Onion plants form spherical bulbs under long-day conditions.Substances regulating bulb formation remain unknown.In the course of chemical studies on the bulb formation,α-linolenic acid was isolated from onion extract...Onion plants form spherical bulbs under long-day conditions.Substances regulating bulb formation remain unknown.In the course of chemical studies on the bulb formation,α-linolenic acid was isolated from onion extracts as an antibulbing substance,the amount of which was synchronized with the bulb formation.Since allene oxide synthase inhibitor canceled the antibulbing activity ofα-linolenic acid,it was disclosed that jasmonic acid concerns this regulation.Structure-activity-relationship study revealed that its(3R,7S)stereochemistry is necessary for showing its antibulbing activity.It is concluded that(3R,7S)-jasmonate derived fromα-linolenic acid actually participates in the regulation of bulb formation.展开更多
How can we regulate an invasive alien species of high commercial value?Black locust(Robinia pseudoacacia L.)has a unique capacity for seed dispersal and high germination.Field surveys indicate that black locust increa...How can we regulate an invasive alien species of high commercial value?Black locust(Robinia pseudoacacia L.)has a unique capacity for seed dispersal and high germination.Field surveys indicate that black locust increases its growing area with sprouting roots and the elongation of horizontal roots at a soil depth of 10 cm.Therefore,a method to regulate the development of horizontal roots could be eff ective in slowing the invasiveness of black locust.In this study,root barrier panels were tested to inhibit the growth of horizontal roots.Since it is labor intensive to observe the growth of roots in the fi eld,it was investigated in a nursery setting.The decrease in secondary fl ush,an increase in yellowed leafl ets,and the height in the seedlings were measured.Installing root barrier panels to a depth of 30 cm eff ectively inhibit the growth of horizontal roots of young black locust.展开更多
Ground-level ozone pollution is a menace for vegetation in the northern hemisphere,limiting photosynthetic pigments and suppressing photosynthesis in trees and other types of plants.Phaeophytinization is the process o...Ground-level ozone pollution is a menace for vegetation in the northern hemisphere,limiting photosynthetic pigments and suppressing photosynthesis in trees and other types of plants.Phaeophytinization is the process of converting chlorophylls into phaeophytins,for example by acidifi cation.Ozone is a highly oxidizing molecule and well known to degrade chlorophylls;however,the eff ect of ozone on phaeophytinization in leaves of higher plants is largely unknown.To reveal ozone eff ect on phaeophytinization and evaluate the potential of phaeophytinization as an index of ozone stress in trees,the absorbance at the optical density of 665 nm was measured before(OD_(665))and after(OD_(665a))acidifi cation in three independent experiments with nearly 30 conditions of ozone exposure.Both current ambient and elevated ozone widely aff ected phaeophytinization,as indicated by decreases or increases in the phaeophytinization quotient OD_(665)/OD_(665a).These eff ects were commonly moderate to large in magnitude and practically signifi cant,and occurred even in ozone-asymptomatic leaves.It emerges that the ozone eff ect on phaeophytinization is bimodal,likely depending on the intensity of ozone stress.These results indicate a promising feature of OD_(665)/OD_(665a)as a thorough index of ozone stress in the future,but further studies are needed to reveal the underlying biochemical mechanisms of the bimodal eff ect on phaeophytinization.展开更多
Understanding what environmental factors are genetically linked to a phenologic al event is critical for predicting responses to climate change.Photo synthetic phenology often varies among a species of evergreen conif...Understanding what environmental factors are genetically linked to a phenologic al event is critical for predicting responses to climate change.Photo synthetic phenology often varies among a species of evergreen conifers due to local adaptation.However,few empirical studies have revealed relevant relationships between climatic factors in provenance environments and photosynthetic phenology.This study evaluated the effects of environmental conditions of the growing site and seed source provenance on the seasonal changes in maximal photochemical quantum yield of photo systemⅡ(Fv/Fm)in a common garden experiment with 2-year-old seedlings of Sakhalin fir(Abies sachalinensis),a representative species with local adaptation,from four seed source provenances.A logistic model was constructed to explain the seasonal variation of Fv/Fmfrom July to October and the relationships between the estimated model parameters and representative factors featuring provenance environments were evaluated.The landscape gradient of the detected model parameters responsible for the provenance environments was visualized in a map of the distribution area.The lowest temperature was the most plausible factor in the growing environment to explain the seasonal changes of Fv/Fm.Among the representative meteorological factors of provenance environments,the lowest temperatures in July showed significant relationships with two model parameters,explaining the lower limit of Fv/Fmand the higher sensitivity of autumn Fv/Fmdecline.The estimated spatial maps of model parameters consistently showed that the higher the lowest temperature in July in the provenance environment,the lower the Fv/Fmin October and the greater the decrease in the autumn Fv/Fmdecline.Therefore,the lowest summer temperature could be associated with the local adaptation of autumn photosynthetic phenology in A.sachalinensis.展开更多
Climate change can intensify drought in many regions of the world and lead to more frequent drought events or altered cycles of soil water status.Therefore,it is important to enhance the tolerance to drought and thus ...Climate change can intensify drought in many regions of the world and lead to more frequent drought events or altered cycles of soil water status.Therefore,it is important to enhance the tolerance to drought and thus health,vigor,and success of transplantation seedlings used in the forestry by modifying fertilization and promoting mycorrhization.Here,we sowed seeds of Japanese larch(Larix kaempferi)in 0.2-L containers with 0.5 g(low fertilization;LF)or 2 g(high fertilization;HF)of slow-release fertilizer early in the growing season.One month later,we irrigated seedlings with non-sterilized ectomycorrhizal inoculum(ECM)or sterilized solution(non-ECM),and after about 2 months,plants were either kept well watered(WW;500 mL water/plant/week)or subjected to drought(DR;50 mL water per plant/week)until the end of the growing season.HF largely stimulated plant growth and above-and belowground biomass production,eff ects that are of practical signifi cance,but caused a small decrease in stomatal conductance(Gs 390)and transpiration rate(E 390),which in practice is insignifi cant.ECM treatment resulted in moderate inhibition of seedling growth and biomass and largely canceled out the enhancement of biomass and foliar K content by HF.DR caused a large decrease in CO 2 assimilation,and enhanced stomatal closure and induced senescence.DR also largely depleted foliar Mg and enriched foliar K.Although DR caused a large decrease in foliar P content in LF,it moderately increased P in HF.Likewise,DR increased foliar K in HF but not in LF,and decreased foliar P in ECM plants but not in non-ECM plants.Conversely,ECM plants exhibited a large enrichment in foliar P under WW and had a lower water potential under DR when grown in LF.These results indicate that the drought tolerance and health and vigor of Japanese larch seedlings can be modifi ed by soil fertility and soil microorganisms.This study provides a basis for new multifactorial research programs aimed at producing seedlings of superior quality for forestation under climate change.展开更多
