thermal annealing(PTA)approach.Benefiting from this PTA process,a high quality QD thin film with ordered packing,low surface roughness,high photoluminescence and excellent electrical property is obtained.The mechanism behind the PTA process and its profound impact on device performance have been thoroughly investigated and understood.Consequently,a record high external quantum efficiency(EQE)of 23.08%with an impressive operational lifetime(T50)of up to 343,342h@100cdm−2,and a record EQE of 22.43%with T50 exceeding to 1,500,463h@100cdm−2 are achieved in inkjet-printed red and green CdZnSe-based QLEDs,respectively.This work highlights the PTA process as an important approach to realize highly efficient and stable inkjet-printed QLEDs,thus advancing QLED technology to practical applications.展开更多
Recently, flexible and stretchable electronics have experienced tremendous surge due to their promised applications in fields such as wearable electronics, portable energy devices, flexible display, and human-skin sen...Recently, flexible and stretchable electronics have experienced tremendous surge due to their promised applications in fields such as wearable electronics, portable energy devices, flexible display, and human-skin sensors. In order to fabricate flexible and stretchable electronics, a high-throughput, cost-saving, and eco-friendly manufacturing technology is required. Printing, which is an additive patterning process, can meet those requirements. In this article, printing fabrication is compared with conventional lithography process. Practices at the author's group utilizing printing for the fabrication of flexible thin-film transistors, flexible hybrid circuits and stretchable systems are presented, which has proven that printing can indeed be a viable method to fabricate flexible and stretchable electronics.展开更多
Many previous studies have shown that the molecular structures of oligothiophene derivatives including molecular skeleton and alkyl chains have a significant effect on their self-assemblies on the surface.In this work...Many previous studies have shown that the molecular structures of oligothiophene derivatives including molecular skeleton and alkyl chains have a significant effect on their self-assemblies on the surface.In this work, a series of linear oligothiophene derivatives(DCV-n T-Hex, n = 3~11) modified with terminal dicyanovinyls and alkyl chains were adopted to further investigate the different assembly behaviors at liquid-solid interface by scanning tunneling microscopy(STM). Interestingly, via the hydrogen bonding and van der Waals interactions, DCV-3T-Hex formed zigzag and flower structures while DCV-n T-Hex(n = 4~11) formed lamellar structures. Density functional theory(DFT) calculations show that for the most energetically favorable configurations of DCV-n T-Hex, the different distribution of alkyl chains affected intermolecular interactions, and ultimately led to the different assembled structures. The zigzag and flower structures of DCV-3T-Hex had preferential thermodynamic stability compared to other structures of DCV-n T-Hex(n = 4~11). In addition, self-assembled nanostructures of DCV-n T-Hex molecules with even numbers(n = 4, 6, 8, 10) were overall more stable than those with odd numbers(n = 5, 7, 9,11), and the stability of the self-assembled structure was weakened with the extension of the molecular backbone, individually. The orientation of molecular alkyl chains was found to greatly affect the intermolecular interactions and thus leading to various self-assembly structures of DCV-n T-Hex(n = 3~11).展开更多
Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt(4,4′-(N-(4-butylphenyl))](TFB),one of the most popular and widely used hole-transport layer(HTL)materials,has been successfully applied in high performance spin-coated quantum...Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt(4,4′-(N-(4-butylphenyl))](TFB),one of the most popular and widely used hole-transport layer(HTL)materials,has been successfully applied in high performance spin-coated quantum dots-based light-emitting diodes(QLEDs)due to its suitable energy level and high mobility.However,there are still many challenging issues in inkjet-printed QLED devices when using TFB as HTL.TFB normally suffers from the interlayer mixing and erosion,and low surface energy against the good film formation.Here,a novel environment-friendly binary solvent system was established for formulating quantum dot(QD)inks,which is based on mixing halogen-free alkane solvents of decalin and n-tridecane.The optimum volume ratio for the mixture of decalin and n-tridecane was found to be 7:3,at which a stable ink jetting flow and coffee-ring free QD films could be formed.To research the influence of substrate surface on the formation of inkjet-printed QD films,TFB was annealed at different temperatures,and the optimum annealing temperature was found to enable high quality inkjet-printed QD film.Inkjet-printed red QLED was ultimately manufactured.A maximum 18.3%of external quantum efficiency(EQE)was achieved,reaching 93%of the spin-coated QLED,which is the best reported high efficiency inkjet-printed red QLEDs to date.In addition,the inkjet-printed QLED achieved similar T75 operational lifetime(27 h)as compared to the spin-coated reference QLED(28 h)at 2,000 cd·m−2.This work demonstrated that the novel orthogonal halogen-free alkane co-solvents can improve the interfacial contact and facilitate high-performance inkjet printing QLEDs with high EQE and stability.展开更多
