Epilepsy is a type of brain disorder that causes recurrent seizures.It is the second most common neurological disease after Alzheimer’s.The effects of epilepsy in children are serious,since it causes a slower growth ...Epilepsy is a type of brain disorder that causes recurrent seizures.It is the second most common neurological disease after Alzheimer’s.The effects of epilepsy in children are serious,since it causes a slower growth rate and a failure to develop certain skills.In the medical field,specialists record brain activity using an Electroencephalogram(EEG)to observe the epileptic seizures.The detection of these seizures is performed by specialists,but the results might not be accurate due to human errors;therefore,automated detection of epileptic pediatric seizures might be the optimal solution.This paper investigates the detection of epileptic seizures by applying supervised machine learning techniques.The techniques applied on the data of patients with ages seven years and below from children’s hospital boston massachusetts institute of technology(CHB-MIT)scalp EEG database of epileptic pediatric signals.A group of Naïve Bayes(NB),Support vector machine(SVM),Logistic regression(LR),k-nearest neighbor(KNN),Linear discernment(LD),Decision tree(DT),and ensemble learning methods were applied to the classification process.The results demonstrated the outperformance of the present study by achieving 100%for all parameters using the Ensemble learning model in contrast to state-of-the-art studies in the literature.Similarly,the SVM model achieved performance with 98.3%for sensitivity,97.7%for specificity,and 98%for accuracy.The results of the LD and LR models reveal the lower performance i.e.,the sensitivity at 66.9%–68.9%,specificity at 73.5%–77.1%,and accuracy at 70.2%–73%.展开更多
Cloud computing is becoming popular technology due to its functional properties and variety of customer-oriented services over the Internet.The design of reliable and high-quality cloud applications requires a strong ...Cloud computing is becoming popular technology due to its functional properties and variety of customer-oriented services over the Internet.The design of reliable and high-quality cloud applications requires a strong Quality of Service QoS parameter metric.In a hyperconverged cloud ecosystem environment,building high-reliability cloud applications is a challenging job.The selection of cloud services is based on the QoS parameters that play essential roles in optimizing and improving cloud rankings.The emergence of cloud computing is significantly reshaping the digital ecosystem,and the numerous services offered by cloud service providers are playing a vital role in this transformation.Hyperconverged software-based unified utilities combine storage virtualization,compute virtualization,and network virtualization.The availability of the latter has also raised the demand for QoS.Due to the diversity of services,the respective quality parameters are also in abundance and need a carefully designed mechanism to compare and identify the critical,common,and impactful parameters.It is also necessary to reconsider the market needs in terms of service requirements and the QoS provided by various CSPs.This research provides a machine learning-based mechanism to monitor the QoS in a hyperconverged environment with three core service parameters:service quality,downtime of servers,and outage of cloud services.展开更多
Cloud computing is providing IT services to its customer based on Service level agreements(SLAs).It is important for cloud service providers to provide reliable Quality of service(QoS)and to maintain SLAs accountabili...Cloud computing is providing IT services to its customer based on Service level agreements(SLAs).It is important for cloud service providers to provide reliable Quality of service(QoS)and to maintain SLAs accountability.Cloud service providers need to predict possible service violations before the emergence of an issue to perform remedial actions for it.Cloud users’major concerns;the factors for service reliability are based on response time,accessibility,availability,and speed.In this paper,we,therefore,experiment with the parallel mutant-Particle swarm optimization(PSO)for the detection and predictions of QoS violations in terms of response time,speed,accessibility,and availability.This paper also compares Simple-PSO and Parallel MutantPSO.In simulation results,it is observed that the proposed Parallel MutantPSO solution for cloud QoS violation prediction achieves 94%accuracy which is many accurate results and is computationally the fastest technique in comparison of conventional PSO technique.展开更多
