With the rapid development of information technologies such as digital twin, extended reality, and blockchain,the hype around "metaverse" is increasing at astronomical speed. However, much attention has been...With the rapid development of information technologies such as digital twin, extended reality, and blockchain,the hype around "metaverse" is increasing at astronomical speed. However, much attention has been paid to its entertainment and social functions. Considering the openness and interoperability of metaverses, the market of quality inspection promises explosive growth. In this paper, taking advantage of metaverses, we first propose the concept of Automated Quality Inspection(Auto QI), which performs integrated inspection covering the entire manufacturing process, including Quality of Materials, Quality of Manufacturing(Qo M), Quality of Products, Quality of Processes(Qo P), Quality of Systems, and Quality of Services(Qo S). Based on the scenarios engineering theory, we discuss how to perform interactions between metaverses and the physical world for virtual design instruction and physical validation feedback. Then we introduce a bottomup inspection device development workflow with productivity tools offered by metaverses, making development more effective and efficient than ever. As the core of quality inspection,we propose Quality Transformers to complete detection task,while federated learning is integrated to regulate data sharing.In summary, we point out the development directions of quality inspection under metaverse tide.展开更多
AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the f...AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the first generation of industry,which is now called Industry Citation:L.Vlacic,H.Huang,M.Dotoli,Y.Wang,P.Ioanno,L.Fan,X.Wang,R.Carli,C.Lv,L.Li,X.Na,Q.-L.Han,and F.-Y.Wang,“Automation 5.0:The key to systems intelligence and Industry 5.0,”IEEE/CAA J.Autom.Sinica,vol.11,no.8,pp.1723-1727,Aug.2024.展开更多
This paper investigates the consensus problem for linear multi-agent systems with the heterogeneous disturbances generated by the Brown motion.Its main contribution is that a control scheme is designed to achieve the ...This paper investigates the consensus problem for linear multi-agent systems with the heterogeneous disturbances generated by the Brown motion.Its main contribution is that a control scheme is designed to achieve the dynamic consensus for the multi-agent systems in directed topology interfered by stochastic noise.In traditional ways,the coupling weights depending on the communication structure are static.A new distributed controller is designed based on Riccati inequalities,while updating the coupling weights associated with the gain matrix by state errors between adjacent agents.By introducing time-varying coupling weights into this novel control law,the state errors between leader and followers asymptotically converge to the minimum value utilizing the local interaction.Through the Lyapunov directed method and It?formula,the stability of the closed-loop system with the proposed control law is analyzed.Two simulation results conducted by the new and traditional schemes are presented to demonstrate the effectiveness and advantage of the developed control method.展开更多
Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power system...Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power systems have explored KGs to develop intelligent dispatching systems for increasingly large power grids.With multiple power grid dispatching knowledge graphs(PDKGs)constructed by different agencies,the knowledge fusion of different PDKGs is useful for providing more accurate decision supports.To achieve this,entity alignment that aims at connecting different KGs by identifying equivalent entities is a critical step.Existing entity alignment methods cannot integrate useful structural,attribute,and relational information while calculating entities’similarities and are prone to making many-to-one alignments,thus can hardly achieve the best performance.To address these issues,this paper proposes a collective entity alignment model that integrates three kinds of available information and makes collective counterpart assignments.This model proposes a novel knowledge graph attention network(KGAT)to learn the embeddings of entities and relations explicitly and calculates entities’similarities by adaptively incorporating the structural,attribute,and relational similarities.Then,we formulate the counterpart assignment task as an integer programming(IP)problem to obtain one-to-one alignments.We not only conduct experiments on a pair of PDKGs but also evaluate o ur model on three commonly used cross-lingual KGs.Experimental comparisons indicate that our model outperforms other methods and provides an effective tool for the knowledge fusion of PDKGs.展开更多
Road boundary detection is essential for autonomous vehicle localization and decision-making,especially under GPS signal loss and lane discontinuities.For road boundary detection in structural environments,obstacle oc...Road boundary detection is essential for autonomous vehicle localization and decision-making,especially under GPS signal loss and lane discontinuities.For road boundary detection in structural environments,obstacle occlusions and large road curvature are two significant challenges.However,an effective and fast solution for these problems has remained elusive.To solve these problems,a speed and accuracy tradeoff method for LiDAR-based road boundary detection in structured environments is proposed.The proposed method consists of three main stages:1)a multi-feature based method is applied to extract feature points;2)a road-segmentation-line-based method is proposed for classifying left and right feature points;3)an iterative Gaussian Process Regression(GPR)is employed for filtering out false points and extracting boundary points.To demonstrate the effectiveness of the proposed method,KITTI datasets is used for comprehensive experiments,and the performance of our approach is tested under different road conditions.Comprehensive experiments show the roadsegmentation-line-based method can classify left,and right feature points on structured curved roads,and the proposed iterative Gaussian Process Regression can extract road boundary points on varied road shapes and traffic conditions.Meanwhile,the proposed road boundary detection method can achieve real-time performance with an average of 70.5 ms per frame.展开更多
