Model-based control shows promising potential for engine performance improve-ment and future aero-propulsion requirements.In this paper,an auto-updating thrust variation mitigation(AuTVM)control approach using on-boar...Model-based control shows promising potential for engine performance improve-ment and future aero-propulsion requirements.In this paper,an auto-updating thrust variation mitigation(AuTVM)control approach using on-board model strategies is proposed for gas tur-bine aero-engines under in-service degradation effects,which aims at active thrust regulation and acceleration protection in a simultaneous way.The AuTVM control is integrated with an on-line block,based on a reliable on-board engine model,and an off-line part for the periodical update of control parameters via post-flight engine monitoring data.The core feature of the AuTVM control is a set of auto-updating loops within the on-line part,including thrust regu-lation loop,surge margin loop,turbine entry temperature loop,and the steady loop,whose con-trol parameters are periodically adjusted with increasingflight cycles.Meanwhile,an industrial sensor-based baseline controller and two tailored model-based controllers,i.e.,a thrust variation mitigation(TVM)controller withfixed gains and a self-enhancing active transient protection(SeATP)controller with pro-active transient protection and passive thrust control,are also developed as comparison bases.Numerical simulations for idle to full-power acceleration tests are carried on a validated aero-thermal turbofan engine model using publicly available degra-dation data.Simulation results demonstrate that both new engines and severely degraded en-gines regulated by the AuTVM controller show significant thrust response enhancement,compared to the baseline controller.Moreover,thrust variation at the maximum steady state of degraded engines,which exists within the SeATP controller and the baseline controller,is suppressed by the proposed AuTVM controller.Robustness analysis against degradation uncer-tainties and sensor accuracy confirms that the AuTVM controller owns a closer maximum steady-state thrust distribution to the desired value than those of the SeATP and the baseline controller while utilizing transient margins of controlled engines more effectively.Hence,the control performance of the AuTVM controller for in-service engines is guaranteed.展开更多
Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to ...Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures.展开更多
This paper focuses on the optimization of the outlet temperature field of a hydrogen micromixing diffusion combustor for a micro-turbojet engine with a thrust of 20kgf.The joint simulation optimization platform was es...This paper focuses on the optimization of the outlet temperature field of a hydrogen micromixing diffusion combustor for a micro-turbojet engine with a thrust of 20kgf.The joint simulation optimization platform was established combiningWorkbench and UG and the multi-parameter driven optimization design process was developed.The surrogate models and genetic algorithms were employed to investigate the influences of key parameters on the hotspot temperature at the combustor exit.It was found that smaller diameters of the dilution holes and positions further from the exit lead to lower hotspot temperatures.Additionally,an optimal solution for achieving a uniform temperature distribution at the combustor outlet was obtained.This solution involves a single row of dilution holes on both the inner and outer walls of the flame tube,arranged in an alternating axial and angular pattern.Through aerothermal process analysis,it was determined that the outlet temperature distribution coefficient(OTDF)of the combustion chamber is below 0.2.Meanwhile,the axial dimension of the flame is short,approximately one-third of the flame tube length.The conclusions derived from this study provide important guidance for the design of hydrogen micromix diffusion combustor.展开更多
With the development of aero-engines, the turbine inlet temperature continues to rise. In order to ensure the safety and reliability of the turbine blades, cooling structures must be set inside turbine blades to cool ...With the development of aero-engines, the turbine inlet temperature continues to rise. In order to ensure the safety and reliability of the turbine blades, cooling structures must be set inside turbine blades to cool them. Heat transfer coefficient and flow resistance are the key parameters to measure the cooling characteristics of internal cooling structures. In this paper, the characteristics of flow resistance in a rotating ribbed channel is presented numerical simulation under different rib spacings, rib angles, and thermal boundary conditions. The results show that, separation and reattachment of fluid between ribs is the key effect of rib spacing on flow resistance. The flow resistance is small when the rib spacing is small, because it's difficult for the fluid to form reattachment between the ribs. With the increase of rib spacing, the reattachment phenomenon is more obvious and the flow resistance increases accordingly. In general,p: e=10 channel has the maximum flow resistance. Secondary flow caused by the ribs is the key factor affecting the flow resistance characteristics with different rib angles. The secondary flow interacts with the main flow and causes flow loss through mixing, thus affecting the flow resistance of the channel. Under static condition, the flow resistance of 60°ribbed channel is the largest. The flow resistance of channel was affected by the temperature rise ratio also. And with the increase of the Ro, the temperature rise ratio has a more obvious effect on the flow resistance of the ribbed channel.When Ro=0.45, the flow resistance of the channel with a temperature rise ratio of 0.4 is 2.4 times that of the channel without temperature rise, while when Ro=0.3, it is 1.6 times, and when Ro=0.15, it is 1.2 times.展开更多
The reliability and sensitivity analyses of stator blade regulator usually involve complex characteristics like highnonlinearity,multi-failure regions,and small failure probability,which brings in unacceptable computi...The reliability and sensitivity analyses of stator blade regulator usually involve complex characteristics like highnonlinearity,multi-failure regions,and small failure probability,which brings in unacceptable computing efficiency and accuracy of the current analysismethods.In this case,by fitting the implicit limit state function(LSF)with active Kriging(AK)model and reducing candidate sample poolwith adaptive importance sampling(AIS),a novel AK-AIS method is proposed.Herein,theAKmodel andMarkov chainMonte Carlo(MCMC)are first established to identify the most probable failure region(s)(MPFRs),and the adaptive kernel density estimation(AKDE)importance sampling function is constructed to select the candidate samples.With the best samples sequentially attained in the reduced candidate samples and employed to update the Kriging-fitted LSF,the failure probability and sensitivity indices are acquired at a lower cost.The proposed method is verified by twomulti-failure numerical examples,and then applied to the reliability and sensitivity analyses of a typical stator blade regulator.Withmethods comparison,the proposed AK-AIS is proven to hold the computing advantages on accuracy and efficiency in complex reliability and sensitivity analysis problems.展开更多