Layer-by-layer (LbL) strategy has been developed to form bulk heterojunction (BHJ) structure for processing efficient organic solar cells (OSCs). Herein, LbL slot-die coating with twin boiling point solvents (TBPS) st...Layer-by-layer (LbL) strategy has been developed to form bulk heterojunction (BHJ) structure for processing efficient organic solar cells (OSCs). Herein, LbL slot-die coating with twin boiling point solvents (TBPS) strategy was developed to fabricate highly efficient OSCs, which matches with large-scale, high throughput roll-to-roll (R2R) industrialized mass process. The TBPS strategy could produce high-quality thin film without any additive, leading to the optimized vertical phase separation with interpenetrating nanostructures, as well as the enhanced charge transport and extraction. Thus, the power conversion efficiency up to 14.42% was achieved for [(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo [1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione)]:2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4″,5″]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene)) bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (PM6:Y6) OSCs fabricated via sequentially LbL slot-die coating using the TBPS strategy under ambient condition. The research provides a potential route for industrialized production of high-efficiency and large-area OSC devices.展开更多
It is a big challenge to construct large-scale,high-resolution and high-performance inkjet-printed metal oxide thin film transistor(TFT)arrays with independent gates for the new printed displays.Here,a self-confined i...It is a big challenge to construct large-scale,high-resolution and high-performance inkjet-printed metal oxide thin film transistor(TFT)arrays with independent gates for the new printed displays.Here,a self-confined inkjet printing technology has been developed to construct large-area(64×64 array),high-resolution and high-performance metal oxide bilayer(In_(2)O_(3)/IGZO)heterojunction TFTs with independent bottom gates on transparent glass substrates.Inkjet printing In_(2)O_(3) dot arrays with the diameters from 55 to 70μm and the thickness of~10 nm were firstly deposited on UV/ozone treated AlO_(x) dielectric layers,and then IGZO dots were selectively printed on the top of In_(2)O_(3) dots by self-confined technology to form In_(2)O_(3)/IGZO heterojunction channels.When the inkjet-printed IO layers treated by UV/ozone for more than 30 min or oxygen plasma for 5 min prior to print IGZO thin films,the mobility of the resulting printed In_(2)O_(3)/IGZO heterojunction TFTs are correspondingly enhanced to be 18.80 and 28.44 cm^(2) V^(-1) s^(-1) with excellent on/off ratios(>10^(8))and negligible hysteresis.Furthermore,the printed N-Metal-Oxide-Semiconductor(NMOS)inverter consisted of an In_(2)O_(3)/IGZO TFT and an IGZO TFT has been demonstrated,which show excellent performance with the voltage gain up to 112.The strategy demonstrated here can be considered as general approaches to realize a new generation of high-performance printed logic gates,circuits and display driving circuits.展开更多
Two small molecules named PI-DPP and NI-DPP with a DPP core as the central strong acceptor unit and phthalimide/naphthalimide as the terminal weak acceptor were designed and synthesized. The effects of terminal phthal...Two small molecules named PI-DPP and NI-DPP with a DPP core as the central strong acceptor unit and phthalimide/naphthalimide as the terminal weak acceptor were designed and synthesized. The effects of terminal phthalimide/naphthalimide units on the thermal behavior, optical and electrochemical properties, as well as the photovoltaic performance of these two materials were systematically studied. Cyclic voltammetry revealed that the lowest unoccupied molecular orbitals (LUMO) (- -3.6 eV) of both molecules were intermediate to common electron donor (P3HT) and acceptor (PCBM). This indicated that PI-DPP and NI-DPP may uniquely serve as electron donor when blended with PCBM, and as electron acceptor when blended with P3HT, where sufficient driving forces between DPPs and PCBM, as well as between P3HT and DPPs should be created for exciton dissociation. Using as electron donor materials, PI-DPP and NI-DPP devices exhibited low power conversion efficiencies (PCEs) of 0.90% and 0.76% by blending with PCBM, respectively. And a preliminary evaluation of the potential of the NI-DPP as electron acceptor material was carried out using P3HT as a donor material, and P3HT:NI-DPP device showed a PCE of 0.6%, with an open circuit voltage (Voc) of 0.7 V, a short circuit current density (Jsc) of 1.91 mA·cm^-2, and a fill factor (FF) of 45%.展开更多
