In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy u...In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy used the robust Fractional-Order(FO)Proportional-Integral(PI)control technique.The FOPI control contains a non-integer order which is preferred over the integer-order control owing to its benefits.It offers extra flexibility in design and demonstrates superior outcomes such as high robustness and effectiveness.The optimal gains of the FOPI controller have been determined using a recent Manta Ray Foraging Optimization(MRFO)algorithm.During the optimization process,the FOPI controller’s parameters are assigned to be the decision variables whereas the objective function is the error racking that to be minimized.To prove the superiority of the MRFO algorithm,an empirical comparison study with the homologous particle swarm optimization and genetic algorithm is achieved.The obtained results proved the superiority of the introduced strategy in tracking and control performances against various conditions such as voltage dips and wind speed variation.展开更多
The research on Unmanned Aerial Vehicles(UAV)has intensified considerably thanks to the recent growth in the fields of advanced automatic control,artificial intelligence,and miniaturization.In this paper,a Grey Wolf O...The research on Unmanned Aerial Vehicles(UAV)has intensified considerably thanks to the recent growth in the fields of advanced automatic control,artificial intelligence,and miniaturization.In this paper,a Grey Wolf Optimization(GWO)algorithm is proposed and successfully applied to tune all effective parameters of Fast Terminal Sliding Mode(FTSM)controllers for a quadrotor UAV.A full control scheme is first established to deal with the coupled and underactuated dynamics of the drone.Controllers for altitude,attitude,and position dynamics become separately designed and tuned.To work around the repetitive and time-consuming trial-error-based procedures,all FTSM controllers’parameters for only altitude and attitude dynamics are systematically tuned thanks to the proposed GWO metaheuristic.Such a hard and complex tuning task is formulated as a nonlinear optimization problem under operational constraints.The performance and robustness of the GWO-based control strategy are compared to those based on homologous metaheuristics and standard terminal sliding mode approaches.Numerical simulations are carried out to show the effectiveness and superiority of the proposed GWO-tuned FTSM controllers for the altitude and attitude dynamics’stabilization and tracking.Nonparametric statistical analyses revealed that the GWO algorithm is more competitive with high performance in terms of fastness,non-premature convergence,and research exploration/exploitation capabilities.展开更多
This work presents a memetic Shuffled Frog Leaping Algorithm(SFLA)based tuning approach of an Integral Sliding Mode Controller(ISMC)for a quadrotor type of Unmanned Aerial Vehicles(UAV).Based on the Newton–Euler form...This work presents a memetic Shuffled Frog Leaping Algorithm(SFLA)based tuning approach of an Integral Sliding Mode Controller(ISMC)for a quadrotor type of Unmanned Aerial Vehicles(UAV).Based on the Newton–Euler formalism,a nonlinear dynamic model of the studied quadrotor is firstly established for control design purposes.Since the main parameters of the ISMC design are the gains of the sliding surfaces and signum functions of the switching control law,which are usually selected by repetitive and time-consuming trials-errors based procedures,a constrained optimization problem is formulated for the systematically tuning of these unknown variables.Under time-domain operating constraints,such an optimization-based tuning problem is effectively solved using the proposed SFLA metaheuristic with an empirical comparison to other evolutionary computation-and swarm intelligence-based algorithms such as the Crow Search Algorithm(CSA),Fractional Particle Swarm Optimization Memetic Algorithm(FPSOMA),Ant Bee Colony(ABC)and Harmony Search Algorithm(HSA).Numerical experiments are carried out for various sets of algorithms’parameters to achieve optimal gains of the sliding mode controllers for the altitude and attitude dynamics stabilization.Comparative studies revealed that the SFLA is a competitive and easily implemented algorithm with high performance in terms of robustness and non-premature convergence.Demonstrative results verified that the proposed metaheuristicsbased approach is a promising alternative for the systematic tuning of the effective design parameters in the integral sliding mode control framework.展开更多