It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grou...It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grouping evacuation strategy is proposed. Occupants escape in groups according to the shortest evacuation route is determined by graph theory. In order to evaluate and find the optimal grouping, computational experiments are performed to design and simulate the evacuation processes. A case study shown the application in detail and quantitative research conclusions is obtained. The thoughts and approaches of this study can be used to guide actual high-rise building evacuation processes in future.展开更多
Intelligent vehicles can effectively improve traffic congestion and road traffic safety.Adaptive cruise followingcontrol(ACFC)is a vital part of intelligent vehicles.In this paper,a new hierarchical vehicle-following ...Intelligent vehicles can effectively improve traffic congestion and road traffic safety.Adaptive cruise followingcontrol(ACFC)is a vital part of intelligent vehicles.In this paper,a new hierarchical vehicle-following control strategy is presented by synthesizing the variable time headway model,type-2 fuzzy control,feedforward+fuzzy proportion integration(PI)feedback(F+FPIF)control,and inverse longitudinal dynamics model of vehicles.Firstly,a traditional variable time headway model is improved considering the acceleration of the lead car.Secondly,an interval type-2 fuzzy logic controller(IT2 FLC)is designed for the upper structure of the ACFC system to simulate the driver's operating habits.To reduce the nonlinear influence and improve the tracking accuracy for the desired acceleration,the control strategy of F+FPIF is given for the lower control structure.Thirdly,the lower control method proposed in this paper is compared with the fuzzy PI control and the traditional method(no lower controller for tracking desired acceleration)separately.Meanwhile,the proportion integration differentiation(PID),linear quadratic regulator(LQR),subsection function control(SFC)and type-1 fuzzy logic control(T1 FLC)are respectively compared with the IT2 FLC in control performance under different scenes.Finally,the simulation results show the effectiveness of IT2 FLC for the upper structure and F+FPIF control for the lower structure.展开更多
With most countries paying attention to the environment protection, hybrid electric vehicles have become a focus of automobile research and development due to the characteristics of energy saving and low emission. Pow...With most countries paying attention to the environment protection, hybrid electric vehicles have become a focus of automobile research and development due to the characteristics of energy saving and low emission. Power follower control strategy(PFCS) and DC-link voltage control strategy are two sorts of control strategies for series hybrid electric vehicles(HEVs). Combining those two control strategies is a new idea for control strategy of series hybrid electric vehicles. By tuning essential parameters which are the defined constants under DClink voltage control and under PFCS, the points of minimum mass of equivalent fuel consumption(EFC) corresponding to a series of variables are marked for worldwide harmonized light vehicles test procedure(WLTP). The fuel economy of series HEVs with the combination control schemes performs better compared with individual control scheme. The results show the effects of the combination control schemes for series HEVs driving in an urban environment.展开更多
In lots of data based prediction or modeling applications,uncertainties and/or noises in the observed data cannot be avoided.In such cases,it is more preferable and reasonable to provide linguistic(fuzzy)predicted res...In lots of data based prediction or modeling applications,uncertainties and/or noises in the observed data cannot be avoided.In such cases,it is more preferable and reasonable to provide linguistic(fuzzy)predicted results described by fuzzy memberships or fuzzy sets instead of the crisp estimates depicted by numbers.Linguistic dynamic system(LDS)provides a powerful tool for yielding linguistic(fuzzy)results.However,it is still difficult to construct LDS models from observed data.To solve this issue,this paper first presents a simplified LDS whose inputoutput mapping can be determined by closed-form formulas.Then,a hybrid learning method is proposed to construct the data-driven LDS model.The proposed hybrid learning method firstly generates fuzzy rules by the subtractive clustering method,then carries out further optimization of centers of the consequent triangular fuzzy sets in the fuzzy rules,and finally adopts multiobjective optimization algorithm to determine the left and right end-points of the consequent triangular fuzzy sets.The proposed approach is successfully applied to three real-world prediction applications which are:prediction of energy consumption of a building,forecasting of the traffic flow,and prediction of the wind speed.Simulation results show that the uncertainties in the data can be effectively captured by the linguistic(fuzzy)estimates.It can also be extended to some other prediction or modeling problems,in which observed data have high levels of uncertainties.展开更多