Tetraphenylethylene (TPE) based molecules with easy synthesis, good thermal stability, and especially their aggregation-induced emissions enhancement (AIEE) effect recently become attractive organic emitting mater...Tetraphenylethylene (TPE) based molecules with easy synthesis, good thermal stability, and especially their aggregation-induced emissions enhancement (AIEE) effect recently become attractive organic emitting materials due to their potentially practical application in OLEDs. Herein, the AIEE behaviors of tetraphenylethylene dyes (TMTPE and TBTPE) were investigated. Fabricated luminesent device using TMTPE dye as emitting layer displays two strong emitting bands: the blue emission coming from the first-step aggregation and the yellow emission attrib- uted to the second-step aggregation. Thus, it can be utilized to fabricate the white-light OLEDs (WOLEDs) of the single-emitting-component. A three-layer device with the brightness of 1200 cd·m^-2 and current efficiency of 0.78 cd·A^-1 emits the close to white light with the CIE coordinates of x=0.333 and y=0.358, when applied voltage from 8-13 V, verifying that the TPE-based dyes of AIEE effect can be effectively applied in single-emitting- component WOLEDs fabrication.展开更多
Stable interface adhesion and bending durability of flexible organic solar cells(FOSCs)is a basic requirement for its real application in wearable electronics.Unfortunately,the device performance always degraded durin...Stable interface adhesion and bending durability of flexible organic solar cells(FOSCs)is a basic requirement for its real application in wearable electronics.Unfortunately,the device performance always degraded during continuous bending.Here,we revealed the weak interface adhesion force between MoO_(3) hole transporting layer(HTL)and the organic photoactive layer was the main reason of poor bending durability.The insertion of an interface bonding layer with a thermoplastic elastomer,polystyrene-blockpoly(ethylene-ran-butylene)-block-polystyrene(SEBS)effectively improved the interface adhesion force of MoO_(3) HTL and the active layer and decreased the modulus,which ensured higher than 90%of the initial efficiency remaining after 10000 bending.Meanwhile,the FOSCs gave an efficiency of 14.18%and 16.15%for the PM6:Y6 and PM6:L8-BO devices,which was among the highest performance of FOSCs.These results demonstrated the potential of improving the mechanical durability of FOSCs through thermoplastic elastomer interface modification.展开更多
The rational molecular design of light-emitting conjugated polymers that inherently suppress the ubiquitous coffee-ring effect(CRE)is a great challenge and the critical bottleneck for printing displays.Herein,we descr...The rational molecular design of light-emitting conjugated polymers that inherently suppress the ubiquitous coffee-ring effect(CRE)is a great challenge and the critical bottleneck for printing displays.Herein,we describe a supramolecular route to construct an intrinsically viscoelastic rigid conjugated polymer(RCP)(PHDPF-Cz)toward avoiding the CRE without sacrificing optoelectronic properties.Theπ-πstacking interactions derived fromthe pendant carbazole(Cz)units enable PHDPF-Cz to self-assemble into criss-cross nanofibers and endow its solutionwith great viscosity.Consequently,a high-quality and continuous PHDPFCz film was obtained by impeding the transport of aggregates to the droplet edge due to outward capillary flow during evaporation,in sharp contrast to the random aggregate migration and rapid precipitation generated fromthe controlled poly[4-(6-(9H-diphenylaniline-9-yl)hexyloxy)-9,9-diphenylfluorene]-co-[5-(6-(9H-diphenylaniline-9-yl)hexyloxy)-9,9-diphenylfluorene]and poly(9,9-dioctylfluorene)solutions.Finally,an efficient random laser is also achieved based on these cross-linked films with ultrastable single-chain excitonic behavior,confirming the effectiveness of our design strategy.展开更多
基金supported by the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(52173192)+3 种基金the Science and Technology Innovation Program of Hunan Province(2020RC4004)the Special Funding for the Construction of Innovative Provinces in Hunan Province(2020GK2024)the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)the National Natural Science Foundation of China(51922032,21961160720).