Paths planning of Unmanned Aerial Vehicles(UAVs)in a dynamic environment is considered a challenging task in autonomous flight control design.In this work,an efficient method based on a Multi-Objective MultiVerse Opti...Paths planning of Unmanned Aerial Vehicles(UAVs)in a dynamic environment is considered a challenging task in autonomous flight control design.In this work,an efficient method based on a Multi-Objective MultiVerse Optimization(MOMVO)algorithm is proposed and successfully applied to solve the path planning problem of quadrotors with moving obstacles.Such a path planning task is formulated as a multicriteria optimization problem under operational constraints.The proposed MOMVO-based planning approach aims to lead the drone to traverse the shortest path from the starting point and the target without collision with moving obstacles.The vehicle moves to the next position from its current one such that the line joining minimizes the total path length and allows aligning its direction towards the goal.To choose the best compromise solution among all the non-dominated Pareto ones obtained for compromise objectives,the modified Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)is investigated.A set of homologous metaheuristics such as Multiobjective Salp Swarm Algorithm(MSSA),Multi-Objective Grey Wolf Optimizer(MOGWO),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-Dominated Genetic Algorithm II(NSGAII)is used as a basis for the performance comparison.Demonstrative results and statistical analyses show the superiority and effectiveness of the proposed MOMVO-based planning method.The obtained results are satisfactory and encouraging for future practical implementation of the path planning strategy.展开更多
The present paper aims at validating a Model Predictive Control(MPC),based on the Mixed Logical Dynamical(MLD)model,for Hybrid Dynamic Systems(HDSs)that explicitly involve continuous dynamics and discrete events.The p...The present paper aims at validating a Model Predictive Control(MPC),based on the Mixed Logical Dynamical(MLD)model,for Hybrid Dynamic Systems(HDSs)that explicitly involve continuous dynamics and discrete events.The proposed benchmark system is a three-tank process,which is a typical case study of HDSs.The MLD-MPC controller is applied to the level control of the considered tank system.The study is initially focused on the MLD approach that allows consideration of the interacting continuous dynamics with discrete events and includes the operating constraints.This feature of MLD modeling is very advantageous when an MPC controller synthesis for the HDSs is designed.Once the MLD model of the system is well-posed,then the MPC law synthesis can be developed based on the Mixed Integer Programming(MIP)optimization problem.For solving this MIP problem,a Branch and Bound(B&B)algorithm is proposed to determine the optimal control inputs.Then,a comparative study is carried out to illustrate the effectiveness of the proposed hybrid controller for the HDSs compared to the standard MPC approach.Performances results show that the MLD-MPC approach outperforms the standardMPCone that doesn’t consider the hybrid aspect of the system.The paper also shows a behavioral test of the MLDMPC controller against disturbances deemed as liquid leaks from the system.The results are very satisfactory and show that the tracking error is minimal less than 0.1%in nominal conditions and less than 0.6%in the presence of disturbances.Such results confirm the success of the MLD-MPC approach for the control of the HDSs.展开更多
文摘In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy used the robust Fractional-Order(FO)Proportional-Integral(PI)control technique.The FOPI control contains a non-integer order which is preferred over the integer-order control owing to its benefits.It offers extra flexibility in design and demonstrates superior outcomes such as high robustness and effectiveness.The optimal gains of the FOPI controller have been determined using a recent Manta Ray Foraging Optimization(MRFO)algorithm.During the optimization process,the FOPI controller’s parameters are assigned to be the decision variables whereas the objective function is the error racking that to be minimized.To prove the superiority of the MRFO algorithm,an empirical comparison study with the homologous particle swarm optimization and genetic algorithm is achieved.The obtained results proved the superiority of the introduced strategy in tracking and control performances against various conditions such as voltage dips and wind speed variation.
文摘The research on Unmanned Aerial Vehicles(UAV)has intensified considerably thanks to the recent growth in the fields of advanced automatic control,artificial intelligence,and miniaturization.In this paper,a Grey Wolf Optimization(GWO)algorithm is proposed and successfully applied to tune all effective parameters of Fast Terminal Sliding Mode(FTSM)controllers for a quadrotor UAV.A full control scheme is first established to deal with the coupled and underactuated dynamics of the drone.Controllers for altitude,attitude,and position dynamics become separately designed and tuned.To work around the repetitive and time-consuming trial-error-based procedures,all FTSM controllers’parameters for only altitude and attitude dynamics are systematically tuned thanks to the proposed GWO metaheuristic.Such a hard and complex tuning task is formulated as a nonlinear optimization problem under operational constraints.The performance and robustness of the GWO-based control strategy are compared to those based on homologous metaheuristics and standard terminal sliding mode approaches.Numerical simulations are carried out to show the effectiveness and superiority of the proposed GWO-tuned FTSM controllers for the altitude and attitude dynamics’stabilization and tracking.Nonparametric statistical analyses revealed that the GWO algorithm is more competitive with high performance in terms of fastness,non-premature convergence,and research exploration/exploitation capabilities.