The organ-specific toxicity resulting from microplastic(MP)exposure has been extensively explored,particularly concerning the gut,liver,testis,and lung.However,under natural conditions,these effects are not restricted...The organ-specific toxicity resulting from microplastic(MP)exposure has been extensively explored,particularly concerning the gut,liver,testis,and lung.However,under natural conditions,these effects are not restricted to specific organs or tissues.Investigating whether MP exposure presents a systemic threat to an entire organism,impacting factors such as lifespan,sleep,and fecundity,is essential.In this study,we investigated the effects of dietary exposure to two different doses of MPs(1–5μm)using the terrestrial model organism Drosophila melanogaster.Results indicated that the particles caused gut damage and remained within the digestive system.Continuous MP exposure significantly shortened the lifespan of adult flies.Even short-term exposure disrupted sleep patterns,increasing the length of daytime sleep episodes.Additionally,one week of MP exposure reduced ovary size,with a trend towards decreased egg-laying in mated females.Although MPs did not penetrate the brain or ovaries,transcriptome analysis revealed altered gene expression in these tissues.In the ovary,Gene Ontology(GO)analysis indicated genotoxic effects impacting inflammation,circadian regulation,and metabolic processes,with significant impacts on extracellular structure-related pathways.In the brain,GO analysis identified changes in pathways associated with proteolysis and carbohydrate metabolism.Overall,this study provides compelling evidence of the systemic negative effects of MP exposure,highlighting the urgent need to address and mitigate environmental MP pollution.展开更多
Although high atmospheric temperatures suppress anthocyanin accumulation in most plant species,we show that high temperatures accelerate anthocyanin pigmentation in flower tepals of Asiatic hybrid lilies(Lilium spp.)....Although high atmospheric temperatures suppress anthocyanin accumulation in most plant species,we show that high temperatures accelerate anthocyanin pigmentation in flower tepals of Asiatic hybrid lilies(Lilium spp.).After incubation at high temperatures(35℃)for two days,anthocyanin color became deeper in the most of tepal parts of two Asiatic hybrid lily cultivars,although the basal parts of’Montreux’tepals and top parts of’Toronto’outer tepals were whitened.Environmental stimuli often affect the expression of R2R3-MYB positive regulators that control anthocyanin biosynthesis.Although their expression is often suppressed by hot temperatures in other species,the expression of lily MYB12 in tepals was upregulated by high temperatures.MicroRNA828(miR828),which suppresses the action of MYB12 post-transcriptionally,exhibited reduced accumulation levels under high temperature,indicating that miR828 regulation is involved in MYB12 upregulation.In addition,transcription levels of MYB12,estimated by unspliced MYB12 transcript accumulation,were also activated by high temperatures.Thus,both suppressed miR828 accumulation and increased MYB12 transcription are likely to be involved in MYB12 activation at high temperatures.In the whitened basal parts of’Montreux’tepals at 35℃,expression of bHLH2 was severely suppressed while that of MYB12 was not affected.The present results demonstrate that plants display diverse responses to hot climatic conditions and shed new light on anthocyanin regulation under various environmental conditions.展开更多
The adaptability of soybean to be grown at a wide range of latitudes is attributed to natural variation in the major genes and quantitative trait loci (QTLs) that control flowering time and maturity. Thus, the ident...The adaptability of soybean to be grown at a wide range of latitudes is attributed to natural variation in the major genes and quantitative trait loci (QTLs) that control flowering time and maturity. Thus, the identification of genes controlling flowering time and maturity and the understanding of their molecular basis are critical for improving soybean productivity. However, due to the great effect of the major maturity gene E1 on flowering time, it is difficult to detect other small-effect QTLs. In this study, aiming to reduce the effect of the QTL, associated with the E1 gene, on the detection of other QTLs, we divided a population of 96 recombinant inbred lines (RILs) into two sub-populations: one with the E1 allele and another with the elns allele. Compared with the results of using all 96 recombinant inbred lines, additional QTLs for flowering time were identified in the sub-populations, two (qFT-B1 and qFT-H) in RILs with the E1 allele and one (qFT-J-2) in the RILs with the elnl allele, respectively. The three QTLs, qFT-B1, qFT-H and qFT-J-2 were true QTLs and played an important role in the regulation of growth period. Our data provides valuable information for the genetic mapping and gene cloning of traits controlling flowering time and maturity and will help a better understanding of the mechanism of photoperiod-regulated flowering and molecular breeding in soybean.展开更多
The devastating effect of soil erosion is one of the major sources of land degradation that affects human lives in many ways which occur mainly due to deforestation, poor agricultural practices, overgrazing,wildfire a...The devastating effect of soil erosion is one of the major sources of land degradation that affects human lives in many ways which occur mainly due to deforestation, poor agricultural practices, overgrazing,wildfire and urbanization. Soil erosion often leads to soil truncation, loss of fertility, slope instability, etc.which causes irreversible effects on the poorly renewable soil resource. In view of this, a study was conducted in Kelantan River basin to predict soil loss as influenced by long-term land use/land-cover(LULC) changes in the area. The study was conducted with the aim of predicting and assessing soil erosion as it is influenced by long-term LULC changes. The 13,100 km^2 watershed was delineated into four sub-catchments Galas, Pergau, Lebir and Nenggiri for precise result estimation and ease of execution. GIS-based Universal Soil Loss Equation(USLE) model was used to predict soil loss in this study. The model inputs used for the temporal and spatial calculation of soil erosion include rainfall erosivity factor,topographic factor, land cover and management factor as well as erodibility factor. The results showed that 67.54% of soil loss is located under low erosion potential(reversible soil loss) or 0-1 t ha^(-1) yr^(-1) soil loss in Galas, 59.17% in Pergau, 53.32% in Lebir and 56.76% in Nenggiri all under the 2013 LULC condition.Results from the correlation of soil erosion rates with LULC changes indicated that cleared land in all the four catchments and under all LULC conditions(1984-2013) appears to be the dominant with the highest erosion losses. Similarly, grassland and forest were also observed to regulate erosion rates in the area. This is because the vegetation cover provided by these LULC types protects the soil from direct impact of rain drops which invariably reduce soil loss to the barest minimum. Overall, it was concluded that the results have shown the significance of LULC in the control of erosion. Maps generated from the study may be useful to planners and land use managers to take appropriate decisions for soil conservation.展开更多
In the last five decades, attempts have been made to improve rumen fermentation and host animal nutrition through modulation of rumen microbiota. The goals have been decreasing methane production, partially inhibiting...In the last five decades, attempts have been made to improve rumen fermentation and host animal nutrition through modulation of rumen microbiota. The goals have been decreasing methane production, partially inhibiting protein degradation to avoid excess release of ammonia, and activation of fiber digestion. The main approach has been the use of dietary supplements. Since growth-promoting antibiotics were banned in European countries in2006, safer alternatives including plant-derived materials have been explored. Plant oils, their component fatty acids,plant secondary metabolites and other compounds have been studied, and many originate or are abundantly available in Asia as agricultural byproducts. In this review, the potency of selected byproducts in inhibition of methane production and protein degradation, and in stimulation of fiber degradation was described in relation to their modes of action. In particular, cashew and ginkgo byproducts containing alkylphenols to mitigate methane emission and bean husks as a source of functional fiber to boost the number of fiber-degrading bacteria were highlighted. Other byproducts influencing rumen microbiota and fermentation profile were also described. Future application of these feed and additive candidates is very dependent on a sufficient, cost-effective supply and optimal usage in feeding practice.展开更多