文摘Organic solar cells(OSCs)have been developed rapidly in past years,due to the fast evolution of wide-bandgap copoly-mer donors and low-bandgap non-fullerene acceptors[1−9].At present,the highest power conversion efficiencies(PCEs)for single-junction OSCs and tandem OSCs exceed 19%and 20%,respectively[10,11].These OSCs are typically fabricated by us-ing low-boiling-point solvent chloroform(CF)with an effect-ive area<0.1 cm^(2).The doctor-blading deposition is the most advantageous technique to fabricate OSCs with low-boiling-point solvent for upscaling lab cells to industrial-scale mod-ules[12],exhibiting simple operation,low cost,and high materi-al utilization[13−15].Herein,a typical OSC material system PM6:Y6(Fig.1(a))was used to fabricate OSCs modules via doc-tor-blading deposition in ambient condition,and the influ-ence of the ambient temperature and substrate temperature on the film quality was investigated.
基金supported by the National Key Basic Research Project of China(Grant No.2015CB351901)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09020201)+2 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2013206)the National Natural Science Foundation of China(Grant No.21402233)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK2012631and BK20140387)
文摘Polyethylenimine(PEI) interlayer rinsing with different solvents for inverted organic light emitting diodes(OLEDs)is systematically studied in this paper. In comparison with the pristine one, the maximum current efficiency(CE) and power efficiency(PE) are enhanced by 21% and 22% for the device rinsing by ethylene glycol monomethyl ether(EEA).Little effect is found on the work function of the PEI interlayer rinsed by deionized water(DI), ethanol(EtOH), and EEA.On the other hand, the surface morphologies of PEI through different solvent treatments are quite different. Our results indicates that the surface morphology is the key to improving the device performance for IOLED as the work function of PEI keeps stable.
基金Supported by the National Natural Science Foundation of China under Grant No 61575216
文摘A series of boron- and phosphorus-doped silicon wafers are used to prepare a series of doped silicon nanocrystals (nc-Si) by high-energy ball milling with carboxylic acid-terminated surface. The sizes of the nc-Si samples are demonstrated to be 〈 S nm. The doping levels of the nc-Si are found to be nonlinearly dependent on the original doping level of the wafers by x-ray photoelectron spectroscopy measurement. It is found that the nonlinear doping process will lead to the nonlinear chemical passivation and photoluminescence (I3L) intensity evolution. The doping, chemical passivation and PL mechanisms of the doped nc-Si samples prepared by mechanochemical synthesis are analyzed in detail.
基金supported by the National Natural Science Foundation of China(22135001)Youth Innovation Promotion Association(2019317)+4 种基金Young Cross Team Project of CAS(No.JCTD-2021-14)“Dual Carbon"Science and Technology Innovation of Jiangsu province(Industrial Prospect and Key Technology Research Program)(BE2022021)Suzhou Science and Technology Program(ST202219)CAS Special Research Assistant(SRA)Program of Suzhou Institute of Nano-Tech and Nano-Bionics(E355130101)grateful for the technical support for Jiangsu Funding Program for Excellent Postdoctoral Talent,Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(A2107).
文摘Large-area AgNWs electrodes(25 cm×10 cm)were fabricated through roll-to-roll printing on the polyvinyl alcohol(PVA)modified water and oxygen barrier substrate.The modification of the barrier film with PVA improved the wettability of silver nanowires on the barrier films and led to the formation of homogenous large-area AgNWs networks.The mechanical flexibility,especially the adhesion force between the silver electrode and the barrier film substrate was dramatically improved through PVA modification.The efficiency of 13.51%for the flexible OSCs with an area of 0.64 cm2 was achieved based on the PET/barrier film/PVA/AgNWs electrode.The long-term stability showed the flexible OSCs based on the PET/barrier film/PVA/AgNWs electrode have a significantly improved stability relative to the device on PET/AgNWs electrode,and comparable air stability as the rigid device with glass/ITO device.The unencapsulated devices maintained nearly 50%of the original efficiency after storage for 600 h in air.After a simple top encapsulation,the flexible devices remained at 60%of the initial efficiency after 2000 h in the air.Therefore,the flexible AgNWs electrode based on the barrier film would have the potential to improve the air storage stability of organic flexible solar cells.