Due to unforeseen climate change,complicated chronic diseases,and mutation of viruses’hospital administration’s top challenge is to know about the Length of stay(LOS)of different diseased patients in the hospitals.H...Due to unforeseen climate change,complicated chronic diseases,and mutation of viruses’hospital administration’s top challenge is to know about the Length of stay(LOS)of different diseased patients in the hospitals.Hospital management does not exactly know when the existing patient leaves the hospital;this information could be crucial for hospital management.It could allow them to take more patients for admission.As a result,hospitals face many problems managing available resources and new patients in getting entries for their prompt treatment.Therefore,a robust model needs to be designed to help hospital administration predict patients’LOS to resolve these issues.For this purpose,a very large-sized data(more than 2.3 million patients’data)related to New-York Hospitals patients and containing information about a wide range of diseases including Bone-Marrow,Tuberculosis,Intestinal Transplant,Mental illness,Leukaemia,Spinal cord injury,Trauma,Rehabilitation,Kidney and Alcoholic Patients,HIV Patients,Malignant Breast disorder,Asthma,Respiratory distress syndrome,etc.have been analyzed to predict the LOS.We selected six Machine learning(ML)models named:Multiple linear regression(MLR),Lasso regression(LR),Ridge regression(RR),Decision tree regression(DTR),Extreme gradient boosting regression(XGBR),and Random Forest regression(RFR).The selected models’predictive performance was checked using R square andMean square error(MSE)as the performance evaluation criteria.Our results revealed the superior predictive performance of the RFRmodel,both in terms of RS score(92%)and MSE score(5),among all selected models.By Exploratory data analysis(EDA),we conclude that maximumstay was between 0 to 5 days with the meantime of each patient 5.3 days and more than 50 years old patients spent more days in the hospital.Based on the average LOS,results revealed that the patients with diagnoses related to birth complications spent more days in the hospital than other diseases.This finding could help predict the future length of hospital stay of new patients,which will help the hospital administration estimate and manage their resources efficiently.展开更多
The software engineering field has long focused on creating high-quality software despite limited resources.Detecting defects before the testing stage of software development can enable quality assurance engineers to ...The software engineering field has long focused on creating high-quality software despite limited resources.Detecting defects before the testing stage of software development can enable quality assurance engineers to con-centrate on problematic modules rather than all the modules.This approach can enhance the quality of the final product while lowering development costs.Identifying defective modules early on can allow for early corrections and ensure the timely delivery of a high-quality product that satisfies customers and instills greater confidence in the development team.This process is known as software defect prediction,and it can improve end-product quality while reducing the cost of testing and maintenance.This study proposes a software defect prediction system that utilizes data fusion,feature selection,and ensemble machine learning fusion techniques.A novel filter-based metric selection technique is proposed in the framework to select the optimum features.A three-step nested approach is presented for predicting defective modules to achieve high accuracy.In the first step,three supervised machine learning techniques,including Decision Tree,Support Vector Machines,and Naïve Bayes,are used to detect faulty modules.The second step involves integrating the predictive accuracy of these classification techniques through three ensemble machine-learning methods:Bagging,Voting,and Stacking.Finally,in the third step,a fuzzy logic technique is employed to integrate the predictive accuracy of the ensemble machine learning techniques.The experiments are performed on a fused software defect dataset to ensure that the developed fused ensemble model can perform effectively on diverse datasets.Five NASA datasets are integrated to create the fused dataset:MW1,PC1,PC3,PC4,and CM1.According to the results,the proposed system exhibited superior performance to other advanced techniques for predicting software defects,achieving a remarkable accuracy rate of 92.08%.展开更多