It is important to identify and remove the wastes not only from manufacturing process, but also from nonmanufacturing process. In the last several decades, significant research achievements and practice benefits have ...It is important to identify and remove the wastes not only from manufacturing process, but also from nonmanufacturing process. In the last several decades, significant research achievements and practice benefits have been achieved about removing wastes from manufacturing process. Since the1990 s, some researchers and lean practitioners have paid more attention to removing waste from non-manufacturing process.Based on the authors' research work and industrial practice, the paper introduces a kind of lean approach for removing waste from non-manufacturing process. In its case study, the order handling process in a value chain is described with respect to a factory and its downstream distribution centers(DCs). The paper proposes a lean approach solution for creating the improved order handling process, and analyze how great improvements in performance can be achieved. As a result, the significant achievement has created a win-win scenario for both the nonmanufacturing process in a factory and non-manufacturing facilities(like DCs) across the value chain. It demonstrates that improvements have been made by removing waste from the non-manufacturing process that takes place within a factory as well as with external participants through the whole value chain. Likewise, the proposed lean approach has helped the case companies to achieve greater levels of efficiency and more benefits. Finally, some conclusions are drawn.展开更多
The virtual-to-real paradigm,i.e.,training models on virtual data and then applying them to solve real-world problems,has attracted more and more attention from various domains by successfully alleviating the data sho...The virtual-to-real paradigm,i.e.,training models on virtual data and then applying them to solve real-world problems,has attracted more and more attention from various domains by successfully alleviating the data shortage problem in machine learning.To summarize the advances in recent years,this survey comprehensively reviews the literature,from the viewport of parallel intelligence.First,an extended parallel learning framework is proposed to cover main domains including computer vision,natural language processing,robotics,and autonomous driving.Second,a multi-dimensional taxonomy is designed to organize the literature in a hierarchical structure.Third,the related virtual-toreal works are analyzed and compared according to the three principles of parallel learning known as description,prediction,and prescription,which cover the methods for constructing virtual worlds,generating labeled data,domain transferring,model training and testing,as well as optimizing the strategies to guide the task-oriented data generator for better learning performance.Key issues remained in virtual-to-real are discussed.Furthermore,the future research directions from the viewpoint of parallel learning are suggested.展开更多
In the era of big data,there is an urgent need to establish data trading markets for effectively releasing the tremendous value of the drastically explosive data.Data security and data pricing,however,are still widely...In the era of big data,there is an urgent need to establish data trading markets for effectively releasing the tremendous value of the drastically explosive data.Data security and data pricing,however,are still widely regarded as major challenges in this respect,which motivate this research on the novel multi-blockchain based framework for data trading markets and their associated pricing mechanisms.In this context,data recording and trading are conducted separately within two separate blockchains:the data blockchain(DChain) and the value blockchain(VChain).This enables the establishment of two-layer data trading markets to manage initial data trading in the primary market and subsequent data resales in the secondary market.Moreover,pricing mechanisms are then proposed to protect these markets against strategic trading behaviors and balance the payoffs of both suppliers and users.Specifically,in regular data trading on VChain-S2D,two auction models are employed according to the demand scale,for dealing with users’ strategic bidding.The incentive-compatible Vickrey-Clarke-Groves(VCG)model is deployed to the low-demand trading scenario,while the nearly incentive-compatible monopolistic price(MP) model is utilized for the high-demand trading scenario.With temporary data trading on VChain-D2S,a reverse auction mechanism namely two-stage obscure selection(TSOS) is designed to regulate both suppliers’ quoting and users’ valuation strategies.Furthermore,experiments are carried out to demonstrate the strength of this research in enhancing data security and trading efficiency.展开更多
Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adver...Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs' proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs' advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence.展开更多
In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the...In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the input.The structure of the parallel control is provided,and the relationship between the parallel control and traditional feedback controls is presented.Considering the situations that the systems are controllable and incompletely controllable,the properties of the parallel control law are analyzed.The parallel controller design algorithms are given under the conditions that the systems are controllable and incompletely controllable.Finally,numerical simulations are carried out to demonstrate the effectiveness and applicability of the present method.Index Terms-Continuous-time linear systems,digital twin,parallel controller,parallel intelligence,parallel systems.展开更多