Luang Prabang Province is located within the area recognized as the center of rice(Oryza sativa L.) diversity in Lao PDR. This study reported on grain quality characteristics of 60 upland rice seed samples sharing 49 ...Luang Prabang Province is located within the area recognized as the center of rice(Oryza sativa L.) diversity in Lao PDR. This study reported on grain quality characteristics of 60 upland rice seed samples sharing 49 variety names collected from 6 villages in Luang Prabang in 2015. Most of the samples has non-pigmented pericarp, while red pericarp was found in four samples and purple in five samples. Almost all of the samples were of large grain type, with glutinous endosperm in 70% and non-glutinous endosperm in 30%. The brown(unpolished) rice was found with a wide range of grain nutritional quality, including protein(9.2% ± 0.9%), Fe(15.9 ± 6.9 mg/kg), Zn(19.6 ± 2.1 mg/kg), anthocyanin(0.774 ± 0.880 mg/g), and anti-oxidative capacity(2.071 ± 1.373 mg/g). The varieties sharing similar names had similar morphological characteristics but varied in nutritional concentration, with required confirmation in genetic variation analysis. This study found that some rice varieties with high grain quality may benefit the farmers directly or could be used in varietal improvement programs.展开更多
In this report, we reviewed the differences in the ecosystem services of coastal and inland areas surrounding 39 Sake breweries in Chiba Prefecture by investigating environmental variables (e.g., location, altitude, s...In this report, we reviewed the differences in the ecosystem services of coastal and inland areas surrounding 39 Sake breweries in Chiba Prefecture by investigating environmental variables (e.g., location, altitude, soil, and hardness of preparation water). The Sake breweries were located in three distinct environments: the coastal vicinity, the river plains region, and the plateau/ mountainous region. The hardness of the preparation water and the soil types in the coastal vicinity were compared with those of the river plains and the plateau/mountainous region. Strong hard and hard water sources were observed in 70% or more of the breweries in the coastal vicinity, and sand dune regosol, coarse particle brown lowland soil, and coarse particle grey soil were more prevalent along the coast than inland. Most of the Sake brewery wells in the coastal vicinity were approximately 5 - 10 munderground, and there were no great differences in the number of Sake breweries in each well depth class in the river plains and the plateau/mountains region. We analysed environmental factors (distance from the sea, soil type, water hardness and preparation water collection depth) using a principal component analysis. This analysis revealed the existence of three main environments: the coastal vicinity, the river plains and the plateau/mountainous region. We conclude that the decrease in altitude between the inland Sake breweries and those along the coast is accompanied by a corresponding increase in the hardness of preparation water (from soft water to strong hard or hard water) and shifts in soil composition from gley soil, grey lowland soil, brown forest soil, and andosol to sand dune regosol, coarse particle brown lowland soil, and coarse particle grey soil.展开更多
Renewable energy sources, including bioenergy, are presently attracting considerable attention as possible substitutes for fossil fuels. Among the various sources of bioenergy, biomass can arguably play a significant ...Renewable energy sources, including bioenergy, are presently attracting considerable attention as possible substitutes for fossil fuels. Among the various sources of bioenergy, biomass can arguably play a significant role in the reduction of greenhouse gases and the provision of a stable energy supply. However, the use of fossil fuels continues in the production of bioenergy. Consequently, the overall extent to which biomass utilization for energy can reduce carbon dioxide emissions as a substitute for fossil fuels and whether this can improve the energy self-sufficiency rate remains largely unknown. This study responds to these questions using a case of a Japanese rural community using firewood for residential heating. The results showed that woody biomass utilization for energy is able to both reduce the dependence on fossil fuels and mitigate climate change. These findings offer new insights into the development of sustainability in rural communities.展开更多
To investigate the soybean (Glycine max Merr.) wet endurance, and the affect of the maturity and the ambient temperature to the response, the plantlet in growth stage ranged from R1 to R2 of 8 Japanese soybean cultiva...To investigate the soybean (Glycine max Merr.) wet endurance, and the affect of the maturity and the ambient temperature to the response, the plantlet in growth stage ranged from R1 to R2 of 8 Japanese soybean cultivars which characterized as various wet endurance in a past report were cultured under hypoxic-hydroponic condition for a month. Two experiments at different periods differed significantly in temperature of air and hydroponic solution, but the oxygenic condition were similar each experiments, as aimed for. And also, control and hypoxia treatments significantly differed in dissolved oxygenic concentration in each experiments. The hypoxic condition at higher temperature induced the reduction of survival of plantlet up to 70%. At higher temperature, the survival rate of late maturity types “Yuzuru” and “Shirotsurunoko” were decreased significantly in hypoxic condition than in control. Similarly, the shoot dry matters of them were also decreased significantly in hypoxia at higher temperature. The tendency of the decreasing in hypoxia was remarkable in the pod dry matter, and the symptoms were shown also at the lower temperature. From these results, soybean’s hypoxic tolerant may be reflected with the wet endurance, the process of hypoxic damages can be divided to sudden death symptom and biomass decreasing, and the mechanisms of hypoxic tolerance might be affected strongly by ambient temperature, and absolutely controlled with the genetic background.展开更多
Ionomic profiles are primarily influenced by genetic and environmental factors.Identifying ionomic responses to varietal effects is necessary to understand the ionomic variations among species or subspecies and to pot...Ionomic profiles are primarily influenced by genetic and environmental factors.Identifying ionomic responses to varietal effects is necessary to understand the ionomic variations among species or subspecies and to potentially understand genetic effects on ionomic profiles.We cultivated 120 rice(Oryza sativa)varieties to seedling stage in identical hydroponic conditions and determined the concentrations of 26 elements(including 3 anions)in the shoots and roots of rice.Although the subspecies effects were limited by the genus Oryza pre-framework and its elemental chemical properties,we found significant differences in ionomic variations in most elements among the aus,indica and japonica subspecies.Principal component analysis of the correlations indicated that variations in the root-to-shoot ionomic transport mechanisms were the main causes of ionomic differences among the subspecies.Furthermore,the correlations were primarily associated with the screening of varieties for elemental covariation effects that can facilitate breeding biofortified rice varieties with safe concentrations of otherwise toxic elements.The japonica subspecies exhibited the strongest elemental correlations and elemental covariation effects,therefore,they showed greater advantages for biofortification than the indica and aus subspecies,whereas indica and aus subspecies were likely safer in metal(loid)polluted soils.We also found that geographical and historical distribution significantly defined the ionomic profiles.Overall,the results of this study provided a reference for further association studies to improve the nutritional status and minimize toxicity risks in rice production.展开更多