基金financially supported by the National Key Research and Development Program of China (2022YFB3606500)the Natural Science Foundation of Jiangsu Province (BK20210125)。
基金supported by the NSFC(No.22002051)Jiangsu Provincial Double-Innovation Doctor Program(No.JSSCBS20210931)+4 种基金the Innovation/Entrepreneurship Program of Jiangsu Province(No.JSSCTD202146)China Postdoctoral Science Fund(No.2021M701484)Jiangsu Postdoctoral Fund(No.2021K251B)QD-NLED device structure optimization and electroluminescence mechanism research project(No.2022YFB3606503)Jiangsu Funding Program for Excellent Postdoctoral Talent.The authors are grateful for the technical support for Nano-X from Suzhou Institute of Nano-Tech and NanoBionics,Chinese Academy of Sciences(SINANO).
文摘Flexible electrochromic devices (FECDs) are promising candidates for the next generation of wearable electronics due to their low operating voltage and energy consumption. For the flexible electrochromic devices, the electrolyte is an important component. Typically, the electrolyte needs to be formulated according to the device structure and usage scenario. A high-performance electrolyte involves consideration of many factors, including choosing the right polymer, solvent, curing agent, and ion type to satisfy particular device specifications. In this work, a ultraviolet-curable solid–liquid host–guest (UV-SLHG) electrolyte is developed. Several aspects of performance are improved by introducing the solid–liquid coexisting microstructure without changing the electrolyte formulation, including excellent adhesion, a 30% increase in tensile characteristics, and a seven-fold increase in ionic conductivity when compared to a fully cured solid-state electrolyte. More importantly, the unique advantage of SLHG electrolytes lies that the thickness will not change significantly during bending. The FECD made by using the UV-SLHG-based electrolyte sustained 10,000 bending cycles at the bending radius of 2.5 mm while maintaining outstanding optical modulation. A wearable ring-type ECD and a battery-free FECD wine label were made as demonstrators. The UV-SLHG strategy is not only suitable for the FECDs but also universally applicable to other electrolyte-based of flexible electronics such as flexible capacitors and batteries.
基金This work was supported by NSFC(Nos.62261160392,52131304,61725402,U1605244,22279059)the Fundamental Research Funds for the Central Universities(Nos.30921011106,30919012107)+3 种基金the Research Innovation Program of Nanjing Overseas Returnees(No.AD411025)the start-up funding from the Nanjing University of Science and Technology,the Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2023ZB844)the China Postdoctoral Science Foundation(No.2023M731687)The authors are also thankful for the support from the NJUST large instrument equipment open fund and Vacuum Interconnect Nano X Research Facility(NANO-X)of Suzhou Institute of Nano-Tech and Nano-Bionics,CAS.
文摘Inkjet-printed quantum dot light-emitting diodes(QLEDs)are emerging as a promising technology for next-generation displays.However,the progress in fabricating QLEDs using inkjet printing technique has been slower compared to spin-coated devices,particularly in terms of efficiency and stability.The key to achieving high performance QLEDs lies in creating a highly ordered and uniform inkjet-printed quantum dot(QD)thin film.In this study,we present a highly effective strategy to significantly improve the quality of inkjet-printed CdZnSe/CdZnS/ZnS QD thin films through a pressure-assisted thermal annealing(PTA)approach.Benefiting from this PTA process,a high quality QD thin film with ordered packing,low surface roughness,high photoluminescence and excellent electrical property is obtained.The mechanism behind the PTA process and its profound impact on device performance have been thoroughly investigated and understood.Consequently,a record high external quantum efficiency(EQE)of 23.08%with an impressive operational lifetime(T50)of up to 343,342h@100cdm−2,and a record EQE of 22.43%with T50 exceeding to 1,500,463h@100cdm−2 are achieved in inkjet-printed red and green CdZnSe-based QLEDs,respectively.This work highlights the PTA process as an important approach to realize highly efficient and stable inkjet-printed QLEDs,thus advancing QLED technology to practical applications.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09020201)the National Natural Science Foundation of China(Grant Nos.91123034,91623104)the National Program on Key Basic Research Project(Grant No2015CB351901)
文摘Recently, flexible and stretchable electronics have experienced tremendous surge due to their promised applications in fields such as wearable electronics, portable energy devices, flexible display, and human-skin sensors. In order to fabricate flexible and stretchable electronics, a high-throughput, cost-saving, and eco-friendly manufacturing technology is required. Printing, which is an additive patterning process, can meet those requirements. In this article, printing fabrication is compared with conventional lithography process. Practices at the author's group utilizing printing for the fabrication of flexible thin-film transistors, flexible hybrid circuits and stretchable systems are presented, which has proven that printing can indeed be a viable method to fabricate flexible and stretchable electronics.