This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is int...This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is introduced into the feedback system.However,due to the introduction of control input into the feedback system,the optimal state feedback control methods can not be applied directly.To address this problem,an augmented system and an augmented performance index function are proposed firstly.Thus,the general nonlinear system is transformed into an affine nonlinear system.The difference between the optimal parallel control and the optimal state feedback control is analyzed theoretically.It is proven that the optimal parallel control with the augmented performance index function can be seen as the suboptimal state feedback control with the traditional performance index function.Moreover,an adaptive dynamic programming(ADP)technique is utilized to implement the optimal parallel tracking control using a critic neural network(NN)to approximate the value function online.The stability analysis of the closed-loop system is performed using the Lyapunov theory,and the tracking error and NN weights errors are uniformly ultimately bounded(UUB).Also,the optimal parallel controller guarantees the continuity of the control input under the circumstance that there are finite jump discontinuities in the reference signals.Finally,the effectiveness of the developed optimal parallel control method is verified in two cases.展开更多
The rapid advancement of fundamental theories and computing capacity has brought artificial intelligence,internet of things, extended reality, and many other new intelligent technologies into our daily lives. Due to t...The rapid advancement of fundamental theories and computing capacity has brought artificial intelligence,internet of things, extended reality, and many other new intelligent technologies into our daily lives. Due to the lack of interpretability and reliability guarantees, it is extremely challenging to apply these technologies directly to real-world industrial systems. Here we present a new paradigm for establishing parallel factories in metaverses to accelerate the deployment of intelligent technologies in real-world industrial systems: QAII-1.0. Based on cyber-physical-social systems,QAII-1.0 incorporates complex social and human factors into the design and analysis of industrial operations and is capable of handling industrial operations involving complex social and human behaviors. In QAII-1.0, a field foundational model called Eu Artisan combined with scenarios engineering is developed to improve the intelligence of industrial systems while ensuring industrial interpretability and reliability. Finally, parallel oil fields in metaverses are established to demonstrate the operating procedure of QAII-1.0.展开更多
In the area of computer vision, deep learning has produced a variety of state-of-the-art models that rely on massive labeled data. However, collecting and annotating images from the real world is too demanding in term...In the area of computer vision, deep learning has produced a variety of state-of-the-art models that rely on massive labeled data. However, collecting and annotating images from the real world is too demanding in terms of labor and money investments, and is usually inflexible to build datasets with specific characteristics, such as small area of objects and high occlusion level. Under the framework of Parallel Vision, this paper presents a purposeful way to design artificial scenes and automatically generate virtual images with precise annotations.A virtual dataset named Parallel Eye is built, which can be used for several computer vision tasks. Then, by training the DPM(Deformable parts model) and Faster R-CNN detectors, we prove that the performance of models can be significantly improved by combining Parallel Eye with publicly available real-world datasets during the training phase. In addition, we investigate the potential of testing the trained models from a specific aspect using intentionally designed virtual datasets, in order to discover the flaws of trained models. From the experimental results, we conclude that our virtual dataset is viable to train and test the object detectors.展开更多
基金supported by Optima Collaborative Research Project of Defect Detection Algorithm for Automated Optical Inspection±Phase IIthe Key-Area Research and Development Program of Guangdong Province(2020B0909050001,2020B090921003)the Natural Science Foundation of Hebei Province(2021402011)。
文摘With the rapid development of information technologies such as digital twin, extended reality, and blockchain,the hype around "metaverse" is increasing at astronomical speed. However, much attention has been paid to its entertainment and social functions. Considering the openness and interoperability of metaverses, the market of quality inspection promises explosive growth. In this paper, taking advantage of metaverses, we first propose the concept of Automated Quality Inspection(Auto QI), which performs integrated inspection covering the entire manufacturing process, including Quality of Materials, Quality of Manufacturing(Qo M), Quality of Products, Quality of Processes(Qo P), Quality of Systems, and Quality of Services(Qo S). Based on the scenarios engineering theory, we discuss how to perform interactions between metaverses and the physical world for virtual design instruction and physical validation feedback. Then we introduce a bottomup inspection device development workflow with productivity tools offered by metaverses, making development more effective and efficient than ever. As the core of quality inspection,we propose Quality Transformers to complete detection task,while federated learning is integrated to regulate data sharing.In summary, we point out the development directions of quality inspection under metaverse tide.