Energy management is an inspiring domain in developing of renewable energy sources.However,the growth of decentralized energy production is revealing an increased complexity for power grid managers,inferring more qual...Energy management is an inspiring domain in developing of renewable energy sources.However,the growth of decentralized energy production is revealing an increased complexity for power grid managers,inferring more quality and reliability to regulate electricity flows and less imbalance between electricity production and demand.The major objective of an energy management system is to achieve optimum energy procurement and utilization throughout the organization,minimize energy costs without affecting production,and minimize environmental effects.Modern energy management is an essential and complex subject because of the excessive consumption in residential buildings,which necessitates energy optimization and increased user comfort.To address the issue of energy management,many researchers have developed various frameworks;while the objective of each framework was to sustain a balance between user comfort and energy consumption,this problem hasn’t been fully solved because of how difficult it is to solve it.An inclusive and Intelligent Energy Management System(IEMS)aims to provide overall energy efficiency regarding increased power generation,increase flexibility,increase renewable generation systems,improve energy consumption,reduce carbon dioxide emissions,improve stability,and reduce energy costs.Machine Learning(ML)is an emerging approach that may be beneficial to predict energy efficiency in a better way with the assistance of the Internet of Energy(IoE)network.The IoE network is playing a vital role in the energy sector for collecting effective data and usage,resulting in smart resource management.In this research work,an IEMS is proposed for Smart Cities(SC)using the ML technique to better resolve the energy management problem.The proposed system minimized the energy consumption with its intelligent nature and provided better outcomes than the previous approaches in terms of 92.11% accuracy,and 7.89% miss-rate.展开更多
Security is a significant issue for everyone due to new and creative ways to commit cybercrime.The Closed-Circuit Television(CCTV)systems are being installed in offices,houses,shopping malls,and on streets to protect ...Security is a significant issue for everyone due to new and creative ways to commit cybercrime.The Closed-Circuit Television(CCTV)systems are being installed in offices,houses,shopping malls,and on streets to protect lives.Operators monitor CCTV;however,it is difficult for a single person to monitor the actions of multiple people at one time.Consequently,there is a dire need for an automated monitoring system that detects a person with ammunition or any other harmful material Based on our research and findings of this study,we have designed a new Intelligent Ammunition Detection and Classification(IADC)system using Convolutional Neural Network(CNN).The proposed system is designed to identify persons carrying weapons and ammunition using CCTV cameras.When weapons are identified,the cameras sound an alarm.In the proposed IADC system,CNN was used to detect firearms and ammunition.The CNN model which is a Deep Learning technique consists of neural networks,most commonly applied to analyzing visual imagery has gained popularity for unstructured(images,videos)data classification.Additionally,this system generates an early warning through detection of ammunition before conditions become critical.Hence the faster and earlier the prediction,the lower the response time,loses and potential victims.The proposed IADC system provides better results than earlier published models like VGGNet,OverFeat-1,OverFeat-2,and OverFeat-3.展开更多
Diabetes mellitus,generally known as diabetes,is one of the most common diseases worldwide.It is a metabolic disease characterized by insulin deciency,or glucose(blood sugar)levels that exceed 200 mg/dL(11.1 ml/L)for ...Diabetes mellitus,generally known as diabetes,is one of the most common diseases worldwide.It is a metabolic disease characterized by insulin deciency,or glucose(blood sugar)levels that exceed 200 mg/dL(11.1 ml/L)for prolonged periods,and may lead to death if left uncontrolled by medication or insulin injections.Diabetes is categorized into two main types—type 1 and type 2—both of which feature glucose levels above“normal,”dened as 140 mg/dL.Diabetes is triggered by malfunction of the pancreas,which releases insulin,a natural hormone responsible for controlling glucose levels in blood cells.Diagnosis and comprehensive analysis of this potentially fatal disease necessitate application of techniques with minimal rates of error.The primary purpose of this research study is to assess the potential role of machine learning in predicting a person’s risk of developing diabetes.Historically,research has supported the use of various machine algorithms,such as naïve Bayes,decision trees,and articial neural networks,for early diagnosis of diabetes.However,to achieve maximum accuracy and minimal error in diagnostic predictions,there remains an immense need for further research and innovation to improve the machine-learning tools and techniques available to healthcare professionals.Therefore,in this paper,we propose a novel cloud-based machine-learning fusion technique involving synthesis of three machine algorithms and use of fuzzy systems for collective generation of highly accurate nal decisions regarding early diagnosis of diabetes.展开更多