Current research on autonomous mobile robots focuses primarily on perceptual accuracy and autonomous performance.In commercial and domestic constructions,concrete,wood,and glass are typically used.Laser and visual map...Current research on autonomous mobile robots focuses primarily on perceptual accuracy and autonomous performance.In commercial and domestic constructions,concrete,wood,and glass are typically used.Laser and visual mapping or planning algorithms are highly accurate in mapping wood panels and concrete walls.However,indoor and outdoor glass curtain walls may fail to perceive these transparent materials.In this study,a novel indoor glass recognition and map optimization method based on boundary guidance is proposed.First,the status of glass recognition techniques is analyzed comprehensively.Next,a glass image segmentation network based on boundary data guidance and the optimization of a planning map based on depth repair are proposed.Finally,map optimization and path-planning tests are conducted and compared using different algorithms.The results confirm the favorable adaptability of the proposed method to indoor transparent plates and glass curtain walls.Using the proposed method,the recognition accuracy of a public test set increases to 94.1%.After adding the planning map,incorrect coverage redundancies for two test scenes reduce by 59.84%and 55.7%.Herein,a glass recognition and map optimization method is proposed that offers sufficient capacity in perceiving indoor glass materials and recognizing indoor no-entry regions.展开更多
In this paper,the flow and heat transfer characteristics in U-shaped channel with three different turn shapes are studied.The rotation number ranges from 0~0.251,Reynolds number are 11500,23000,34500,respectively.The ...In this paper,the flow and heat transfer characteristics in U-shaped channel with three different turn shapes are studied.The rotation number ranges from 0~0.251,Reynolds number are 11500,23000,34500,respectively.The results show that the flow separation and reattachment in the turning section are the key factors affecting the local heat transfer and pressure loss of U-shaped channel.The square turn will generate corner vortices at the outside of the turning section,and the size of the inner separation vortex and reattachment vortex is larger than that of the other two turn shapes.The existence of vortex system will increase the mixing and enhance heat transfer,but increase the pressure loss,so its relative Nusselt number and pressure loss are the largest.There are corner vortices on the outside of the turning section of the channel with a inner circle turn and outer square turn,but the arc-shaped inner edge makes its separation delay and the separation vortex decrease,and the size of the reattachment vortex also decreases.The arc shaped outer edge of the channel with circle turn in both inner and outer further inhibits the generation of corner vortices,so its relative Nusselt number and pressure loss are the lowest.Rotation will cause the fluid to deflect under the influence of Coriolis force,strengthen the heat transfer on the trailing surface of radial outflow and the leading surface of radial internal flow,and generate secondary flow and separation vortex in the turning section,resulting in the change of vortex structure in the turning section.With the increase of rotation number,the Nusselt number of the three types of turning section structures increases.The thermal performance factor of the three channels increases with the increase of rotating speed,and the channel with a inner circle turn and outer square turn is the highest,which is 9.6%higher than the channel with circle turn in both inner and outer on average,and 17.8%higher than the channel with square turn in both inner and outer.展开更多
This study explores the design,analysis,and air pressure drop assessment of three analogous air–fuel heat exchangers consisting of thin serpentine tube bundles intended for use in high Mach number aero-engines.In hig...This study explores the design,analysis,and air pressure drop assessment of three analogous air–fuel heat exchangers consisting of thin serpentine tube bundles intended for use in high Mach number aero-engines.In high speed flight,the compressor bleed air used to cool high temperature turbine blades and other hot components is too hot.Hence,aviation kerosene is applied to precool the compressor bleed air by means of novel air–fuel heat exchangers.Three light and compact heat exchangers including dozens of in-line thin serpentine tube bundles were designed and manufactured,with little difference existing in aspects of tube pitches and outer diameters among three heat exchangers.The fuel flows inside a series of parallel stainless serpentine tubes(outer diameter:2.2,1.8,1.4 mm with 0.2 mm thickness),while the air externally flows normal to tube bundles and countercurrent with fuel.Experimental studies were carried out to investigate the airside pressure drop characteristics on isothermal states with the variation of air mass flow rates and inlet temperatures.Non-isothermal measurements have also been performed to research the effect of heat transfer on pressure drops.The experimental results show that inlet temperatures have significant influence on pressure drops,and higher temperatures lead to higher pressure drops at the same mass flow rate.The hydraulic resistance coefficient decreases quickly with Reynolds number,and the descent rate slows down when Re>6000 for all three heat exchangers.Additionally,the pressure drop on heat transfer states is less than that on isothermal states for the same average temperatures.Moreover,the pressure drop through heat exchangers is greatly affected by attack angles and transverse pitches,and an asymmetric M-shaped velocity profile is generated in the crosssection of sector channels.展开更多
With the rapid development in the service,medical,logistics and other industries,and the increasing demand for unmanned mobile devices,mobile robots with the ability of independent mapping,localization and navigation ...With the rapid development in the service,medical,logistics and other industries,and the increasing demand for unmanned mobile devices,mobile robots with the ability of independent mapping,localization and navigation capabilities have become one of the research hotspots.An accurate map construction is a prerequisite for a mobile robot to achieve autonomous localization and navigation.However,the problems of blurring and missing the borders of obstacles and map boundaries are often faced in the Gmapping algorithm when constructing maps in complex indoor environments.In this pursuit,the present work proposes the development of an improved Gmapping algorithm based on the sparse pose adjustment(SPA)optimizations.The improved Gmapping algorithm is then applied to construct the map of a mobile robot based on single-line Lidar.Experiments show that the improved algorithm could build a more accurate and complete map,reduce the number of particles required for Gmapping,and lower the hardware requirements of the platform,thereby saving and minimizing the computing resources.展开更多
With increasing design demands of turbomachinery,stochastic flutter behavior has become more prominent and even appears a hazard to reliability and safety.Stochastic flutter assessment is an effective measure to quant...With increasing design demands of turbomachinery,stochastic flutter behavior has become more prominent and even appears a hazard to reliability and safety.Stochastic flutter assessment is an effective measure to quantify the failure risk and improve aeroelastic stability.However,for complex turbomachinery with multiple dynamic influencing factors(i.e.,aeroengine compressor with time-variant loads),the stochastic flutter assessment is hard to be achieved effectively,since large deviations and inefficient computing will be incurred no matter considering influencing factors at a certain instant or the whole time domain.To improve the assessing efficiency and accuracy of stochastic flutter behavior,a dynamic meta-modeling approach(termed BA-DWTR)is presented with the integration of bat algorithm(BA)and dynamic wavelet tube regression(DWTR).The stochastic flutter assessment of a typical compressor blade is considered as one case to evaluate the proposed approach with respect to condition variabilities and load fluctuations.The evaluation results reveal that the compressor blade has 0.95% probability to induce flutter failure when operating 100% rotative rate at t=170 s.The total temperature at rotor inlet and dynamic operating loads(vibrating frequency and rotative rate)are the primary sensitive parameters on flutter failure probability.Bymethod comparisons,the presented approach is validated to possess high-accuracy and highefficiency in assessing the stochastic flutter behavior for turbomachinery.展开更多