基金supported in part by the Hong Kong Polytechnic University via the project P0038447The Science and Technology Development Fund,Macao SAR(0093/2023/RIA2)The Science and Technology Development Fund,Macao SAR(0145/2023/RIA3).
文摘AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the first generation of industry,which is now called Industry Citation:L.Vlacic,H.Huang,M.Dotoli,Y.Wang,P.Ioanno,L.Fan,X.Wang,R.Carli,C.Lv,L.Li,X.Na,Q.-L.Han,and F.-Y.Wang,“Automation 5.0:The key to systems intelligence and Industry 5.0,”IEEE/CAA J.Autom.Sinica,vol.11,no.8,pp.1723-1727,Aug.2024.
基金supported by the National High Technology Research and Development Program(863 program)of China(2012AA101906-2)the National Natural Science Foundation of China(3140030594)
基金supported in part by the National Natural Science Foundation of China(61722312,61533017,62073321)the National Key Research and Development Program of China(2018YFB1702300)。
文摘This paper investigates the consensus problem for linear multi-agent systems with the heterogeneous disturbances generated by the Brown motion.Its main contribution is that a control scheme is designed to achieve the dynamic consensus for the multi-agent systems in directed topology interfered by stochastic noise.In traditional ways,the coupling weights depending on the communication structure are static.A new distributed controller is designed based on Riccati inequalities,while updating the coupling weights associated with the gain matrix by state errors between adjacent agents.By introducing time-varying coupling weights into this novel control law,the state errors between leader and followers asymptotically converge to the minimum value utilizing the local interaction.Through the Lyapunov directed method and It?formula,the stability of the closed-loop system with the proposed control law is analyzed.Two simulation results conducted by the new and traditional schemes are presented to demonstrate the effectiveness and advantage of the developed control method.
基金supported by the National Key R&D Program of China(2018AAA0101502)the Science and Technology Project of SGCC(State Grid Corporation of China):Fundamental Theory of Human-in-the-Loop Hybrid-Augmented Intelligence for Power Grid Dispatch and Control。
文摘Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power systems have explored KGs to develop intelligent dispatching systems for increasingly large power grids.With multiple power grid dispatching knowledge graphs(PDKGs)constructed by different agencies,the knowledge fusion of different PDKGs is useful for providing more accurate decision supports.To achieve this,entity alignment that aims at connecting different KGs by identifying equivalent entities is a critical step.Existing entity alignment methods cannot integrate useful structural,attribute,and relational information while calculating entities’similarities and are prone to making many-to-one alignments,thus can hardly achieve the best performance.To address these issues,this paper proposes a collective entity alignment model that integrates three kinds of available information and makes collective counterpart assignments.This model proposes a novel knowledge graph attention network(KGAT)to learn the embeddings of entities and relations explicitly and calculates entities’similarities by adaptively incorporating the structural,attribute,and relational similarities.Then,we formulate the counterpart assignment task as an integer programming(IP)problem to obtain one-to-one alignments.We not only conduct experiments on a pair of PDKGs but also evaluate o ur model on three commonly used cross-lingual KGs.Experimental comparisons indicate that our model outperforms other methods and provides an effective tool for the knowledge fusion of PDKGs.
基金This work was supported by the Research on Construction and Simulation Technology of Hardware in Loop Testing Scenario for Self-Driving Electric Vehicle in China(2018YFB0105103J).