Alzheimer’s disease is a severe neuron disease that damages brain cells which leads to permanent loss of memory also called dementia.Many people die due to this disease every year because this is not curable but earl...Alzheimer’s disease is a severe neuron disease that damages brain cells which leads to permanent loss of memory also called dementia.Many people die due to this disease every year because this is not curable but early detection of this disease can help restrain the spread.Alzheimer’s ismost common in elderly people in the age bracket of 65 and above.An automated system is required for early detection of disease that can detect and classify the disease into multiple Alzheimer classes.Deep learning and machine learning techniques are used to solvemanymedical problems like this.The proposed system Alzheimer Disease detection utilizes transfer learning on Multi-class classification using brain Medical resonance imagining(MRI)working to classify the images in four stages,Mild demented(MD),Moderate demented(MOD),Non-demented(ND),Very mild demented(VMD).Simulation results have shown that the proposed systemmodel gives 91.70%accuracy.It also observed that the proposed system gives more accurate results as compared to previous approaches.展开更多
In vehicular systems,driving is considered to be the most complex task,involving many aspects of external sensory skills as well as cognitive intelligence.External skills include the estimation of distance and speed,t...In vehicular systems,driving is considered to be the most complex task,involving many aspects of external sensory skills as well as cognitive intelligence.External skills include the estimation of distance and speed,time perception,visual and auditory perception,attention,the capability to drive safely and action-reaction time.Cognitive intelligence works as an internal mechanism that manages and holds the overall driver’s intelligent system.These cognitive capacities constitute the frontiers for generating adaptive behaviour for dynamic environments.The parameters for understanding intelligent behaviour are knowledge,reasoning,decision making,habit and cognitive skill.Modelling intelligent behaviour reveals that many of these parameters operate simultaneously to enable drivers to react to current situations.Environmental changes prompt the parameter values to change,a process which continues unless and until all processes are completed.This paper model intelligent behaviour by using a‘driver behaviour model’to obtain accurate intelligent driving behaviour patterns.This model works on layering patterns in which hierarchy and coherence are maintained to transfer the data with accuracy from one module to another.These patterns constitute the outcome of different modules that collaborate to generate appropriate values.In this case,accurate patterns were acquired using ANN static and dynamic non-linear autoregressive approach was used and for further accuracy validation,time-series dynamic backpropagation artificial neural network,multilayer perceptron and random sub-space on real-world data were also applied.展开更多
Coronaviruses are a family of viruses that can be transmitted from one person to another.Earlier strains have only been mild viruses,but the current form,known as coronavirus disease 2019(COVID-19),has become a deadly...Coronaviruses are a family of viruses that can be transmitted from one person to another.Earlier strains have only been mild viruses,but the current form,known as coronavirus disease 2019(COVID-19),has become a deadly infection.The outbreak originated in Wuhan,China,and has since spread worldwide.The symptoms of COVID-19 include a dry cough,sore throat,fever,and nasal congestion.Antimicrobial drugs,pathogen–host interaction,and 2 weeks of isolation have been recommended for the treatment of the infection.Safe operating procedures,such as the use of face masks,hand sanitizer,handwashing with soap,and social distancing,are also suggested.Moreover,travel bans for cities,states,and countries have been put in place,along with lockdowns to control the outbreak.Travel restrictions,mask use,sanitizer or soap use,and avoidance of touching the face and nose have produced encouraging results,whereas the effectiveness of antibiotics has not been proved.The results of isolation for the recovery of infected people have also been promising.Travel bans and lockdowns have caused a slump in economies,and unemployment has risen sharply,resulting in an increase in mental health cases globally.To date,vaccines have been developed and are in use in certain countries,but following standard operating procedures remain critical.The countries following the guidelines can eradicate this virus.New Zealand was the rst country to eliminate the virus from their territory.展开更多