The output current harmonic distortion of a three-level inverter is less than the traditional twolevel inverter.The voltage stress of the semiconductor switch is low.A neutral point potential drift control method is p...The output current harmonic distortion of a three-level inverter is less than the traditional twolevel inverter.The voltage stress of the semiconductor switch is low.A neutral point potential drift control method is proposed to solve the problem of the neutral point potential drift of the three-level inverter.The interaction mechanism between the neutral point potential and the space voltage vector is presented.The small vector output by the inverter is found to be the root cause of the midpoint potential drift.It is found that the fluctuation of the midpoint potential could be suppressed by increasing the capacitance value of the inverter bus voltage stabilizing capacitor.Furthermore,it inhibits the fluctuation of the midpoint potential.The experimental results verify the efficiency and precision of the proposed method.展开更多
In this paper,a numerical investigation into a spike-type rotating stall process is carried out considering a transonic compressor rotor(the NASA Rotor 37).Through solution of the Unsteady Reynolds-Averaged Navier-Sto...In this paper,a numerical investigation into a spike-type rotating stall process is carried out considering a transonic compressor rotor(the NASA Rotor 37).Through solution of the Unsteady Reynolds-Averaged Navier-Stokes(URANS)equations,the evolution process from an initially circumferentially-symmetric near-stall flow field to a stable stall condition is simulated without adding any artificial disturbance.At the near-stall operating point,periodic fluctuations are present in the overall flow of the rotor.Moreover,the blockage region in the channel periodically shifts from middle span to the tip.This fluctuating condition does not directly lead to stall,while the full-annulus calculation eventually evolves to stall.Interestingly,a kind of“early disturbance”feature appears in the dynamic signals,which propagates forward ahead of the rotor.展开更多
The in-cylinder gas exchange process is crucial to the power performance of two-stroke aircraft piston engines,which is easily influenced by complex factors such as high-altitude performance variation and in-cylinder ...The in-cylinder gas exchange process is crucial to the power performance of two-stroke aircraft piston engines,which is easily influenced by complex factors such as high-altitude performance variation and in-cylinder flow characteristics.This paper reviews the development history and characteristics of gas exchange types,as well as the current state of theory and the validation methods of gas exchange technology,while also discusses the trends of cutting-edge technologies in the field.This paper provides a theoretical foundation for the optimization and engineering design of gas exchange systems and,more importantly,points out that the innovation of gas exchange types,the modification of theoretical models,and the technology of variable airflow organization are the key future research directions in this field.展开更多
Limited by the poor transient response performance of turbochargers,the dynamic performance of aviation piston engines tends to deteriorate.In a bid to enhance the turbocharger’s acceleration capabilities,this study ...Limited by the poor transient response performance of turbochargers,the dynamic performance of aviation piston engines tends to deteriorate.In a bid to enhance the turbocharger’s acceleration capabilities,this study scrutinizes various factors impacting its performance.Based on the operational principles and transient response process of the turbocharger,three types of in-ertiadnamely,aerodynamic inertia(ADI),thermal inertia(TI),and mechanical inertia(MI)d are identified and addressed for design.To begin,this paper pioneers the innovative definition of a method for evaluating the transient response performance of the turbocharger.This method incor-porates the introduction of an ADI parameter,inspired by the definition of MI.Subsequently,a thin-walled volute design with a low Biot number and a lightweight turbine impeller is introduced to reduce the turbocharger’s TI and MI.The simulation results of theflowfield distribution within the volute and diffuser demonstrate the comprehensive design method’s effectiveness in improving gas pressure and temperature distributions in these components.Notably,the pressure distributionfluctuation in the constant moment-of-momentum volute(CMV)is 62.8%lower than that in the constant velocity moment volute(CVMV).The low-TI thin-walled volute not only en-hances the turbocharger’s response speed but also reduces its weight by approximately 40%.The impact of three types of inertia on the engine’s response speed is quantified as follows:ADI(94%)>MI(5%)>TI(1%).This conclusion has been verified through test results of both the turbocharger and the engine.This design method not only significantly improves the turbo-charger’s response performance but also offers valuable insights for the optimal design of other blade mechanical systems.展开更多
A modified small perturbation stability prediction model for axial compressors with circumferential inlet distortions is established and applied to investigate the effect of fore/aft-loaded rotor on compressor stabili...A modified small perturbation stability prediction model for axial compressors with circumferential inlet distortions is established and applied to investigate the effect of fore/aft-loaded rotor on compressor stability under circumferentially distorted inlet conditions.The inlet total pressure distribution downstream of the distortion screen is measured in experiments and employed for simulations which are implemented via time-space spectral method.The stall inception prediction results via the stability model indicate that the compressor with aft-loaded rotor not only performs better in terms of stability under uniform inlet,but also maintains a larger stability margin under circumferentially distorted inlet.The experiments for compressors with fore-loaded and aft-loaded rotor are respectively carried out.The results validate the reliability of numerical simulations and the predicted conclusion that the aft-loaded rotor is beneficial for compressor stability.Besides,the ability of the developed theoretical model for compressor stability prediction under circumferential distortions is confirmed.In addition,dynamic pressure signals at rotor tip measured in experiments illustrate that the circumferential distortion has little effect on the compressor stall pattern.展开更多
The problem of evaluating the sensitivity of non-trivial boundary conditions to the onset of azimuthal combustion instability is a longstanding challenge in the development process of modern gas turbines.The difficult...The problem of evaluating the sensitivity of non-trivial boundary conditions to the onset of azimuthal combustion instability is a longstanding challenge in the development process of modern gas turbines.The difficulty lies in how to describe three-dimensional in-and outlet boundary conditions in an artificial computational domain.To date,the existing analytical models have still failed to quantitatively explain why the features of the azimuthal combustion instability of a combustor in laboratory environment are quite different from that in a real gas turbine,making the stability control devices developed in laboratory generally lose the effectiveness in practical applications.To overcome this limitation,we provide a novel theoretical framework to directly include the effect of non-trivial boundary conditions on the azimuthal combustion instability.A key step is to take the non-trivial boundary conditions as equivalent distributed sources so as to uniformly describe the physical characteristics of the inner surface in an annular enclosure along with different in-and outlet configurations.Meanwhile,a dispersion relation equation is established by the application of three-dimensional Green's function approach and generalized impedance concept.Results show that the effects of the generalized modal reflection coefficients on azimuthal unstable modes are extremely prominent,and even prompt the transition from stable to unstable mode,thus reasonably explaining why the thermoacoustic instability phenomena in a real gas turbine are difficult to observe in an isolated combustion chamber.Overall,this work provides an effective tool for analysis of the azimuthal combustion instability including various complicated boundary conditions.展开更多