Crop straw return after harvest is considered an important way to achieve both agronomic and environmental benefits.However,the appropriate amount of straw to substitute for fertilizer remains unclear.A field experime...Crop straw return after harvest is considered an important way to achieve both agronomic and environmental benefits.However,the appropriate amount of straw to substitute for fertilizer remains unclear.A field experiment was performed from 2016 to 2018 to explore the effect of different amounts of straw to substitute for fertilizer on soil properties,soil organic carbon(SOC)storage,grain yield,yield components,nitrogen(N)use efficiency,phosphorus(P)use efficiency,N surplus,and P surplus after rice harvesting.Relative to mineral fertilization alone,straw substitution at 5 t ha^(-1)improved the number of spikelets per panicle,effective panicle,seed setting rate,1000-grain weight,and grain yield,and also increased the aboveground N and P uptake in rice.Straw substitution exceeding 2.5 t ha^(-1)increased the soil available N,P,and K concentrations as compared with mineral fertilization,and different amounts of straw substitution improved SOC storage compared with mineral fertilization.Furthermore,straw substitution at 5 t ha^(-1)decreased the N surplus and P surplus by up to 68.3 and 28.9%,respectively,compared to mineral fertilization.Rice aboveground N and P uptake and soil properties together contributed 19.3%to the variation in rice grain yield and yield components.Straw substitution at 5 t ha^(-1),an optimal fertilization regime,improved soil properties,SOC storage,grain yield,yield components,N use efficiency(NUE),and P use efficiency(PUE)while simultaneously decreasing the risk of environmental contamination.展开更多
Eucalypts are important forest resources in southwestern China,and may be tolerant to elevated ground-level ozone(O3)concentrations that can negatively affect plant growth.High CO2 may offset O3-induced effects by pro...Eucalypts are important forest resources in southwestern China,and may be tolerant to elevated ground-level ozone(O3)concentrations that can negatively affect plant growth.High CO2 may offset O3-induced effects by providing excess carbon to produce secondary metabolites or by inducing stomatal closure.Here,the effects of elevated CO2 and O3 on leaf secondary metabolites and other defense chemicals were studied by exposing seedlings of Eucalyptus globulus,E.grandis,and E.camaldulensis×E.deglupta to a factorial combination of two levels of O3(<10 nmol mol^(−1)and 60 nmol mol^(−1))and CO2(ambient:370μmol mol^(−1)and 600μmol mol^(−1))in open-top field chambers.GC-profiles of leaf extracts illustrated the effect of elevated O3 and the countering effect of high CO2 on compounds in leaf epicuticular wax and essential oils,i.e.,n-icosane,geranyl acetate and elixene,compounds known as a first-line defense against insect herbivores.n-Icosane may be involved in tolerance mechanisms of E.grandis and the hybrid,while geranyl acetate and elixene in the tolerance of E.globulus.Elevated O3 and CO2,singly or in combination,affected only leaf physiology but not biomass of various organs.Elevated CO2 impacted several leaf traits,including stomatal conductance,leaf mass per area,carbon,lignin,n-icosane,geranyl acetate and elixene.Limited effects of elevated O3 on leaf physiology(nitrogen,n-icosane,geranyl acetate,elixene)were commonly offset by elevated CO2.We conclude that E.globulus,E.grandis and the hybrid were tolerant to these O3 and CO2 treatments,and n-icosane,geranyl acetate and elixene may be major players in tolerance mechanisms of the tested species.展开更多
In Chiba Prefecture, Japan, during the Edo period (1603-1867), the development of waterway traffic by ships and the management of ports, highways and post towns around the ports progressed with the prosperity of the E...In Chiba Prefecture, Japan, during the Edo period (1603-1867), the development of waterway traffic by ships and the management of ports, highways and post towns around the ports progressed with the prosperity of the Edo (present-day Tokyo), which became heavily populated and the center of politics. We estimated that the demand of Japanese sake, which is luxury grocery item, was high. The freshwater layer that is abundant in mineral water to a depth of approximately 10 m is formed in coastal sand dunes. The fresh water layer is hard water, in which the concentrations of minerals such as calcium and magnesium are high. When the fresh water layer is used as the preparation water, the working rice malt and yeast in the sake brewing process become active. Japanese sake trends to be dry with a full-bodied taste. In addition, the main ingredients of local cuisines are fish and shellfish;many local cuisines are seasoned using soy sauce, miso and salt, and these local cuisines pair well with the type of Japanese sake described above. The local cuisines have been nurtured in harmony with the region’s rich nature and heritage. In the future, we need to conserve the rich natural environment of the tidal flat, coast, seaweed beds, and marine, which have been producing the main local cuisine in Chiba Prefecture, and the water source area (a successive environment on the plateau from the coast, which was previously called the coastal dune area) of the preparation water for making Japanese sake. We also need to proactively develop local production for local consumption activities. Thus, we hypothesize that if the Japanese food life is secured and the traditional food culture is continued, the region will become revitalized by the development of the exchanges in the region.展开更多
Spinach (Spinacia oleracea L.) develops leaf rosettes under short-day conditions, and starts reproductive growth including bolting and flowering under long-day conditions. Japanese people prefer Oriental spinach that ...Spinach (Spinacia oleracea L.) develops leaf rosettes under short-day conditions, and starts reproductive growth including bolting and flowering under long-day conditions. Japanese people prefer Oriental spinach that bolts easily with a shorter photoperiod than European spinach. This is one of the main reasons that Oriental spinach is difficult to grow year-round. In order to understand spinach flowering mechanisms and obtain knowledge for spinach breeding, we isolated one CONSTANS-like (COL) and two FLOWERING LOCUS T (FT) homologs, which are key components of photoperiodic regulation of flowering time, from a Japanese cultivar. The expression of SoCOL1 showed diurnal rhythm with the highest expression at the end of the dark cycle. This diurnal rhythm is similar to the expression of BvCOL1 from sugar beet (Beta vulgaris), whose flower-promoting effect was observed when overexpressed in Arabidopsis. Phylogenetic analysis showed that SoCOL1 is the closest homolog of BvCOL1, suggesting that SoCOL1 is an ortholog of BvCOL1. SoFT1 and SoFT2 are closely related to BvFT1 and BvFT2, respectively. The expression of SoFT1 and SoFT2 were induced in advance of flower bud formation after changing the photoperiod, but the expression level of SoFT1 was much lower than SoFT2. Currently, we are speculating that SoFT2 is a flower-promoting factor of spinach, and that SoFT1 has a role in light signaling because the expression of SoFT1 showed a diurnal rhythm.展开更多
Tropical peat swamp forest beds that have been reclaimed for agricultural use are generally an active source of nitrous oxide (N2O) efflux, however, the mechanism by which reclaimed tropical peat soils promote the e...Tropical peat swamp forest beds that have been reclaimed for agricultural use are generally an active source of nitrous oxide (N2O) efflux, however, the mechanism by which reclaimed tropical peat soils promote the emergence of N2O emitters in soil microbial communities remains unclear. The purpose of this study was to reveal the vertical distribution of N2O emission potential and its correlation with mineral nitrogen contents in reclaimed soils. Using a culture-based N2O emission assay, the N2O emission potentials of soil at various depths (0-450 cm) were investigated in two oil palm plantations in Sarawak, Malaysia, which had elapsed times of two years (E2Y) and 10 years (El 0Y) after deforestation, respectively. On the basis of the relationship between the vertical profiles of N2O emission potentials and the contents of mineralized nitrogen in the peat soils at various depths, the impact of land management on soil microbial communities was discussed. The peat soil at plantation site E2Y showed a trend of high N2O production in deep layers (200-400 cm), whereas the older plantation site E10Y showed considerably more active N2O emission in shallow soil (10-50 cm). N2O emission potentials among the soil microbial communities at different soil depths at the E10Y site showed positive correlations with NO3- and NH4+ contents, whereas, soils obtained from the E2Y site had N2O emission potentials that were inversely proportional to the contents of NO3-. This contrasting vertical correlation between N2O-emitting potentials and mineralized nitrogen contents in bulk soils suggests that active N2O emission in deep soil at the E2Y site has maintained the original carbon-nitrogen (C/N) ratio of the peat soil, whereas at EIOY, such a regulatory system has been lost due to advanced soil degradation, leading to dynamic changes in the nitrogen cycle in shallow soil.展开更多
基金Supported by the Naito FoundationGrant-in-Aid for Scientific Research (22K05448)from Japan Society for the Promotion of Science.