This paper presents a handwritten document recognition system based on the convolutional neural network technique.In today’s world,handwritten document recognition is rapidly attaining the attention of researchers du...This paper presents a handwritten document recognition system based on the convolutional neural network technique.In today’s world,handwritten document recognition is rapidly attaining the attention of researchers due to its promising behavior as assisting technology for visually impaired users.This technology is also helpful for the automatic data entry system.In the proposed systemprepared a dataset of English language handwritten character images.The proposed system has been trained for the large set of sample data and tested on the sample images of user-defined handwritten documents.In this research,multiple experiments get very worthy recognition results.The proposed systemwill first performimage pre-processing stages to prepare data for training using a convolutional neural network.After this processing,the input document is segmented using line,word and character segmentation.The proposed system get the accuracy during the character segmentation up to 86%.Then these segmented characters are sent to a convolutional neural network for their recognition.The recognition and segmentation technique proposed in this paper is providing the most acceptable accurate results on a given dataset.The proposed work approaches to the accuracy of the result during convolutional neural network training up to 93%,and for validation that accuracy slightly decreases with 90.42%.展开更多
One of the most difficult jobs in the post-genomic age is identifying a genetic disease from a massive amount of genetic data.Furthermore,the complicated genetic disease has a very diverse genotype,making it challengi...One of the most difficult jobs in the post-genomic age is identifying a genetic disease from a massive amount of genetic data.Furthermore,the complicated genetic disease has a very diverse genotype,making it challenging to find genetic markers.This is a challenging process since it must be completed effectively and efficiently.This research article focuses largely on which patients are more likely to have a genetic disorder based on numerous medical parameters.Using the patient’s medical history,we used a genetic disease prediction algorithm that predicts if the patient is likely to be diagnosed with a genetic disorder.To predict and categorize the patient with a genetic disease,we utilize several deep and machine learning techniques such as Artificial neural network(ANN),K-nearest neighbors(KNN),and Support vector machine(SVM).To enhance the accuracy of predicting the genetic disease in any patient,a highly efficient approach was utilized to control how the model can be used.To predict genetic disease,deep and machine learning approaches are performed.The most productive tool model provides more precise efficiency.The simulation results demonstrate that by using the proposed model with the ANN,we achieve the highest model performance of 85.7%,84.9%,84.3%accuracy of training,testing and validation respectively.This approach will undoubtedly transform genetic disorder prediction and give a real competitive strategy to save patients’lives.展开更多
This research proposes a method called enhanced collaborative andgeometric multi-kernel learning (E-CGMKL) that can enhance the CGMKLalgorithm which deals with multi-class classification problems with non-lineardata d...This research proposes a method called enhanced collaborative andgeometric multi-kernel learning (E-CGMKL) that can enhance the CGMKLalgorithm which deals with multi-class classification problems with non-lineardata distributions. CGMKL combines multiple kernel learning with softmaxfunction using the framework of multi empirical kernel learning (MEKL) inwhich empirical kernel mapping (EKM) provides explicit feature constructionin the high dimensional kernel space. CGMKL ensures the consistent outputof samples across kernel spaces and minimizes the within-class distance tohighlight geometric features of multiple classes. However, the kernels constructed by CGMKL do not have any explicit relationship among them andtry to construct high dimensional feature representations independently fromeach other. This could be disadvantageous for learning on datasets with complex hidden structures. To overcome this limitation, E-CGMKL constructskernel spaces from hidden layers of trained deep neural networks (DNN).Due to the nature of the DNN architecture, these kernel spaces not onlyprovide multiple feature representations but also inherit the compositionalhierarchy of the hidden layers, which might be beneficial for