Uncertainty impact of random geometric variations on the aerodynamic performance of low-pressure turbine blades is considerable,which is further amplified by the current ultra-high-lift design trend for weight reducti...Uncertainty impact of random geometric variations on the aerodynamic performance of low-pressure turbine blades is considerable,which is further amplified by the current ultra-high-lift design trend for weight reduction.Therefore,this uncertainty impact on ultra-highly loaded blades under extreme operational conditions near the margins with potential large-scale open separation is focused on in this study.It is demonstrated that this impact is significant,unfavourable,and nonlinear,which is clearly severer under extreme conditions.In addition to the overall attenuation and notable scattering of specific performance,the operational margins with open separation are also notably scattered with great risk of significant reduction.This scattering and nonlinearity are dominated by the variations in leading-edge thickness.The thinning of leading edge triggers local transition,enhancing downstream friction and reducing resistance to open separation,which is further exacerbated by operational deterioration.However,the opposite thickening yields less benefit,implying nonlinearity.This unfavourable impact highlights the need for robust aerodynamic design,where both a safer operational condition and a more robust blade are indispensable,i.e.,a compromise among performance,weight,and robustness.Besides the necessary limitation of loading levels,a mid-loaded design is recommended to reduce adverse pressure gradients in both the leading edge and rear region of the suction side,which helps to decrease the susceptibility of the transition and open separation to random perturbations.Similar improvements can also be achieved by appropriately thickening the leading edge.展开更多
An advanced precooled airbreathing engine with a closed Brayton cycle is a promising solution for high-speed propulsion,of which the Synergetic Air Breathing Rocket Engine(SABRE)is a representative configuration.The p...An advanced precooled airbreathing engine with a closed Brayton cycle is a promising solution for high-speed propulsion,of which the Synergetic Air Breathing Rocket Engine(SABRE)is a representative configuration.The performance of the latest SABRE-4 cycle was analyzed in this paper.Firstly,a relatively complete engine performance model that considers the characteristics of turbomachinery and heat exchangers was developed.Then,Sobol’global sensitivity analysis of key performance parameters was carried out to identify the most influential design variables.Optimal specific impulses under different target specific thrusts were obtained by particle swarm optimization,of which the thermodynamic parameters corresponding to a specific thrust of 1.12 kN·s·kg^(-1)and a specific impulse of 3163 s were chosen as the design values.Four different control laws were analyzed in contrast,and the charge control method had the strongest ability of thrust regulation as well as maintaining a favorable specific impulse performance.Finally,working characteristics under the charge control and over a typical flight envelope were calculated,in which the average value of the maximum specific impulse was as high as 5315 s.This study would help to deepen the understanding of SABRE-4 thermodynamic characteristics and other precooled airbreathing engine cycles with similar layouts.展开更多
The prolonged thermal exposure with centrifugal load results in microstructural degradation,which ultimately leads to a reduction in the fatigue and creep resistance of the turbine blades.The present work proposes a m...The prolonged thermal exposure with centrifugal load results in microstructural degradation,which ultimately leads to a reduction in the fatigue and creep resistance of the turbine blades.The present work proposes a multi-scale framework to estimate the life reduction of turbine blades,which combines a microstructural degradation model,a two-phase constitutive model,and a microstructure-dependent fatigue and creep life reduction model.The framework with multi-scale models is validated by a Single Crystal(SC)Ni-based superalloy at the microstructural length-scale and is then applied to calculate the microstructural degradation and the fatigue and creep life reduction of turbine blades under two specific service conditions.The simulation results and quantitative analysis show that the microstructural degradation and fatigue and creep life reduction of the turbine blade are heavily influenced by the variations in the proportion of the intermediate state,namely,the maximum rotor speed status,in the two specific service conditions.The intermediate state accelerates the microstructural degradation and leads to a reduction of the life,especially the effective fatigue life reserve due to the higher temperature and rotational speed than that of the 93%maximum rotor speed status marked as the reference state.The proposed multi-scale framework provides a capable approach to analyze the reduction of the fatigue and creep life for turbine blade induced by microstructural degradation,which can assist to determine a reasonable Time Between Overhaul(TBO)of the engine.展开更多
Based on a small perturbation stability model for periodic flow,the effects of inlet total temperature ramp distortion on the axial compressor are investigated and the compressor stability is quantitatively evaluated....Based on a small perturbation stability model for periodic flow,the effects of inlet total temperature ramp distortion on the axial compressor are investigated and the compressor stability is quantitatively evaluated.In the beginning,a small perturbation stability model for the periodic flow in compressors is proposed,referring to the governing equations of the Harmonic Balance Method.This stability model is validated on a single-stage low-speed compressor TA36 with uniform inlet flow.Then,the unsteady flow of TA36 with different inlet total temperature ramps and constant back pressure is simulated based on the Harmonic Balance Method.Based on these simulations,the compressor stability is analyzed using the proposed small perturbation model.Further,the Dynamic Mode Decomposition method is employed to accurately extract pressure oscillations.The two parameters of the temperature ramp,ramp rate and Strouhal number,are discussed in this paper.The results indicate the occurrence and extension of hysteresis loops in the rows,and a decrease in compressor stability with increasing ramp rate.Compressor performance is divided into two phases,stable and limit,based on the ramp rate.Furthermore,the model predictions suggest that a decrease in period length and an increase in Strouhal number lead to improved compressor stability.The DMD results imply that for compressors with inlet temperature ramp distortion,the increase of high-order modes and oscillations at the rotor tip is always the signal of decreasing stability.展开更多
基金supported by China National Postdoctoral Program for Innovative Talents (Grant No.:BX20220373)the Fundamental Research Funds for the Central Universities (Grant No.:YWF-23-Q-1067)Young Elite Scientists Sponsorship Program by BAST (Grant No.:BYESS2023081).