文摘Road boundary detection is essential for autonomous vehicle localization and decision-making,especially under GPS signal loss and lane discontinuities.For road boundary detection in structural environments,obstacle occlusions and large road curvature are two significant challenges.However,an effective and fast solution for these problems has remained elusive.To solve these problems,a speed and accuracy tradeoff method for LiDAR-based road boundary detection in structured environments is proposed.The proposed method consists of three main stages:1)a multi-feature based method is applied to extract feature points;2)a road-segmentation-line-based method is proposed for classifying left and right feature points;3)an iterative Gaussian Process Regression(GPR)is employed for filtering out false points and extracting boundary points.To demonstrate the effectiveness of the proposed method,KITTI datasets is used for comprehensive experiments,and the performance of our approach is tested under different road conditions.Comprehensive experiments show the roadsegmentation-line-based method can classify left,and right feature points on structured curved roads,and the proposed iterative Gaussian Process Regression can extract road boundary points on varied road shapes and traffic conditions.Meanwhile,the proposed road boundary detection method can achieve real-time performance with an average of 70.5 ms per frame.
基金supported by Beijing University of Civil Engineering and Architecture Nature Science(ZF16078,X18067)
文摘It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grouping evacuation strategy is proposed. Occupants escape in groups according to the shortest evacuation route is determined by graph theory. In order to evaluate and find the optimal grouping, computational experiments are performed to design and simulate the evacuation processes. A case study shown the application in detail and quantitative research conclusions is obtained. The thoughts and approaches of this study can be used to guide actual high-rise building evacuation processes in future.
基金the National Natural Science Foundation of China(61473048,61074093,61873321)。
文摘Intelligent vehicles can effectively improve traffic congestion and road traffic safety.Adaptive cruise followingcontrol(ACFC)is a vital part of intelligent vehicles.In this paper,a new hierarchical vehicle-following control strategy is presented by synthesizing the variable time headway model,type-2 fuzzy control,feedforward+fuzzy proportion integration(PI)feedback(F+FPIF)control,and inverse longitudinal dynamics model of vehicles.Firstly,a traditional variable time headway model is improved considering the acceleration of the lead car.Secondly,an interval type-2 fuzzy logic controller(IT2 FLC)is designed for the upper structure of the ACFC system to simulate the driver's operating habits.To reduce the nonlinear influence and improve the tracking accuracy for the desired acceleration,the control strategy of F+FPIF is given for the lower control structure.Thirdly,the lower control method proposed in this paper is compared with the fuzzy PI control and the traditional method(no lower controller for tracking desired acceleration)separately.Meanwhile,the proportion integration differentiation(PID),linear quadratic regulator(LQR),subsection function control(SFC)and type-1 fuzzy logic control(T1 FLC)are respectively compared with the IT2 FLC in control performance under different scenes.Finally,the simulation results show the effectiveness of IT2 FLC for the upper structure and F+FPIF control for the lower structure.
基金supported in part by the National Natural Science Foundation of China(61773382,61773381,61533019)Chinese Guangdongs S&T projects(2016B090910001,2017B090912001)+1 种基金2016 S&T Benefiting Special Project(16-6-2-62-nsh)of Qingdao Achievements Transformation ProgramDongguan Innovation Talents Project(Gang Xiong)
文摘With most countries paying attention to the environment protection, hybrid electric vehicles have become a focus of automobile research and development due to the characteristics of energy saving and low emission. Power follower control strategy(PFCS) and DC-link voltage control strategy are two sorts of control strategies for series hybrid electric vehicles(HEVs). Combining those two control strategies is a new idea for control strategy of series hybrid electric vehicles. By tuning essential parameters which are the defined constants under DClink voltage control and under PFCS, the points of minimum mass of equivalent fuel consumption(EFC) corresponding to a series of variables are marked for worldwide harmonized light vehicles test procedure(WLTP). The fuel economy of series HEVs with the combination control schemes performs better compared with individual control scheme. The results show the effects of the combination control schemes for series HEVs driving in an urban environment.
基金supported by the National Natural Science Foundation of China(61473176,61773246)the Natural Science Foundation of Shandong Province for Outstanding Young Talents in Provincial Universities(ZR2015JL021)the Taishan Scholar Project of Shandong Province(TSQN201812092)
文摘In lots of data based prediction or modeling applications,uncertainties and/or noises in the observed data cannot be avoided.In such cases,it is more preferable and reasonable to provide linguistic(fuzzy)predicted results described by fuzzy memberships or fuzzy sets instead of the crisp estimates depicted by numbers.Linguistic dynamic system(LDS)provides a powerful tool for yielding linguistic(fuzzy)results.However,it is still difficult to construct LDS models from observed data.To solve this issue,this paper first presents a simplified LDS whose inputoutput mapping can be determined by closed-form formulas.Then,a hybrid learning method is proposed to construct the data-driven LDS model.The proposed hybrid learning method firstly generates fuzzy rules by the subtractive clustering method,then carries out further optimization of centers of the consequent triangular fuzzy sets in the fuzzy rules,and finally adopts multiobjective optimization algorithm to determine the left and right end-points of the consequent triangular fuzzy sets.The proposed approach is successfully applied to three real-world prediction applications which are:prediction of energy consumption of a building,forecasting of the traffic flow,and prediction of the wind speed.Simulation results show that the uncertainties in the data can be effectively captured by the linguistic(fuzzy)estimates.It can also be extended to some other prediction or modeling problems,in which observed data have high levels of uncertainties.
