Engineering diagnosis is essential to the operation of industrial equipment.The key to successful diagnosis is correct knowledge representation and reasoning. The Bayesiannetwork is a powerful tool for it. This paper ...Engineering diagnosis is essential to the operation of industrial equipment.The key to successful diagnosis is correct knowledge representation and reasoning. The Bayesiannetwork is a powerful tool for it. This paper utilizes the Bayesian network to represent and reasondiagnostic knowledge, named Bayesian diagnostic network. It provides a three-layer topologicstructure based on operating conditions, possible faults and corresponding symptoms. The paper alsodiscusses an approximate stochastic sampling algorithm. Then a practical Bayesian network for gasturbine diagnosis is constructed on a platform developed under a Visual C++ environment. It showsthat the Bayesian network is a powerful model for representation and reasoning of diagnosticknowledge. The three-layer structure and the approximate algorithm are effective also.展开更多
文摘Engineering diagnosis is essential to the operation of industrial equipment.The key to successful diagnosis is correct knowledge representation and reasoning. The Bayesiannetwork is a powerful tool for it. This paper utilizes the Bayesian network to represent and reasondiagnostic knowledge, named Bayesian diagnostic network. It provides a three-layer topologicstructure based on operating conditions, possible faults and corresponding symptoms. The paper alsodiscusses an approximate stochastic sampling algorithm. Then a practical Bayesian network for gasturbine diagnosis is constructed on a platform developed under a Visual C++ environment. It showsthat the Bayesian network is a powerful model for representation and reasoning of diagnosticknowledge. The three-layer structure and the approximate algorithm are effective also.