文摘Onion plants form spherical bulbs under long-day conditions.Substances regulating bulb formation remain unknown.In the course of chemical studies on the bulb formation,α-linolenic acid was isolated from onion extracts as an antibulbing substance,the amount of which was synchronized with the bulb formation.Since allene oxide synthase inhibitor canceled the antibulbing activity ofα-linolenic acid,it was disclosed that jasmonic acid concerns this regulation.Structure-activity-relationship study revealed that its(3R,7S)stereochemistry is necessary for showing its antibulbing activity.It is concluded that(3R,7S)-jasmonate derived fromα-linolenic acid actually participates in the regulation of bulb formation.
基金supported in part by the Research Faculty of Agriculture of Hokkaido University.
文摘How can we regulate an invasive alien species of high commercial value?Black locust(Robinia pseudoacacia L.)has a unique capacity for seed dispersal and high germination.Field surveys indicate that black locust increases its growing area with sprouting roots and the elongation of horizontal roots at a soil depth of 10 cm.Therefore,a method to regulate the development of horizontal roots could be eff ective in slowing the invasiveness of black locust.In this study,root barrier panels were tested to inhibit the growth of horizontal roots.Since it is labor intensive to observe the growth of roots in the fi eld,it was investigated in a nursery setting.The decrease in secondary fl ush,an increase in yellowed leafl ets,and the height in the seedlings were measured.Installing root barrier panels to a depth of 30 cm eff ectively inhibit the growth of horizontal roots of young black locust.
基金partly supported by the National Natural Science Foundation of China (No. 4210070867)the Research grant#201605 of the Forestry and Forest Products Research Institute (FFPRI),JapanKAKENHI grant#JP17F17102 of the Japan Society for the Promotion of Science (JSPS)
文摘Ground-level ozone pollution is a menace for vegetation in the northern hemisphere,limiting photosynthetic pigments and suppressing photosynthesis in trees and other types of plants.Phaeophytinization is the process of converting chlorophylls into phaeophytins,for example by acidifi cation.Ozone is a highly oxidizing molecule and well known to degrade chlorophylls;however,the eff ect of ozone on phaeophytinization in leaves of higher plants is largely unknown.To reveal ozone eff ect on phaeophytinization and evaluate the potential of phaeophytinization as an index of ozone stress in trees,the absorbance at the optical density of 665 nm was measured before(OD_(665))and after(OD_(665a))acidifi cation in three independent experiments with nearly 30 conditions of ozone exposure.Both current ambient and elevated ozone widely aff ected phaeophytinization,as indicated by decreases or increases in the phaeophytinization quotient OD_(665)/OD_(665a).These eff ects were commonly moderate to large in magnitude and practically signifi cant,and occurred even in ozone-asymptomatic leaves.It emerges that the ozone eff ect on phaeophytinization is bimodal,likely depending on the intensity of ozone stress.These results indicate a promising feature of OD_(665)/OD_(665a)as a thorough index of ozone stress in the future,but further studies are needed to reveal the underlying biochemical mechanisms of the bimodal eff ect on phaeophytinization.
基金Japan Society for the Promotion of Science,KAKENHI(18J2013908)。
文摘Understanding what environmental factors are genetically linked to a phenologic al event is critical for predicting responses to climate change.Photo synthetic phenology often varies among a species of evergreen conifers due to local adaptation.However,few empirical studies have revealed relevant relationships between climatic factors in provenance environments and photosynthetic phenology.This study evaluated the effects of environmental conditions of the growing site and seed source provenance on the seasonal changes in maximal photochemical quantum yield of photo systemⅡ(Fv/Fm)in a common garden experiment with 2-year-old seedlings of Sakhalin fir(Abies sachalinensis),a representative species with local adaptation,from four seed source provenances.A logistic model was constructed to explain the seasonal variation of Fv/Fmfrom July to October and the relationships between the estimated model parameters and representative factors featuring provenance environments were evaluated.The landscape gradient of the detected model parameters responsible for the provenance environments was visualized in a map of the distribution area.The lowest temperature was the most plausible factor in the growing environment to explain the seasonal changes of Fv/Fm.Among the representative meteorological factors of provenance environments,the lowest temperatures in July showed significant relationships with two model parameters,explaining the lower limit of Fv/Fmand the higher sensitivity of autumn Fv/Fmdecline.The estimated spatial maps of model parameters consistently showed that the higher the lowest temperature in July in the provenance environment,the lower the Fv/Fmin October and the greater the decrease in the autumn Fv/Fmdecline.Therefore,the lowest summer temperature could be associated with the local adaptation of autumn photosynthetic phenology in A.sachalinensis.
基金supported by JSPS KAKENHI Grant Number JP17F17102 (to EA and MK)Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology (NUIST)(No. 003080)the Jiangsu Distinguished Professor program of the People’s Government of Jiangsu Province
文摘Climate change can intensify drought in many regions of the world and lead to more frequent drought events or altered cycles of soil water status.Therefore,it is important to enhance the tolerance to drought and thus health,vigor,and success of transplantation seedlings used in the forestry by modifying fertilization and promoting mycorrhization.Here,we sowed seeds of Japanese larch(Larix kaempferi)in 0.2-L containers with 0.5 g(low fertilization;LF)or 2 g(high fertilization;HF)of slow-release fertilizer early in the growing season.One month later,we irrigated seedlings with non-sterilized ectomycorrhizal inoculum(ECM)or sterilized solution(non-ECM),and after about 2 months,plants were either kept well watered(WW;500 mL water/plant/week)or subjected to drought(DR;50 mL water per plant/week)until the end of the growing season.HF largely stimulated plant growth and above-and belowground biomass production,eff ects that are of practical signifi cance,but caused a small decrease in stomatal conductance(Gs 390)and transpiration rate(E 390),which in practice is insignifi cant.ECM treatment resulted in moderate inhibition of seedling growth and biomass and largely canceled out the enhancement of biomass and foliar K content by HF.DR caused a large decrease in CO 2 assimilation,and enhanced stomatal closure and induced senescence.DR also largely depleted foliar Mg and enriched foliar K.Although DR caused a large decrease in foliar P content in LF,it moderately increased P in HF.Likewise,DR increased foliar K in HF but not in LF,and decreased foliar P in ECM plants but not in non-ECM plants.Conversely,ECM plants exhibited a large enrichment in foliar P under WW and had a lower water potential under DR when grown in LF.These results indicate that the drought tolerance and health and vigor of Japanese larch seedlings can be modifi ed by soil fertility and soil microorganisms.This study provides a basis for new multifactorial research programs aimed at producing seedlings of superior quality for forestation under climate change.