文摘Model-based control shows promising potential for engine performance improve-ment and future aero-propulsion requirements.In this paper,an auto-updating thrust variation mitigation(AuTVM)control approach using on-board model strategies is proposed for gas tur-bine aero-engines under in-service degradation effects,which aims at active thrust regulation and acceleration protection in a simultaneous way.The AuTVM control is integrated with an on-line block,based on a reliable on-board engine model,and an off-line part for the periodical update of control parameters via post-flight engine monitoring data.The core feature of the AuTVM control is a set of auto-updating loops within the on-line part,including thrust regu-lation loop,surge margin loop,turbine entry temperature loop,and the steady loop,whose con-trol parameters are periodically adjusted with increasingflight cycles.Meanwhile,an industrial sensor-based baseline controller and two tailored model-based controllers,i.e.,a thrust variation mitigation(TVM)controller withfixed gains and a self-enhancing active transient protection(SeATP)controller with pro-active transient protection and passive thrust control,are also developed as comparison bases.Numerical simulations for idle to full-power acceleration tests are carried on a validated aero-thermal turbofan engine model using publicly available degra-dation data.Simulation results demonstrate that both new engines and severely degraded en-gines regulated by the AuTVM controller show significant thrust response enhancement,compared to the baseline controller.Moreover,thrust variation at the maximum steady state of degraded engines,which exists within the SeATP controller and the baseline controller,is suppressed by the proposed AuTVM controller.Robustness analysis against degradation uncer-tainties and sensor accuracy confirms that the AuTVM controller owns a closer maximum steady-state thrust distribution to the desired value than those of the SeATP and the baseline controller while utilizing transient margins of controlled engines more effectively.Hence,the control performance of the AuTVM controller for in-service engines is guaranteed.
基金supported by the National Natural Science Foundation of China under Grant(Number:52105136)the Hong Kong Scholar program under Grant(Number:XJ2022013)China Postdoctoral Science Foundation under Grant(Number:2021M690290)Academic Excellence Foundation of BUAA under Grant(Number:BY2004103).
文摘Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures.
基金Advanced Jet Propulsion Innovation Center,AEAC(Project ID.HKCX2021-01-021)The Fundamental Research Funds for the Central Universities(Project ID.501XTCX2023146001)Science Center for Gas Turbine Project(P2022-A-II-006-001)。
文摘This paper focuses on the optimization of the outlet temperature field of a hydrogen micromixing diffusion combustor for a micro-turbojet engine with a thrust of 20kgf.The joint simulation optimization platform was established combiningWorkbench and UG and the multi-parameter driven optimization design process was developed.The surrogate models and genetic algorithms were employed to investigate the influences of key parameters on the hotspot temperature at the combustor exit.It was found that smaller diameters of the dilution holes and positions further from the exit lead to lower hotspot temperatures.Additionally,an optimal solution for achieving a uniform temperature distribution at the combustor outlet was obtained.This solution involves a single row of dilution holes on both the inner and outer walls of the flame tube,arranged in an alternating axial and angular pattern.Through aerothermal process analysis,it was determined that the outlet temperature distribution coefficient(OTDF)of the combustion chamber is below 0.2.Meanwhile,the axial dimension of the flame is short,approximately one-third of the flame tube length.The conclusions derived from this study provide important guidance for the design of hydrogen micromix diffusion combustor.
基金Beijing Nova Program (No. 20220484129)National Natural Science Foundation of China (No.52376042)+1 种基金Advanced Aerodynamic Innovation Workstation (Grant No. HKCX2022-01-07)National Science and Technology Major Project (Grant No. J2019-II-0022-0043)。
文摘With the development of aero-engines, the turbine inlet temperature continues to rise. In order to ensure the safety and reliability of the turbine blades, cooling structures must be set inside turbine blades to cool them. Heat transfer coefficient and flow resistance are the key parameters to measure the cooling characteristics of internal cooling structures. In this paper, the characteristics of flow resistance in a rotating ribbed channel is presented numerical simulation under different rib spacings, rib angles, and thermal boundary conditions. The results show that, separation and reattachment of fluid between ribs is the key effect of rib spacing on flow resistance. The flow resistance is small when the rib spacing is small, because it's difficult for the fluid to form reattachment between the ribs. With the increase of rib spacing, the reattachment phenomenon is more obvious and the flow resistance increases accordingly. In general,p: e=10 channel has the maximum flow resistance. Secondary flow caused by the ribs is the key factor affecting the flow resistance characteristics with different rib angles. The secondary flow interacts with the main flow and causes flow loss through mixing, thus affecting the flow resistance of the channel. Under static condition, the flow resistance of 60°ribbed channel is the largest. The flow resistance of channel was affected by the temperature rise ratio also. And with the increase of the Ro, the temperature rise ratio has a more obvious effect on the flow resistance of the ribbed channel.When Ro=0.45, the flow resistance of the channel with a temperature rise ratio of 0.4 is 2.4 times that of the channel without temperature rise, while when Ro=0.3, it is 1.6 times, and when Ro=0.15, it is 1.2 times.
基金supported by the National Natural Science Foundation of China under Grant Nos.52105136,51975028China Postdoctoral Science Foundation under Grant[No.2021M690290]the National Science and TechnologyMajor Project under Grant No.J2019-IV-0002-0069.
文摘The reliability and sensitivity analyses of stator blade regulator usually involve complex characteristics like highnonlinearity,multi-failure regions,and small failure probability,which brings in unacceptable computing efficiency and accuracy of the current analysismethods.In this case,by fitting the implicit limit state function(LSF)with active Kriging(AK)model and reducing candidate sample poolwith adaptive importance sampling(AIS),a novel AK-AIS method is proposed.Herein,theAKmodel andMarkov chainMonte Carlo(MCMC)are first established to identify the most probable failure region(s)(MPFRs),and the adaptive kernel density estimation(AKDE)importance sampling function is constructed to select the candidate samples.With the best samples sequentially attained in the reduced candidate samples and employed to update the Kriging-fitted LSF,the failure probability and sensitivity indices are acquired at a lower cost.The proposed method is verified by twomulti-failure numerical examples,and then applied to the reliability and sensitivity analyses of a typical stator blade regulator.Withmethods comparison,the proposed AK-AIS is proven to hold the computing advantages on accuracy and efficiency in complex reliability and sensitivity analysis problems.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFB4700400).
文摘Current research on autonomous mobile robots focuses primarily on perceptual accuracy and autonomous performance.In commercial and domestic constructions,concrete,wood,and glass are typically used.Laser and visual mapping or planning algorithms are highly accurate in mapping wood panels and concrete walls.However,indoor and outdoor glass curtain walls may fail to perceive these transparent materials.In this study,a novel indoor glass recognition and map optimization method based on boundary guidance is proposed.First,the status of glass recognition techniques is analyzed comprehensively.Next,a glass image segmentation network based on boundary data guidance and the optimization of a planning map based on depth repair are proposed.Finally,map optimization and path-planning tests are conducted and compared using different algorithms.The results confirm the favorable adaptability of the proposed method to indoor transparent plates and glass curtain walls.Using the proposed method,the recognition accuracy of a public test set increases to 94.1%.After adding the planning map,incorrect coverage redundancies for two test scenes reduce by 59.84%and 55.7%.Herein,a glass recognition and map optimization method is proposed that offers sufficient capacity in perceiving indoor glass materials and recognizing indoor no-entry regions.