基金financially supported by the National Basic Research Program of China (No. 2017YFA0205000)the National Natural Science Foundation of China (No. 21972031)the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000)。
文摘Many previous studies have shown that the molecular structures of oligothiophene derivatives including molecular skeleton and alkyl chains have a significant effect on their self-assemblies on the surface.In this work, a series of linear oligothiophene derivatives(DCV-n T-Hex, n = 3~11) modified with terminal dicyanovinyls and alkyl chains were adopted to further investigate the different assembly behaviors at liquid-solid interface by scanning tunneling microscopy(STM). Interestingly, via the hydrogen bonding and van der Waals interactions, DCV-3T-Hex formed zigzag and flower structures while DCV-n T-Hex(n = 4~11) formed lamellar structures. Density functional theory(DFT) calculations show that for the most energetically favorable configurations of DCV-n T-Hex, the different distribution of alkyl chains affected intermolecular interactions, and ultimately led to the different assembled structures. The zigzag and flower structures of DCV-3T-Hex had preferential thermodynamic stability compared to other structures of DCV-n T-Hex(n = 4~11). In addition, self-assembled nanostructures of DCV-n T-Hex molecules with even numbers(n = 4, 6, 8, 10) were overall more stable than those with odd numbers(n = 5, 7, 9,11), and the stability of the self-assembled structure was weakened with the extension of the molecular backbone, individually. The orientation of molecular alkyl chains was found to greatly affect the intermolecular interactions and thus leading to various self-assembly structures of DCV-n T-Hex(n = 3~11).
基金This work was supported by the National Key Research and Development Program of China(No.2016YFB0401600)the National Natural Science Foundation of China(No.U1605244)China Postdoctoral Science Foundation(No.2020M681726).
文摘Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt(4,4′-(N-(4-butylphenyl))](TFB),one of the most popular and widely used hole-transport layer(HTL)materials,has been successfully applied in high performance spin-coated quantum dots-based light-emitting diodes(QLEDs)due to its suitable energy level and high mobility.However,there are still many challenging issues in inkjet-printed QLED devices when using TFB as HTL.TFB normally suffers from the interlayer mixing and erosion,and low surface energy against the good film formation.Here,a novel environment-friendly binary solvent system was established for formulating quantum dot(QD)inks,which is based on mixing halogen-free alkane solvents of decalin and n-tridecane.The optimum volume ratio for the mixture of decalin and n-tridecane was found to be 7:3,at which a stable ink jetting flow and coffee-ring free QD films could be formed.To research the influence of substrate surface on the formation of inkjet-printed QD films,TFB was annealed at different temperatures,and the optimum annealing temperature was found to enable high quality inkjet-printed QD film.Inkjet-printed red QLED was ultimately manufactured.A maximum 18.3%of external quantum efficiency(EQE)was achieved,reaching 93%of the spin-coated QLED,which is the best reported high efficiency inkjet-printed red QLEDs to date.In addition,the inkjet-printed QLED achieved similar T75 operational lifetime(27 h)as compared to the spin-coated reference QLED(28 h)at 2,000 cd·m−2.This work demonstrated that the novel orthogonal halogen-free alkane co-solvents can improve the interfacial contact and facilitate high-performance inkjet printing QLEDs with high EQE and stability.
基金This work was supported by the National Key Research and Development Program of China(No.2017YFA0206600)the Science and Technology Innovation Program of Hunan Province(No.2020RC4004)the Special Funding for the Construction of Innovative Provinces in Hunan Province(No.2020GK2024).
文摘Layer-by-layer (LbL) strategy has been developed to form bulk heterojunction (BHJ) structure for processing efficient organic solar cells (OSCs). Herein, LbL slot-die coating with twin boiling point solvents (TBPS) strategy was developed to fabricate highly efficient OSCs, which matches with large-scale, high throughput roll-to-roll (R2R) industrialized mass process. The TBPS strategy could produce high-quality thin film without any additive, leading to the optimized vertical phase separation with interpenetrating nanostructures, as well as the enhanced charge transport and extraction. Thus, the power conversion efficiency up to 14.42% was achieved for [(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo [1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione)]:2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4″,5″]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene)) bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (PM6:Y6) OSCs fabricated via sequentially LbL slot-die coating using the TBPS strategy under ambient condition. The research provides a potential route for industrialized production of high-efficiency and large-area OSC devices.