基金Key Collaborative Research Program of the Alliance of International Science Organizations(ANSO-CR-KP-2021-12 to L.L.)National Natural Science Foundation of China(32071009,32371063,82341248 to C.L.,31971072 and 32171154 to L.L.)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2024A1515011500 to C.L.)Shenzhen Science Technology and Innovative Commission(SZSTI JCYJ20180508152336419 to L.L.and GJHZ20200731095406021 to S.J.)。
文摘The organ-specific toxicity resulting from microplastic(MP)exposure has been extensively explored,particularly concerning the gut,liver,testis,and lung.However,under natural conditions,these effects are not restricted to specific organs or tissues.Investigating whether MP exposure presents a systemic threat to an entire organism,impacting factors such as lifespan,sleep,and fecundity,is essential.In this study,we investigated the effects of dietary exposure to two different doses of MPs(1–5μm)using the terrestrial model organism Drosophila melanogaster.Results indicated that the particles caused gut damage and remained within the digestive system.Continuous MP exposure significantly shortened the lifespan of adult flies.Even short-term exposure disrupted sleep patterns,increasing the length of daytime sleep episodes.Additionally,one week of MP exposure reduced ovary size,with a trend towards decreased egg-laying in mated females.Although MPs did not penetrate the brain or ovaries,transcriptome analysis revealed altered gene expression in these tissues.In the ovary,Gene Ontology(GO)analysis indicated genotoxic effects impacting inflammation,circadian regulation,and metabolic processes,with significant impacts on extracellular structure-related pathways.In the brain,GO analysis identified changes in pathways associated with proteolysis and carbohydrate metabolism.Overall,this study provides compelling evidence of the systemic negative effects of MP exposure,highlighting the urgent need to address and mitigate environmental MP pollution.
基金supported by a Grant-in-Aid for Scientific Research (Grant No.19H02945) from the Japan Society for the Promotion of Science。
文摘Although high atmospheric temperatures suppress anthocyanin accumulation in most plant species,we show that high temperatures accelerate anthocyanin pigmentation in flower tepals of Asiatic hybrid lilies(Lilium spp.).After incubation at high temperatures(35℃)for two days,anthocyanin color became deeper in the most of tepal parts of two Asiatic hybrid lily cultivars,although the basal parts of’Montreux’tepals and top parts of’Toronto’outer tepals were whitened.Environmental stimuli often affect the expression of R2R3-MYB positive regulators that control anthocyanin biosynthesis.Although their expression is often suppressed by hot temperatures in other species,the expression of lily MYB12 in tepals was upregulated by high temperatures.MicroRNA828(miR828),which suppresses the action of MYB12 post-transcriptionally,exhibited reduced accumulation levels under high temperature,indicating that miR828 regulation is involved in MYB12 upregulation.In addition,transcription levels of MYB12,estimated by unspliced MYB12 transcript accumulation,were also activated by high temperatures.Thus,both suppressed miR828 accumulation and increased MYB12 transcription are likely to be involved in MYB12 activation at high temperatures.In the whitened basal parts of’Montreux’tepals at 35℃,expression of bHLH2 was severely suppressed while that of MYB12 was not affected.The present results demonstrate that plants display diverse responses to hot climatic conditions and shed new light on anthocyanin regulation under various environmental conditions.
基金partially supported by the National Natural Science Foundation of China (31430065, 31571686, 31201222 and 31371643)the Open Foundation of the Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences+5 种基金the “Hundred Talents” Program of the Chinese Academy of Sciencesthe Strategic Action Plan for Science and Technology Innovation of the Chinese Academy of Sciences (XDA08030108)the Natural Science Foundation of Heilongjiang Province, China (ZD201001, JC201313)the Research and Development of Applied Technology Project, Harbin, China (2014RFQYJ055)the Scientific Research Foundation for Returned Chinese Scholars of Heilongjiang Province, China (LC201417)the Science Foundation for Creative Research Talents of Harbin Science and Technology Bureau, China (2014RFQYJ046)
文摘The adaptability of soybean to be grown at a wide range of latitudes is attributed to natural variation in the major genes and quantitative trait loci (QTLs) that control flowering time and maturity. Thus, the identification of genes controlling flowering time and maturity and the understanding of their molecular basis are critical for improving soybean productivity. However, due to the great effect of the major maturity gene E1 on flowering time, it is difficult to detect other small-effect QTLs. In this study, aiming to reduce the effect of the QTL, associated with the E1 gene, on the detection of other QTLs, we divided a population of 96 recombinant inbred lines (RILs) into two sub-populations: one with the E1 allele and another with the elns allele. Compared with the results of using all 96 recombinant inbred lines, additional QTLs for flowering time were identified in the sub-populations, two (qFT-B1 and qFT-H) in RILs with the E1 allele and one (qFT-J-2) in the RILs with the elnl allele, respectively. The three QTLs, qFT-B1, qFT-H and qFT-J-2 were true QTLs and played an important role in the regulation of growth period. Our data provides valuable information for the genetic mapping and gene cloning of traits controlling flowering time and maturity and will help a better understanding of the mechanism of photoperiod-regulated flowering and molecular breeding in soybean.
基金funded by the Fundamental Research Grant Scheme (FRGS) 2015-1 from the Ministry of Higher Education (MOHE), Malaysia
文摘The devastating effect of soil erosion is one of the major sources of land degradation that affects human lives in many ways which occur mainly due to deforestation, poor agricultural practices, overgrazing,wildfire and urbanization. Soil erosion often leads to soil truncation, loss of fertility, slope instability, etc.which causes irreversible effects on the poorly renewable soil resource. In view of this, a study was conducted in Kelantan River basin to predict soil loss as influenced by long-term land use/land-cover(LULC) changes in the area. The study was conducted with the aim of predicting and assessing soil erosion as it is influenced by long-term LULC changes. The 13,100 km^2 watershed was delineated into four sub-catchments Galas, Pergau, Lebir and Nenggiri for precise result estimation and ease of execution. GIS-based Universal Soil Loss Equation(USLE) model was used to predict soil loss in this study. The model inputs used for the temporal and spatial calculation of soil erosion include rainfall erosivity factor,topographic factor, land cover and management factor as well as erodibility factor. The results showed that 67.54% of soil loss is located under low erosion potential(reversible soil loss) or 0-1 t ha^(-1) yr^(-1) soil loss in Galas, 59.17% in Pergau, 53.32% in Lebir and 56.76% in Nenggiri all under the 2013 LULC condition.Results from the correlation of soil erosion rates with LULC changes indicated that cleared land in all the four catchments and under all LULC conditions(1984-2013) appears to be the dominant with the highest erosion losses. Similarly, grassland and forest were also observed to regulate erosion rates in the area. This is because the vegetation cover provided by these LULC types protects the soil from direct impact of rain drops which invariably reduce soil loss to the barest minimum. Overall, it was concluded that the results have shown the significance of LULC in the control of erosion. Maps generated from the study may be useful to planners and land use managers to take appropriate decisions for soil conservation.