基金National Natural Science Foundation of China(51906008)。
文摘In this paper,the flow and heat transfer characteristics in U-shaped channel with three different turn shapes are studied.The rotation number ranges from 0~0.251,Reynolds number are 11500,23000,34500,respectively.The results show that the flow separation and reattachment in the turning section are the key factors affecting the local heat transfer and pressure loss of U-shaped channel.The square turn will generate corner vortices at the outside of the turning section,and the size of the inner separation vortex and reattachment vortex is larger than that of the other two turn shapes.The existence of vortex system will increase the mixing and enhance heat transfer,but increase the pressure loss,so its relative Nusselt number and pressure loss are the largest.There are corner vortices on the outside of the turning section of the channel with a inner circle turn and outer square turn,but the arc-shaped inner edge makes its separation delay and the separation vortex decrease,and the size of the reattachment vortex also decreases.The arc shaped outer edge of the channel with circle turn in both inner and outer further inhibits the generation of corner vortices,so its relative Nusselt number and pressure loss are the lowest.Rotation will cause the fluid to deflect under the influence of Coriolis force,strengthen the heat transfer on the trailing surface of radial outflow and the leading surface of radial internal flow,and generate secondary flow and separation vortex in the turning section,resulting in the change of vortex structure in the turning section.With the increase of rotation number,the Nusselt number of the three types of turning section structures increases.The thermal performance factor of the three channels increases with the increase of rotating speed,and the channel with a inner circle turn and outer square turn is the highest,which is 9.6%higher than the channel with circle turn in both inner and outer on average,and 17.8%higher than the channel with square turn in both inner and outer.
基金co-supported by the National Science and Technology Major Project of China (Nos. 2017-Ⅲ-00050029, J2019-Ⅲ-0021-0065, and J2019-Ⅲ-0015-0059)the National Natural Science Foundation of China (No. 51906009)
文摘This study explores the design,analysis,and air pressure drop assessment of three analogous air–fuel heat exchangers consisting of thin serpentine tube bundles intended for use in high Mach number aero-engines.In high speed flight,the compressor bleed air used to cool high temperature turbine blades and other hot components is too hot.Hence,aviation kerosene is applied to precool the compressor bleed air by means of novel air–fuel heat exchangers.Three light and compact heat exchangers including dozens of in-line thin serpentine tube bundles were designed and manufactured,with little difference existing in aspects of tube pitches and outer diameters among three heat exchangers.The fuel flows inside a series of parallel stainless serpentine tubes(outer diameter:2.2,1.8,1.4 mm with 0.2 mm thickness),while the air externally flows normal to tube bundles and countercurrent with fuel.Experimental studies were carried out to investigate the airside pressure drop characteristics on isothermal states with the variation of air mass flow rates and inlet temperatures.Non-isothermal measurements have also been performed to research the effect of heat transfer on pressure drops.The experimental results show that inlet temperatures have significant influence on pressure drops,and higher temperatures lead to higher pressure drops at the same mass flow rate.The hydraulic resistance coefficient decreases quickly with Reynolds number,and the descent rate slows down when Re>6000 for all three heat exchangers.Additionally,the pressure drop on heat transfer states is less than that on isothermal states for the same average temperatures.Moreover,the pressure drop through heat exchangers is greatly affected by attack angles and transverse pitches,and an asymmetric M-shaped velocity profile is generated in the crosssection of sector channels.
基金National Key Research and Development of China(No.2019YFB1600700)Sichuan Science and Technology Planning Project(No.2021YFSY0003)。
文摘With the rapid development in the service,medical,logistics and other industries,and the increasing demand for unmanned mobile devices,mobile robots with the ability of independent mapping,localization and navigation capabilities have become one of the research hotspots.An accurate map construction is a prerequisite for a mobile robot to achieve autonomous localization and navigation.However,the problems of blurring and missing the borders of obstacles and map boundaries are often faced in the Gmapping algorithm when constructing maps in complex indoor environments.In this pursuit,the present work proposes the development of an improved Gmapping algorithm based on the sparse pose adjustment(SPA)optimizations.The improved Gmapping algorithm is then applied to construct the map of a mobile robot based on single-line Lidar.Experiments show that the improved algorithm could build a more accurate and complete map,reduce the number of particles required for Gmapping,and lower the hardware requirements of the platform,thereby saving and minimizing the computing resources.
基金co-supported by the National Natural Science Foundation of China(Grants 51975028 and 52105136)China Postdoctoral Science Foundation(Grant 2021M690290)the National Science and TechnologyMajor Project(Grant J2019-Ⅳ-0016-0084).
文摘With increasing design demands of turbomachinery,stochastic flutter behavior has become more prominent and even appears a hazard to reliability and safety.Stochastic flutter assessment is an effective measure to quantify the failure risk and improve aeroelastic stability.However,for complex turbomachinery with multiple dynamic influencing factors(i.e.,aeroengine compressor with time-variant loads),the stochastic flutter assessment is hard to be achieved effectively,since large deviations and inefficient computing will be incurred no matter considering influencing factors at a certain instant or the whole time domain.To improve the assessing efficiency and accuracy of stochastic flutter behavior,a dynamic meta-modeling approach(termed BA-DWTR)is presented with the integration of bat algorithm(BA)and dynamic wavelet tube regression(DWTR).The stochastic flutter assessment of a typical compressor blade is considered as one case to evaluate the proposed approach with respect to condition variabilities and load fluctuations.The evaluation results reveal that the compressor blade has 0.95% probability to induce flutter failure when operating 100% rotative rate at t=170 s.The total temperature at rotor inlet and dynamic operating loads(vibrating frequency and rotative rate)are the primary sensitive parameters on flutter failure probability.Bymethod comparisons,the presented approach is validated to possess high-accuracy and highefficiency in assessing the stochastic flutter behavior for turbomachinery.