基金This work was financially supported by the National Key R&D Program of“Strategic Advanced Electronic Materials”(No.2016YFB04011100)the Basic Research Program of Jiangsu Province(Nos.BK20161263,SBK2017041510)+3 种基金the Science and Technology Program of Guangdong Province(Nos.2016B090906002,2019B010924002)the Basic Research Program of Suzhou Institute of Nanotech and Nano-bionics(No.Y5AAY21001)the National Natural Science Foundation of China(Nos.61750110517,61805166)the Cooperation Project of Vacuum Interconnect Nano X Research Facility(NANO-X)of Suzhou Nanotechnology and Nano-Bionics Institute(H060)。
文摘It is a big challenge to construct large-scale,high-resolution and high-performance inkjet-printed metal oxide thin film transistor(TFT)arrays with independent gates for the new printed displays.Here,a self-confined inkjet printing technology has been developed to construct large-area(64×64 array),high-resolution and high-performance metal oxide bilayer(In_(2)O_(3)/IGZO)heterojunction TFTs with independent bottom gates on transparent glass substrates.Inkjet printing In_(2)O_(3) dot arrays with the diameters from 55 to 70μm and the thickness of~10 nm were firstly deposited on UV/ozone treated AlO_(x) dielectric layers,and then IGZO dots were selectively printed on the top of In_(2)O_(3) dots by self-confined technology to form In_(2)O_(3)/IGZO heterojunction channels.When the inkjet-printed IO layers treated by UV/ozone for more than 30 min or oxygen plasma for 5 min prior to print IGZO thin films,the mobility of the resulting printed In_(2)O_(3)/IGZO heterojunction TFTs are correspondingly enhanced to be 18.80 and 28.44 cm^(2) V^(-1) s^(-1) with excellent on/off ratios(>10^(8))and negligible hysteresis.Furthermore,the printed N-Metal-Oxide-Semiconductor(NMOS)inverter consisted of an In_(2)O_(3)/IGZO TFT and an IGZO TFT has been demonstrated,which show excellent performance with the voltage gain up to 112.The strategy demonstrated here can be considered as general approaches to realize a new generation of high-performance printed logic gates,circuits and display driving circuits.
基金This work was financially supported by the National Natural Science Foundation of China (No. 61204020) and the Innovation Program of Shanghai Municipal Ed- ucation Commission (No. 15ZZ047).
文摘Two small molecules named PI-DPP and NI-DPP with a DPP core as the central strong acceptor unit and phthalimide/naphthalimide as the terminal weak acceptor were designed and synthesized. The effects of terminal phthalimide/naphthalimide units on the thermal behavior, optical and electrochemical properties, as well as the photovoltaic performance of these two materials were systematically studied. Cyclic voltammetry revealed that the lowest unoccupied molecular orbitals (LUMO) (- -3.6 eV) of both molecules were intermediate to common electron donor (P3HT) and acceptor (PCBM). This indicated that PI-DPP and NI-DPP may uniquely serve as electron donor when blended with PCBM, and as electron acceptor when blended with P3HT, where sufficient driving forces between DPPs and PCBM, as well as between P3HT and DPPs should be created for exciton dissociation. Using as electron donor materials, PI-DPP and NI-DPP devices exhibited low power conversion efficiencies (PCEs) of 0.90% and 0.76% by blending with PCBM, respectively. And a preliminary evaluation of the potential of the NI-DPP as electron acceptor material was carried out using P3HT as a donor material, and P3HT:NI-DPP device showed a PCE of 0.6%, with an open circuit voltage (Voc) of 0.7 V, a short circuit current density (Jsc) of 1.91 mA·cm^-2, and a fill factor (FF) of 45%.
基金The authors are grateful to the National Natural Sci- ence Foundation of China (No. 50973077), the Natural Science Foundation of Jiangsu Province Education Committee (No. 11KJA430003), Project of Person with Ability of Jiangsu Province (No. 2010-xcl-015) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) for financial supports, and Open Project of Jiangsu Key Laboratory for Advanced Optical Manufacture Technologies (No. KJS I 102).
