Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en...Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.展开更多
Perovskite/silicon(Si) tandem solar cells have been recognized as the next-generation photovoltaic technology with efficiency over 30% and low cost. However, the intrinsic instability of traditional three-dimensional(...Perovskite/silicon(Si) tandem solar cells have been recognized as the next-generation photovoltaic technology with efficiency over 30% and low cost. However, the intrinsic instability of traditional three-dimensional(3D) hybrid perovskite seriously hinders the lifetimes of tandem devices. In this work, the quasi-two-dimensional(2D)(BA)_(2)(MA)_(n-1)Pbn I_(3n+1)(n = 1, 2, 3, 4, 5)(where MA denotes methylammonium and BA represents butylammonium), with senior stability and wider bandgap, are first used as an absorber of semitransparent top perovskite solar cells(PSCs) to construct a fourterminal(4T) tandem devices with a bottom Si-heterojunction cell. The device model is established by Silvaco Atlas based on experimental parameters. Simulation results show that in the optimized tandem device, the top cell(n = 4) obtains a power conversion efficiency(PCE) of 17.39% and the Si bottom cell shows a PCE of 11.44%, thus an overall PCE of 28.83%. Furthermore, by introducing a 90-nm lithium fluoride(LiF) anti-reflection layer to reduce the surface reflection loss, the current density(J_(sc)) of the top cell is enhanced from 15.56 m A/cm^(2) to 17.09 m A/cm^(2), the corresponding PCE reaches 19.05%, and the tandem PCE increases to 30.58%. Simultaneously, in the cases of n = 3, 4, and 5, all the tandem PCEs exceed the limiting theoretical efficiency of Si cells. Therefore, the 4T quasi-2D perovskite/Si devices provide a more cost-effective tandem strategy and long-term stability solutions.展开更多
The mercury removal performance of modified bamboo charcoal (BC) was investigated with a bench-scale fixedbed reactor, A simple impregnation method was used to modify the BC with ZnCI2 and FeCI3 separately. BET and ...The mercury removal performance of modified bamboo charcoal (BC) was investigated with a bench-scale fixedbed reactor, A simple impregnation method was used to modify the BC with ZnCI2 and FeCI3 separately. BET and XPS were used to determine the pore structure and surface chemistry of the sorbents. The role of Fe3 + in the removal of elemental mercury by modified sorbents was discussed. The experimental results suggest that the modified BCs have excellent adsorption potential for elemental mercury at a relatively higher temperature, 140 ℃. The BET surface area and average pore size of modified sorbents do not show noticeable priority compared to unmodified BC, XPS spectra indicate that Fe atoms mainly exist in the form of Fe3 + for the FeC1j-impregnated BC. Better performance of FeCl3-impregnated BC at different temperatures (20, 140 and 180 ℃) suggests the enhancement of non-chloride functional groups (Fe3 +). Inhibition effect of SOx and NO for Hg removal by BC samples is present in the study.展开更多
基金the financial support from the National Key R&D program of China(2021YFF0500501 and 2021YFF0500504)the Fundamental Research Funds for the Central Universities(YJS2213 and JB211408)+1 种基金the National Natural Science Foundation of China(61874083)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-014)
文摘Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62004151, 62274126, 62274126, 61874083, and 61804113)the China Postdoctoral Science Foundation (Grant No. 2020T130490)。
文摘Perovskite/silicon(Si) tandem solar cells have been recognized as the next-generation photovoltaic technology with efficiency over 30% and low cost. However, the intrinsic instability of traditional three-dimensional(3D) hybrid perovskite seriously hinders the lifetimes of tandem devices. In this work, the quasi-two-dimensional(2D)(BA)_(2)(MA)_(n-1)Pbn I_(3n+1)(n = 1, 2, 3, 4, 5)(where MA denotes methylammonium and BA represents butylammonium), with senior stability and wider bandgap, are first used as an absorber of semitransparent top perovskite solar cells(PSCs) to construct a fourterminal(4T) tandem devices with a bottom Si-heterojunction cell. The device model is established by Silvaco Atlas based on experimental parameters. Simulation results show that in the optimized tandem device, the top cell(n = 4) obtains a power conversion efficiency(PCE) of 17.39% and the Si bottom cell shows a PCE of 11.44%, thus an overall PCE of 28.83%. Furthermore, by introducing a 90-nm lithium fluoride(LiF) anti-reflection layer to reduce the surface reflection loss, the current density(J_(sc)) of the top cell is enhanced from 15.56 m A/cm^(2) to 17.09 m A/cm^(2), the corresponding PCE reaches 19.05%, and the tandem PCE increases to 30.58%. Simultaneously, in the cases of n = 3, 4, and 5, all the tandem PCEs exceed the limiting theoretical efficiency of Si cells. Therefore, the 4T quasi-2D perovskite/Si devices provide a more cost-effective tandem strategy and long-term stability solutions.
基金Supported by the Huaneng Group Headquarters(HNKJ14-H10)China Postdoctoral Science Foundation(2013M542373)
文摘The mercury removal performance of modified bamboo charcoal (BC) was investigated with a bench-scale fixedbed reactor, A simple impregnation method was used to modify the BC with ZnCI2 and FeCI3 separately. BET and XPS were used to determine the pore structure and surface chemistry of the sorbents. The role of Fe3 + in the removal of elemental mercury by modified sorbents was discussed. The experimental results suggest that the modified BCs have excellent adsorption potential for elemental mercury at a relatively higher temperature, 140 ℃. The BET surface area and average pore size of modified sorbents do not show noticeable priority compared to unmodified BC, XPS spectra indicate that Fe atoms mainly exist in the form of Fe3 + for the FeC1j-impregnated BC. Better performance of FeCl3-impregnated BC at different temperatures (20, 140 and 180 ℃) suggests the enhancement of non-chloride functional groups (Fe3 +). Inhibition effect of SOx and NO for Hg removal by BC samples is present in the study.