文摘This work presents a memetic Shuffled Frog Leaping Algorithm(SFLA)based tuning approach of an Integral Sliding Mode Controller(ISMC)for a quadrotor type of Unmanned Aerial Vehicles(UAV).Based on the Newton–Euler formalism,a nonlinear dynamic model of the studied quadrotor is firstly established for control design purposes.Since the main parameters of the ISMC design are the gains of the sliding surfaces and signum functions of the switching control law,which are usually selected by repetitive and time-consuming trials-errors based procedures,a constrained optimization problem is formulated for the systematically tuning of these unknown variables.Under time-domain operating constraints,such an optimization-based tuning problem is effectively solved using the proposed SFLA metaheuristic with an empirical comparison to other evolutionary computation-and swarm intelligence-based algorithms such as the Crow Search Algorithm(CSA),Fractional Particle Swarm Optimization Memetic Algorithm(FPSOMA),Ant Bee Colony(ABC)and Harmony Search Algorithm(HSA).Numerical experiments are carried out for various sets of algorithms’parameters to achieve optimal gains of the sliding mode controllers for the altitude and attitude dynamics stabilization.Comparative studies revealed that the SFLA is a competitive and easily implemented algorithm with high performance in terms of robustness and non-premature convergence.Demonstrative results verified that the proposed metaheuristicsbased approach is a promising alternative for the systematic tuning of the effective design parameters in the integral sliding mode control framework.
文摘Paths planning of Unmanned Aerial Vehicles(UAVs)in a dynamic environment is considered a challenging task in autonomous flight control design.In this work,an efficient method based on a Multi-Objective MultiVerse Optimization(MOMVO)algorithm is proposed and successfully applied to solve the path planning problem of quadrotors with moving obstacles.Such a path planning task is formulated as a multicriteria optimization problem under operational constraints.The proposed MOMVO-based planning approach aims to lead the drone to traverse the shortest path from the starting point and the target without collision with moving obstacles.The vehicle moves to the next position from its current one such that the line joining minimizes the total path length and allows aligning its direction towards the goal.To choose the best compromise solution among all the non-dominated Pareto ones obtained for compromise objectives,the modified Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)is investigated.A set of homologous metaheuristics such as Multiobjective Salp Swarm Algorithm(MSSA),Multi-Objective Grey Wolf Optimizer(MOGWO),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-Dominated Genetic Algorithm II(NSGAII)is used as a basis for the performance comparison.Demonstrative results and statistical analyses show the superiority and effectiveness of the proposed MOMVO-based planning method.The obtained results are satisfactory and encouraging for future practical implementation of the path planning strategy.
文摘The present paper aims at validating a Model Predictive Control(MPC),based on the Mixed Logical Dynamical(MLD)model,for Hybrid Dynamic Systems(HDSs)that explicitly involve continuous dynamics and discrete events.The proposed benchmark system is a three-tank process,which is a typical case study of HDSs.The MLD-MPC controller is applied to the level control of the considered tank system.The study is initially focused on the MLD approach that allows consideration of the interacting continuous dynamics with discrete events and includes the operating constraints.This feature of MLD modeling is very advantageous when an MPC controller synthesis for the HDSs is designed.Once the MLD model of the system is well-posed,then the MPC law synthesis can be developed based on the Mixed Integer Programming(MIP)optimization problem.For solving this MIP problem,a Branch and Bound(B&B)algorithm is proposed to determine the optimal control inputs.Then,a comparative study is carried out to illustrate the effectiveness of the proposed hybrid controller for the HDSs compared to the standard MPC approach.Performances results show that the MLD-MPC approach outperforms the standardMPCone that doesn’t consider the hybrid aspect of the system.The paper also shows a behavioral test of the MLDMPC controller against disturbances deemed as liquid leaks from the system.The results are very satisfactory and show that the tracking error is minimal less than 0.1%in nominal conditions and less than 0.6%in the presence of disturbances.Such results confirm the success of the MLD-MPC approach for the control of the HDSs.