基金the National Natural Science Foundation of China(No.51407007)。
文摘The output current harmonic distortion of a three-level inverter is less than the traditional twolevel inverter.The voltage stress of the semiconductor switch is low.A neutral point potential drift control method is proposed to solve the problem of the neutral point potential drift of the three-level inverter.The interaction mechanism between the neutral point potential and the space voltage vector is presented.The small vector output by the inverter is found to be the root cause of the midpoint potential drift.It is found that the fluctuation of the midpoint potential could be suppressed by increasing the capacitance value of the inverter bus voltage stabilizing capacitor.Furthermore,it inhibits the fluctuation of the midpoint potential.The experimental results verify the efficiency and precision of the proposed method.
基金This work was supported by the National Natural Science Foundation of China(No.51976139)the Shandong Provincial Natural Science Foundation,China(No.ZR2019QA018).
文摘In this paper,a numerical investigation into a spike-type rotating stall process is carried out considering a transonic compressor rotor(the NASA Rotor 37).Through solution of the Unsteady Reynolds-Averaged Navier-Stokes(URANS)equations,the evolution process from an initially circumferentially-symmetric near-stall flow field to a stable stall condition is simulated without adding any artificial disturbance.At the near-stall operating point,periodic fluctuations are present in the overall flow of the rotor.Moreover,the blockage region in the channel periodically shifts from middle span to the tip.This fluctuating condition does not directly lead to stall,while the full-annulus calculation eventually evolves to stall.Interestingly,a kind of“early disturbance”feature appears in the dynamic signals,which propagates forward ahead of the rotor.
基金funded by the National Natural Science Foundation of China(Nos.52206131,U2233213and 51775025)the National Key R&D Program of China(2022YFB2602002,2018YFB0104100)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(LQ22E060004)the Science Center of Gas Turbine Project,China(No.P2022-A-I-001-001)。
文摘The in-cylinder gas exchange process is crucial to the power performance of two-stroke aircraft piston engines,which is easily influenced by complex factors such as high-altitude performance variation and in-cylinder flow characteristics.This paper reviews the development history and characteristics of gas exchange types,as well as the current state of theory and the validation methods of gas exchange technology,while also discusses the trends of cutting-edge technologies in the field.This paper provides a theoretical foundation for the optimization and engineering design of gas exchange systems and,more importantly,points out that the innovation of gas exchange types,the modification of theoretical models,and the technology of variable airflow organization are the key future research directions in this field.
基金funded by the Basic Research Program of the National Nature Science Foundation of China (Grant number[52206131],[U2233213],[51775025]and[U2333217])National Key R&D Program of China,grant number[2022YFB2602002]and[2018YFB0104100]+1 种基金Zhejiang Provincial Natural Science Foundation of China,grant number[LQ22E060004]Science Center of Gas Turbine Project[P2022-A-I-001-001].
文摘Limited by the poor transient response performance of turbochargers,the dynamic performance of aviation piston engines tends to deteriorate.In a bid to enhance the turbocharger’s acceleration capabilities,this study scrutinizes various factors impacting its performance.Based on the operational principles and transient response process of the turbocharger,three types of in-ertiadnamely,aerodynamic inertia(ADI),thermal inertia(TI),and mechanical inertia(MI)d are identified and addressed for design.To begin,this paper pioneers the innovative definition of a method for evaluating the transient response performance of the turbocharger.This method incor-porates the introduction of an ADI parameter,inspired by the definition of MI.Subsequently,a thin-walled volute design with a low Biot number and a lightweight turbine impeller is introduced to reduce the turbocharger’s TI and MI.The simulation results of theflowfield distribution within the volute and diffuser demonstrate the comprehensive design method’s effectiveness in improving gas pressure and temperature distributions in these components.Notably,the pressure distributionfluctuation in the constant moment-of-momentum volute(CMV)is 62.8%lower than that in the constant velocity moment volute(CVMV).The low-TI thin-walled volute not only en-hances the turbocharger’s response speed but also reduces its weight by approximately 40%.The impact of three types of inertia on the engine’s response speed is quantified as follows:ADI(94%)>MI(5%)>TI(1%).This conclusion has been verified through test results of both the turbocharger and the engine.This design method not only significantly improves the turbo-charger’s response performance but also offers valuable insights for the optimal design of other blade mechanical systems.
基金The research presented here was supported by the National Natural Science Foundation of China(Nos.52306036 and 52325602)the Science Center for Gas Turbine Project,China(Nos.P2022-A-II-002-001 and P2022-C-II-003-001)+3 种基金the Project funded by China Postdoctoral Science Foundation(No.2022M720346)the National Science and Technology Major Projectc,China(Nos.Y2022-II-0003-0006 and Y2022-II-0002-0005)Also,the research is supported by the Key Laboratory of Pre-Research Management Centre,China(No.6142702200101)the Fundamental Research Funds for the Central Universities,China(Nos.YWF-23-Q-1009 and YWF-23-Q-1065).
文摘A modified small perturbation stability prediction model for axial compressors with circumferential inlet distortions is established and applied to investigate the effect of fore/aft-loaded rotor on compressor stability under circumferentially distorted inlet conditions.The inlet total pressure distribution downstream of the distortion screen is measured in experiments and employed for simulations which are implemented via time-space spectral method.The stall inception prediction results via the stability model indicate that the compressor with aft-loaded rotor not only performs better in terms of stability under uniform inlet,but also maintains a larger stability margin under circumferentially distorted inlet.The experiments for compressors with fore-loaded and aft-loaded rotor are respectively carried out.The results validate the reliability of numerical simulations and the predicted conclusion that the aft-loaded rotor is beneficial for compressor stability.Besides,the ability of the developed theoretical model for compressor stability prediction under circumferential distortions is confirmed.In addition,dynamic pressure signals at rotor tip measured in experiments illustrate that the circumferential distortion has little effect on the compressor stall pattern.
基金supported by the Science Center for Gas Turbine Project of China (No.P2022-B-II-013-001)the National Natural Science Foundation of China (No.52106038).
文摘The problem of evaluating the sensitivity of non-trivial boundary conditions to the onset of azimuthal combustion instability is a longstanding challenge in the development process of modern gas turbines.The difficulty lies in how to describe three-dimensional in-and outlet boundary conditions in an artificial computational domain.To date,the existing analytical models have still failed to quantitatively explain why the features of the azimuthal combustion instability of a combustor in laboratory environment are quite different from that in a real gas turbine,making the stability control devices developed in laboratory generally lose the effectiveness in practical applications.To overcome this limitation,we provide a novel theoretical framework to directly include the effect of non-trivial boundary conditions on the azimuthal combustion instability.A key step is to take the non-trivial boundary conditions as equivalent distributed sources so as to uniformly describe the physical characteristics of the inner surface in an annular enclosure along with different in-and outlet configurations.Meanwhile,a dispersion relation equation is established by the application of three-dimensional Green's function approach and generalized impedance concept.Results show that the effects of the generalized modal reflection coefficients on azimuthal unstable modes are extremely prominent,and even prompt the transition from stable to unstable mode,thus reasonably explaining why the thermoacoustic instability phenomena in a real gas turbine are difficult to observe in an isolated combustion chamber.Overall,this work provides an effective tool for analysis of the azimuthal combustion instability including various complicated boundary conditions.