基金supported by JSPS KAKENHI Grant Numbers JP20380146,JP23380156,JP23658213,JP26660207
文摘In the last five decades, attempts have been made to improve rumen fermentation and host animal nutrition through modulation of rumen microbiota. The goals have been decreasing methane production, partially inhibiting protein degradation to avoid excess release of ammonia, and activation of fiber digestion. The main approach has been the use of dietary supplements. Since growth-promoting antibiotics were banned in European countries in2006, safer alternatives including plant-derived materials have been explored. Plant oils, their component fatty acids,plant secondary metabolites and other compounds have been studied, and many originate or are abundantly available in Asia as agricultural byproducts. In this review, the potency of selected byproducts in inhibition of methane production and protein degradation, and in stimulation of fiber degradation was described in relation to their modes of action. In particular, cashew and ginkgo byproducts containing alkylphenols to mitigate methane emission and bean husks as a source of functional fiber to boost the number of fiber-degrading bacteria were highlighted. Other byproducts influencing rumen microbiota and fermentation profile were also described. Future application of these feed and additive candidates is very dependent on a sufficient, cost-effective supply and optimal usage in feeding practice.
基金financial support provided by the International Development Research Center(IDRC)the Southeast Asian Regional Center for Graduate Study and Research in Agriculture(SEARCA)the National Research University Program of Thailand’s Commission on Higher Education
文摘Luang Prabang Province is located within the area recognized as the center of rice(Oryza sativa L.) diversity in Lao PDR. This study reported on grain quality characteristics of 60 upland rice seed samples sharing 49 variety names collected from 6 villages in Luang Prabang in 2015. Most of the samples has non-pigmented pericarp, while red pericarp was found in four samples and purple in five samples. Almost all of the samples were of large grain type, with glutinous endosperm in 70% and non-glutinous endosperm in 30%. The brown(unpolished) rice was found with a wide range of grain nutritional quality, including protein(9.2% ± 0.9%), Fe(15.9 ± 6.9 mg/kg), Zn(19.6 ± 2.1 mg/kg), anthocyanin(0.774 ± 0.880 mg/g), and anti-oxidative capacity(2.071 ± 1.373 mg/g). The varieties sharing similar names had similar morphological characteristics but varied in nutritional concentration, with required confirmation in genetic variation analysis. This study found that some rice varieties with high grain quality may benefit the farmers directly or could be used in varietal improvement programs.
文摘In this report, we reviewed the differences in the ecosystem services of coastal and inland areas surrounding 39 Sake breweries in Chiba Prefecture by investigating environmental variables (e.g., location, altitude, soil, and hardness of preparation water). The Sake breweries were located in three distinct environments: the coastal vicinity, the river plains region, and the plateau/ mountainous region. The hardness of the preparation water and the soil types in the coastal vicinity were compared with those of the river plains and the plateau/mountainous region. Strong hard and hard water sources were observed in 70% or more of the breweries in the coastal vicinity, and sand dune regosol, coarse particle brown lowland soil, and coarse particle grey soil were more prevalent along the coast than inland. Most of the Sake brewery wells in the coastal vicinity were approximately 5 - 10 munderground, and there were no great differences in the number of Sake breweries in each well depth class in the river plains and the plateau/mountains region. We analysed environmental factors (distance from the sea, soil type, water hardness and preparation water collection depth) using a principal component analysis. This analysis revealed the existence of three main environments: the coastal vicinity, the river plains and the plateau/mountainous region. We conclude that the decrease in altitude between the inland Sake breweries and those along the coast is accompanied by a corresponding increase in the hardness of preparation water (from soft water to strong hard or hard water) and shifts in soil composition from gley soil, grey lowland soil, brown forest soil, and andosol to sand dune regosol, coarse particle brown lowland soil, and coarse particle grey soil.
文摘Renewable energy sources, including bioenergy, are presently attracting considerable attention as possible substitutes for fossil fuels. Among the various sources of bioenergy, biomass can arguably play a significant role in the reduction of greenhouse gases and the provision of a stable energy supply. However, the use of fossil fuels continues in the production of bioenergy. Consequently, the overall extent to which biomass utilization for energy can reduce carbon dioxide emissions as a substitute for fossil fuels and whether this can improve the energy self-sufficiency rate remains largely unknown. This study responds to these questions using a case of a Japanese rural community using firewood for residential heating. The results showed that woody biomass utilization for energy is able to both reduce the dependence on fossil fuels and mitigate climate change. These findings offer new insights into the development of sustainability in rural communities.
文摘To investigate the soybean (Glycine max Merr.) wet endurance, and the affect of the maturity and the ambient temperature to the response, the plantlet in growth stage ranged from R1 to R2 of 8 Japanese soybean cultivars which characterized as various wet endurance in a past report were cultured under hypoxic-hydroponic condition for a month. Two experiments at different periods differed significantly in temperature of air and hydroponic solution, but the oxygenic condition were similar each experiments, as aimed for. And also, control and hypoxia treatments significantly differed in dissolved oxygenic concentration in each experiments. The hypoxic condition at higher temperature induced the reduction of survival of plantlet up to 70%. At higher temperature, the survival rate of late maturity types “Yuzuru” and “Shirotsurunoko” were decreased significantly in hypoxic condition than in control. Similarly, the shoot dry matters of them were also decreased significantly in hypoxia at higher temperature. The tendency of the decreasing in hypoxia was remarkable in the pod dry matter, and the symptoms were shown also at the lower temperature. From these results, soybean’s hypoxic tolerant may be reflected with the wet endurance, the process of hypoxic damages can be divided to sudden death symptom and biomass decreasing, and the mechanisms of hypoxic tolerance might be affected strongly by ambient temperature, and absolutely controlled with the genetic background.
基金partly financially supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science(Grant No.20K05762)China Scholarship Council(Grant No.201806990031)。
文摘Ionomic profiles are primarily influenced by genetic and environmental factors.Identifying ionomic responses to varietal effects is necessary to understand the ionomic variations among species or subspecies and to potentially understand genetic effects on ionomic profiles.We cultivated 120 rice(Oryza sativa)varieties to seedling stage in identical hydroponic conditions and determined the concentrations of 26 elements(including 3 anions)in the shoots and roots of rice.Although the subspecies effects were limited by the genus Oryza pre-framework and its elemental chemical properties,we found significant differences in ionomic variations in most elements among the aus,indica and japonica subspecies.Principal component analysis of the correlations indicated that variations in the root-to-shoot ionomic transport mechanisms were the main causes of ionomic differences among the subspecies.Furthermore,the correlations were primarily associated with the screening of varieties for elemental covariation effects that can facilitate breeding biofortified rice varieties with safe concentrations of otherwise toxic elements.The japonica subspecies exhibited the strongest elemental correlations and elemental covariation effects,therefore,they showed greater advantages for biofortification than the indica and aus subspecies,whereas indica and aus subspecies were likely safer in metal(loid)polluted soils.We also found that geographical and historical distribution significantly defined the ionomic profiles.Overall,the results of this study provided a reference for further association studies to improve the nutritional status and minimize toxicity risks in rice production.