基金supported in part by the National Natural Science Foundation of China (61773381,61773382,61533019,91520301)Finnish TEKES’s Project "SoMa2020:Social Manufacturing" (211560)+1 种基金Chinese Guangdong’s S&T Project (2015B010103001,2016B090910001,2017B090912001)Dongguan’s Innovation Talents Project (Gang Xiong)
文摘It is important to identify and remove the wastes not only from manufacturing process, but also from nonmanufacturing process. In the last several decades, significant research achievements and practice benefits have been achieved about removing wastes from manufacturing process. Since the1990 s, some researchers and lean practitioners have paid more attention to removing waste from non-manufacturing process.Based on the authors' research work and industrial practice, the paper introduces a kind of lean approach for removing waste from non-manufacturing process. In its case study, the order handling process in a value chain is described with respect to a factory and its downstream distribution centers(DCs). The paper proposes a lean approach solution for creating the improved order handling process, and analyze how great improvements in performance can be achieved. As a result, the significant achievement has created a win-win scenario for both the nonmanufacturing process in a factory and non-manufacturing facilities(like DCs) across the value chain. It demonstrates that improvements have been made by removing waste from the non-manufacturing process that takes place within a factory as well as with external participants through the whole value chain. Likewise, the proposed lean approach has helped the case companies to achieve greater levels of efficiency and more benefits. Finally, some conclusions are drawn.
基金partially supported by the National Key Research and Development Program of China(2020YFB2104001)the National Natural Science Foundation of China(62271485,61903363,U1811463)Open Project of the State Key Laboratory for Management and Control of Complex Systems(20220117)。
文摘The virtual-to-real paradigm,i.e.,training models on virtual data and then applying them to solve real-world problems,has attracted more and more attention from various domains by successfully alleviating the data shortage problem in machine learning.To summarize the advances in recent years,this survey comprehensively reviews the literature,from the viewport of parallel intelligence.First,an extended parallel learning framework is proposed to cover main domains including computer vision,natural language processing,robotics,and autonomous driving.Second,a multi-dimensional taxonomy is designed to organize the literature in a hierarchical structure.Third,the related virtual-toreal works are analyzed and compared according to the three principles of parallel learning known as description,prediction,and prescription,which cover the methods for constructing virtual worlds,generating labeled data,domain transferring,model training and testing,as well as optimizing the strategies to guide the task-oriented data generator for better learning performance.Key issues remained in virtual-to-real are discussed.Furthermore,the future research directions from the viewpoint of parallel learning are suggested.
基金partially supported by the Science and Technology Development Fund,Macao SAR (0050/2020/A1)the National Natural Science Foundation of China (62103411, 72171230)。
文摘In the era of big data,there is an urgent need to establish data trading markets for effectively releasing the tremendous value of the drastically explosive data.Data security and data pricing,however,are still widely regarded as major challenges in this respect,which motivate this research on the novel multi-blockchain based framework for data trading markets and their associated pricing mechanisms.In this context,data recording and trading are conducted separately within two separate blockchains:the data blockchain(DChain) and the value blockchain(VChain).This enables the establishment of two-layer data trading markets to manage initial data trading in the primary market and subsequent data resales in the secondary market.Moreover,pricing mechanisms are then proposed to protect these markets against strategic trading behaviors and balance the payoffs of both suppliers and users.Specifically,in regular data trading on VChain-S2D,two auction models are employed according to the demand scale,for dealing with users’ strategic bidding.The incentive-compatible Vickrey-Clarke-Groves(VCG)model is deployed to the low-demand trading scenario,while the nearly incentive-compatible monopolistic price(MP) model is utilized for the high-demand trading scenario.With temporary data trading on VChain-D2S,a reverse auction mechanism namely two-stage obscure selection(TSOS) is designed to regulate both suppliers’ quoting and users’ valuation strategies.Furthermore,experiments are carried out to demonstrate the strength of this research in enhancing data security and trading efficiency.