基金This study was supported by the National Science and Technology Major Project,China(No.J2019-II-0012-0032),which is gratefully acknowledged.
文摘Uncertainty impact of random geometric variations on the aerodynamic performance of low-pressure turbine blades is considerable,which is further amplified by the current ultra-high-lift design trend for weight reduction.Therefore,this uncertainty impact on ultra-highly loaded blades under extreme operational conditions near the margins with potential large-scale open separation is focused on in this study.It is demonstrated that this impact is significant,unfavourable,and nonlinear,which is clearly severer under extreme conditions.In addition to the overall attenuation and notable scattering of specific performance,the operational margins with open separation are also notably scattered with great risk of significant reduction.This scattering and nonlinearity are dominated by the variations in leading-edge thickness.The thinning of leading edge triggers local transition,enhancing downstream friction and reducing resistance to open separation,which is further exacerbated by operational deterioration.However,the opposite thickening yields less benefit,implying nonlinearity.This unfavourable impact highlights the need for robust aerodynamic design,where both a safer operational condition and a more robust blade are indispensable,i.e.,a compromise among performance,weight,and robustness.Besides the necessary limitation of loading levels,a mid-loaded design is recommended to reduce adverse pressure gradients in both the leading edge and rear region of the suction side,which helps to decrease the susceptibility of the transition and open separation to random perturbations.Similar improvements can also be achieved by appropriately thickening the leading edge.
基金supported by the Project of National Key Laboratory of Science and Technology on Aero-engine and Aerothermodynamics at Beihang University,China(No.2022-JCJQ-LB-062-0204).
文摘An advanced precooled airbreathing engine with a closed Brayton cycle is a promising solution for high-speed propulsion,of which the Synergetic Air Breathing Rocket Engine(SABRE)is a representative configuration.The performance of the latest SABRE-4 cycle was analyzed in this paper.Firstly,a relatively complete engine performance model that considers the characteristics of turbomachinery and heat exchangers was developed.Then,Sobol’global sensitivity analysis of key performance parameters was carried out to identify the most influential design variables.Optimal specific impulses under different target specific thrusts were obtained by particle swarm optimization,of which the thermodynamic parameters corresponding to a specific thrust of 1.12 kN·s·kg^(-1)and a specific impulse of 3163 s were chosen as the design values.Four different control laws were analyzed in contrast,and the charge control method had the strongest ability of thrust regulation as well as maintaining a favorable specific impulse performance.Finally,working characteristics under the charge control and over a typical flight envelope were calculated,in which the average value of the maximum specific impulse was as high as 5315 s.This study would help to deepen the understanding of SABRE-4 thermodynamic characteristics and other precooled airbreathing engine cycles with similar layouts.
基金funded by the National Science and Technology Major Project of China(No.2019-IV-0017-0085)the Science Center for Gas Turbine Project,China(No.P2022-Ⅲ-003-002)+1 种基金the National Natural Science Foundation of China(Nos.12172021,52205139 and 52105137)the Project funded by China Postdoctoral Science Foundation(No.2022M710288)。
文摘The prolonged thermal exposure with centrifugal load results in microstructural degradation,which ultimately leads to a reduction in the fatigue and creep resistance of the turbine blades.The present work proposes a multi-scale framework to estimate the life reduction of turbine blades,which combines a microstructural degradation model,a two-phase constitutive model,and a microstructure-dependent fatigue and creep life reduction model.The framework with multi-scale models is validated by a Single Crystal(SC)Ni-based superalloy at the microstructural length-scale and is then applied to calculate the microstructural degradation and the fatigue and creep life reduction of turbine blades under two specific service conditions.The simulation results and quantitative analysis show that the microstructural degradation and fatigue and creep life reduction of the turbine blade are heavily influenced by the variations in the proportion of the intermediate state,namely,the maximum rotor speed status,in the two specific service conditions.The intermediate state accelerates the microstructural degradation and leads to a reduction of the life,especially the effective fatigue life reserve due to the higher temperature and rotational speed than that of the 93%maximum rotor speed status marked as the reference state.The proposed multi-scale framework provides a capable approach to analyze the reduction of the fatigue and creep life for turbine blade induced by microstructural degradation,which can assist to determine a reasonable Time Between Overhaul(TBO)of the engine.
基金supported by National Natural Science Foundation of China(NSFC Grant Nos.52306036,52325602)Science Center for Gas Turbine Project(P2022-A-Ⅱ-002-001,P2022-C-Ⅱ-003-001)+3 种基金Project funded by China Postdoctoral Science Foundation(2022M720346)National Science and Technology Major Project(Y2022-Ⅱ-0003-0006,Y2022-Ⅱ-0002-0005).Alsothe research is supported by the Key Laboratory of Pre-Research Management Centre(No.6142702200101)the Fundamental Research Funds for the Central Universities(YWF-23-Q-1009,YWF-23-Q-1065)。
文摘Based on a small perturbation stability model for periodic flow,the effects of inlet total temperature ramp distortion on the axial compressor are investigated and the compressor stability is quantitatively evaluated.In the beginning,a small perturbation stability model for the periodic flow in compressors is proposed,referring to the governing equations of the Harmonic Balance Method.This stability model is validated on a single-stage low-speed compressor TA36 with uniform inlet flow.Then,the unsteady flow of TA36 with different inlet total temperature ramps and constant back pressure is simulated based on the Harmonic Balance Method.Based on these simulations,the compressor stability is analyzed using the proposed small perturbation model.Further,the Dynamic Mode Decomposition method is employed to accurately extract pressure oscillations.The two parameters of the temperature ramp,ramp rate and Strouhal number,are discussed in this paper.The results indicate the occurrence and extension of hysteresis loops in the rows,and a decrease in compressor stability with increasing ramp rate.Compressor performance is divided into two phases,stable and limit,based on the ramp rate.Furthermore,the model predictions suggest that a decrease in period length and an increase in Strouhal number lead to improved compressor stability.The DMD results imply that for compressors with inlet temperature ramp distortion,the increase of high-order modes and oscillations at the rotor tip is always the signal of decreasing stability.