文摘Tetraphenylethylene (TPE) based molecules with easy synthesis, good thermal stability, and especially their aggregation-induced emissions enhancement (AIEE) effect recently become attractive organic emitting materials due to their potentially practical application in OLEDs. Herein, the AIEE behaviors of tetraphenylethylene dyes (TMTPE and TBTPE) were investigated. Fabricated luminesent device using TMTPE dye as emitting layer displays two strong emitting bands: the blue emission coming from the first-step aggregation and the yellow emission attrib- uted to the second-step aggregation. Thus, it can be utilized to fabricate the white-light OLEDs (WOLEDs) of the single-emitting-component. A three-layer device with the brightness of 1200 cd·m^-2 and current efficiency of 0.78 cd·A^-1 emits the close to white light with the CIE coordinates of x=0.333 and y=0.358, when applied voltage from 8-13 V, verifying that the TPE-based dyes of AIEE effect can be effectively applied in single-emitting- component WOLEDs fabrication.
基金supported by Youth Innovation Promotion Association (2019317)the National Natural Science Foundation of China (22135001)+1 种基金CAS-CSIRO joint project of Chinese Academy of Sciences (121E32KYSB20190021)Vacuum Interconnected Nanotech Workstation,Suzhou Institute of Nano-Tech and Nano-Bionics of Chinese Academy of Sciences (CAS).
文摘Stable interface adhesion and bending durability of flexible organic solar cells(FOSCs)is a basic requirement for its real application in wearable electronics.Unfortunately,the device performance always degraded during continuous bending.Here,we revealed the weak interface adhesion force between MoO_(3) hole transporting layer(HTL)and the organic photoactive layer was the main reason of poor bending durability.The insertion of an interface bonding layer with a thermoplastic elastomer,polystyrene-blockpoly(ethylene-ran-butylene)-block-polystyrene(SEBS)effectively improved the interface adhesion force of MoO_(3) HTL and the active layer and decreased the modulus,which ensured higher than 90%of the initial efficiency remaining after 10000 bending.Meanwhile,the FOSCs gave an efficiency of 14.18%and 16.15%for the PM6:Y6 and PM6:L8-BO devices,which was among the highest performance of FOSCs.These results demonstrated the potential of improving the mechanical durability of FOSCs through thermoplastic elastomer interface modification.
基金The work was supported by the National Natural Science Foundation of China(nos.22075136 and 61874053)National Key Research and Development Program of China(no.2020YFA0709900)+5 种基金Natural Science Funds of the Education Committee of Jiangsu Province(no.18KJA430009)Natural Science Foundation of Jiangsu Province(no.BK20200700)“High-Level Talents in Six Industries”of Jiangsu Province(no.XYDXX-019)China Postdoctoral Science Foundation(no.2021M692623)the Open Research Fund from State Key Laboratory of Supramolecular Structure and Materials(no.sklssm202108)Anhui Province Key Laboratory of Environment-friendly Polymer Materials and Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology,Research Innovation in University of Jiangsu Province(nos.KYCX21_0771,KYCX21_0772,and KYCX21_1097).
文摘The rational molecular design of light-emitting conjugated polymers that inherently suppress the ubiquitous coffee-ring effect(CRE)is a great challenge and the critical bottleneck for printing displays.Herein,we describe a supramolecular route to construct an intrinsically viscoelastic rigid conjugated polymer(RCP)(PHDPF-Cz)toward avoiding the CRE without sacrificing optoelectronic properties.Theπ-πstacking interactions derived fromthe pendant carbazole(Cz)units enable PHDPF-Cz to self-assemble into criss-cross nanofibers and endow its solutionwith great viscosity.Consequently,a high-quality and continuous PHDPFCz film was obtained by impeding the transport of aggregates to the droplet edge due to outward capillary flow during evaporation,in sharp contrast to the random aggregate migration and rapid precipitation generated fromthe controlled poly[4-(6-(9H-diphenylaniline-9-yl)hexyloxy)-9,9-diphenylfluorene]-co-[5-(6-(9H-diphenylaniline-9-yl)hexyloxy)-9,9-diphenylfluorene]and poly(9,9-dioctylfluorene)solutions.Finally,an efficient random laser is also achieved based on these cross-linked films with ultrastable single-chain excitonic behavior,confirming the effectiveness of our design strategy.