基金supported by the National Natural Science Foundation of China(61533019,71232006,91520301)
文摘Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs' proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs' advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence.
基金supported in part by the National Key Research and Development Program of China(2018AAA0101502,2018YFB1702300)the National Natural Science Foundation of China(61722312,61533019,U1811463,61533017)。
文摘In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the input.The structure of the parallel control is provided,and the relationship between the parallel control and traditional feedback controls is presented.Considering the situations that the systems are controllable and incompletely controllable,the properties of the parallel control law are analyzed.The parallel controller design algorithms are given under the conditions that the systems are controllable and incompletely controllable.Finally,numerical simulations are carried out to demonstrate the effectiveness and applicability of the present method.Index Terms-Continuous-time linear systems,digital twin,parallel controller,parallel intelligence,parallel systems.
基金supported in part by the National Key Reseanch and Development Program of China(2018AAA0101502,2018YFB1702300)in part by the National Natural Science Foundation of China(61722312,61533019,U1811463,61533017)in part by the Intel Collaborative Research Institute for Intelligent and Automated Connected Vehicles。
文摘This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is introduced into the feedback system.However,due to the introduction of control input into the feedback system,the optimal state feedback control methods can not be applied directly.To address this problem,an augmented system and an augmented performance index function are proposed firstly.Thus,the general nonlinear system is transformed into an affine nonlinear system.The difference between the optimal parallel control and the optimal state feedback control is analyzed theoretically.It is proven that the optimal parallel control with the augmented performance index function can be seen as the suboptimal state feedback control with the traditional performance index function.Moreover,an adaptive dynamic programming(ADP)technique is utilized to implement the optimal parallel tracking control using a critic neural network(NN)to approximate the value function online.The stability analysis of the closed-loop system is performed using the Lyapunov theory,and the tracking error and NN weights errors are uniformly ultimately bounded(UUB).Also,the optimal parallel controller guarantees the continuity of the control input under the circumstance that there are finite jump discontinuities in the reference signals.Finally,the effectiveness of the developed optimal parallel control method is verified in two cases.
基金supported in part by the National Natural Science Foundation of China(1811463,62073321)Modeling,Decision and Control Algorithms for Servo Drive Systems。
文摘The rapid advancement of fundamental theories and computing capacity has brought artificial intelligence,internet of things, extended reality, and many other new intelligent technologies into our daily lives. Due to the lack of interpretability and reliability guarantees, it is extremely challenging to apply these technologies directly to real-world industrial systems. Here we present a new paradigm for establishing parallel factories in metaverses to accelerate the deployment of intelligent technologies in real-world industrial systems: QAII-1.0. Based on cyber-physical-social systems,QAII-1.0 incorporates complex social and human factors into the design and analysis of industrial operations and is capable of handling industrial operations involving complex social and human behaviors. In QAII-1.0, a field foundational model called Eu Artisan combined with scenarios engineering is developed to improve the intelligence of industrial systems while ensuring industrial interpretability and reliability. Finally, parallel oil fields in metaverses are established to demonstrate the operating procedure of QAII-1.0.
基金supported by the National Natural Science Foundation of China(61533019,71232006)
文摘In the area of computer vision, deep learning has produced a variety of state-of-the-art models that rely on massive labeled data. However, collecting and annotating images from the real world is too demanding in terms of labor and money investments, and is usually inflexible to build datasets with specific characteristics, such as small area of objects and high occlusion level. Under the framework of Parallel Vision, this paper presents a purposeful way to design artificial scenes and automatically generate virtual images with precise annotations.A virtual dataset named Parallel Eye is built, which can be used for several computer vision tasks. Then, by training the DPM(Deformable parts model) and Faster R-CNN detectors, we prove that the performance of models can be significantly improved by combining Parallel Eye with publicly available real-world datasets during the training phase. In addition, we investigate the potential of testing the trained models from a specific aspect using intentionally designed virtual datasets, in order to discover the flaws of trained models. From the experimental results, we conclude that our virtual dataset is viable to train and test the object detectors.