基金supported by the earmarked fund for China Agriculture Research System(CARS-22,Green manure)。
文摘Crop straw return after harvest is considered an important way to achieve both agronomic and environmental benefits.However,the appropriate amount of straw to substitute for fertilizer remains unclear.A field experiment was performed from 2016 to 2018 to explore the effect of different amounts of straw to substitute for fertilizer on soil properties,soil organic carbon(SOC)storage,grain yield,yield components,nitrogen(N)use efficiency,phosphorus(P)use efficiency,N surplus,and P surplus after rice harvesting.Relative to mineral fertilization alone,straw substitution at 5 t ha^(-1)improved the number of spikelets per panicle,effective panicle,seed setting rate,1000-grain weight,and grain yield,and also increased the aboveground N and P uptake in rice.Straw substitution exceeding 2.5 t ha^(-1)increased the soil available N,P,and K concentrations as compared with mineral fertilization,and different amounts of straw substitution improved SOC storage compared with mineral fertilization.Furthermore,straw substitution at 5 t ha^(-1)decreased the N surplus and P surplus by up to 68.3 and 28.9%,respectively,compared to mineral fertilization.Rice aboveground N and P uptake and soil properties together contributed 19.3%to the variation in rice grain yield and yield components.Straw substitution at 5 t ha^(-1),an optimal fertilization regime,improved soil properties,SOC storage,grain yield,yield components,N use efficiency(NUE),and P use efficiency(PUE)while simultaneously decreasing the risk of environmental contamination.
基金supported by a Grant-in-Aid for Scientific Researches(Nos.21114008,23380078)JST Grant(No.JPMJSC18HB)the RA-GCOE project.
文摘Eucalypts are important forest resources in southwestern China,and may be tolerant to elevated ground-level ozone(O3)concentrations that can negatively affect plant growth.High CO2 may offset O3-induced effects by providing excess carbon to produce secondary metabolites or by inducing stomatal closure.Here,the effects of elevated CO2 and O3 on leaf secondary metabolites and other defense chemicals were studied by exposing seedlings of Eucalyptus globulus,E.grandis,and E.camaldulensis×E.deglupta to a factorial combination of two levels of O3(<10 nmol mol^(−1)and 60 nmol mol^(−1))and CO2(ambient:370μmol mol^(−1)and 600μmol mol^(−1))in open-top field chambers.GC-profiles of leaf extracts illustrated the effect of elevated O3 and the countering effect of high CO2 on compounds in leaf epicuticular wax and essential oils,i.e.,n-icosane,geranyl acetate and elixene,compounds known as a first-line defense against insect herbivores.n-Icosane may be involved in tolerance mechanisms of E.grandis and the hybrid,while geranyl acetate and elixene in the tolerance of E.globulus.Elevated O3 and CO2,singly or in combination,affected only leaf physiology but not biomass of various organs.Elevated CO2 impacted several leaf traits,including stomatal conductance,leaf mass per area,carbon,lignin,n-icosane,geranyl acetate and elixene.Limited effects of elevated O3 on leaf physiology(nitrogen,n-icosane,geranyl acetate,elixene)were commonly offset by elevated CO2.We conclude that E.globulus,E.grandis and the hybrid were tolerant to these O3 and CO2 treatments,and n-icosane,geranyl acetate and elixene may be major players in tolerance mechanisms of the tested species.
文摘In Chiba Prefecture, Japan, during the Edo period (1603-1867), the development of waterway traffic by ships and the management of ports, highways and post towns around the ports progressed with the prosperity of the Edo (present-day Tokyo), which became heavily populated and the center of politics. We estimated that the demand of Japanese sake, which is luxury grocery item, was high. The freshwater layer that is abundant in mineral water to a depth of approximately 10 m is formed in coastal sand dunes. The fresh water layer is hard water, in which the concentrations of minerals such as calcium and magnesium are high. When the fresh water layer is used as the preparation water, the working rice malt and yeast in the sake brewing process become active. Japanese sake trends to be dry with a full-bodied taste. In addition, the main ingredients of local cuisines are fish and shellfish;many local cuisines are seasoned using soy sauce, miso and salt, and these local cuisines pair well with the type of Japanese sake described above. The local cuisines have been nurtured in harmony with the region’s rich nature and heritage. In the future, we need to conserve the rich natural environment of the tidal flat, coast, seaweed beds, and marine, which have been producing the main local cuisine in Chiba Prefecture, and the water source area (a successive environment on the plateau from the coast, which was previously called the coastal dune area) of the preparation water for making Japanese sake. We also need to proactively develop local production for local consumption activities. Thus, we hypothesize that if the Japanese food life is secured and the traditional food culture is continued, the region will become revitalized by the development of the exchanges in the region.
文摘Spinach (Spinacia oleracea L.) develops leaf rosettes under short-day conditions, and starts reproductive growth including bolting and flowering under long-day conditions. Japanese people prefer Oriental spinach that bolts easily with a shorter photoperiod than European spinach. This is one of the main reasons that Oriental spinach is difficult to grow year-round. In order to understand spinach flowering mechanisms and obtain knowledge for spinach breeding, we isolated one CONSTANS-like (COL) and two FLOWERING LOCUS T (FT) homologs, which are key components of photoperiodic regulation of flowering time, from a Japanese cultivar. The expression of SoCOL1 showed diurnal rhythm with the highest expression at the end of the dark cycle. This diurnal rhythm is similar to the expression of BvCOL1 from sugar beet (Beta vulgaris), whose flower-promoting effect was observed when overexpressed in Arabidopsis. Phylogenetic analysis showed that SoCOL1 is the closest homolog of BvCOL1, suggesting that SoCOL1 is an ortholog of BvCOL1. SoFT1 and SoFT2 are closely related to BvFT1 and BvFT2, respectively. The expression of SoFT1 and SoFT2 were induced in advance of flower bud formation after changing the photoperiod, but the expression level of SoFT1 was much lower than SoFT2. Currently, we are speculating that SoFT2 is a flower-promoting factor of spinach, and that SoFT1 has a role in light signaling because the expression of SoFT1 showed a diurnal rhythm.
文摘Tropical peat swamp forest beds that have been reclaimed for agricultural use are generally an active source of nitrous oxide (N2O) efflux, however, the mechanism by which reclaimed tropical peat soils promote the emergence of N2O emitters in soil microbial communities remains unclear. The purpose of this study was to reveal the vertical distribution of N2O emission potential and its correlation with mineral nitrogen contents in reclaimed soils. Using a culture-based N2O emission assay, the N2O emission potentials of soil at various depths (0-450 cm) were investigated in two oil palm plantations in Sarawak, Malaysia, which had elapsed times of two years (E2Y) and 10 years (El 0Y) after deforestation, respectively. On the basis of the relationship between the vertical profiles of N2O emission potentials and the contents of mineralized nitrogen in the peat soils at various depths, the impact of land management on soil microbial communities was discussed. The peat soil at plantation site E2Y showed a trend of high N2O production in deep layers (200-400 cm), whereas the older plantation site E10Y showed considerably more active N2O emission in shallow soil (10-50 cm). N2O emission potentials among the soil microbial communities at different soil depths at the E10Y site showed positive correlations with NO3- and NH4+ contents, whereas, soils obtained from the E2Y site had N2O emission potentials that were inversely proportional to the contents of NO3-. This contrasting vertical correlation between N2O-emitting potentials and mineralized nitrogen contents in bulk soils suggests that active N2O emission in deep soil at the E2Y site has maintained the original carbon-nitrogen (C/N) ratio of the peat soil, whereas at EIOY, such a regulatory system has been lost due to advanced soil degradation, leading to dynamic changes in the nitrogen cycle in shallow soil.