enhancing thepredictive performance of the CGMKL algorithm on complex data withnatural hierarchical structures, for example, image data. Furthermore, ourproposed scheme handles image data by constructing kernel spaces from aconvolutional neural network (CNN). Considering the effectiveness of CNNarchitecture on image data, these kernel spaces provide a major advantageover the CGMKL algorithm which does not exploit the CNN architecture forconstructing kernel spaces from image data. Additionally, outputs of hiddenlayers directly provide features for kernel spaces and unlike CGMKL, do notrequire an approximate MEKL framework. E-CGMKL combines the consistency and geometry preserving aspects of CGMKL with the compositionalhierarchy of kernel spaces extracted from DNN hidden layers to enhance the predictive performance of CGMKL significantly. The experimental results onvarious data sets demonstrate the superior performance of the E-CGMKLalgorithm compared to other competing methods including the benchmarkCGMKL.展开更多
With the advent of state-of-art technologies,the Telecare Medicine Information System(TMIS)now offers fast and convenient healthcare services to patients at their doorsteps.However,this architecture engenders new risk...With the advent of state-of-art technologies,the Telecare Medicine Information System(TMIS)now offers fast and convenient healthcare services to patients at their doorsteps.However,this architecture engenders new risks and challenges to patients'and the server's confidentiality,integrity and security.In order to avoid any resource abuse and malicious attack,employing an authentication scheme is widely considered as the most effective approach for the TMIS to verify the legitimacy of patients and the server.Therefore,several authentication protocols have been proposed to this end.Very recently,Chaudhry et al.identified that there are vulnerabilities of impersonation attacks in Islam et al.'s scheme.Therefore,they introduced an improved protocol to mitigate those security flaws.Later,Qiu et al.proved that these schemes are vulnerable to the man-in-the-middle,impersonation and offline password guessing attacks.Thus,they introduced an improved scheme based on the fuzzy verifier techniques,which overcome all the security flaws of Chaudhry et al.'s scheme.However,there are still some security flaws in Qiu et al.'s protocol.In this article,we prove that Qiu et al.'s protocol has an incorrect notion of perfect user anonymity and is vulnerable to user impersonation attacks.Therefore,we introduce an improved protocol for authentication,which reduces all the security flaws of Qiu et al.'s protocol.We also make a comparison of our protocol with related protocols,which shows that our introduced protocol is more secure and efficient than previous protocols.展开更多
Heart disease,which is also known as cardiovascular disease,includes various conditions that affect the heart and has been considered a major cause of death over the past decades.Accurate and timely detection of heart...Heart disease,which is also known as cardiovascular disease,includes various conditions that affect the heart and has been considered a major cause of death over the past decades.Accurate and timely detection of heart disease is the single key factor for appropriate investigation,treatment,and prescription of medication.Emerging technologies such as fog,cloud,and mobile computing provide substantial support for the diagnosis and prediction of fatal diseases such as diabetes,cancer,and cardiovascular disease.Cloud computing provides a cost-efficient infrastructure for data processing,storage,and retrieval,with much of the extant research recommending machine learning(ML)algorithms for generating models for sample data.ML is considered best suited to explore hidden patterns,which is ultimately helpful for analysis and prediction.Accordingly,this study combines cloud computing with ML,collecting datasets from different geographical areas and applying fusion techniques to maintain data accuracy and consistency for the ML algorithms.Our recommended model considered three ML techniques:Artificial Neural Network,Decision Tree,and Naïve Bayes.Real-time patient data were extracted using the fuzzy-based model stored in the cloud.展开更多
Vehicular ad-hoc networks(VANETs)are mobile networks that use and transfer data with vehicles as the network nodes.Thus,VANETs are essentially mobile ad-hoc networks(MANETs).They allow all the nodes to communicate and...Vehicular ad-hoc networks(VANETs)are mobile networks that use and transfer data with vehicles as the network nodes.Thus,VANETs are essentially mobile ad-hoc networks(MANETs).They allow all the nodes to communicate and connect with one another.One of the main requirements in a VANET is to provide self-decision capability to the vehicles.Cognitive memory,which stores all the previous routes,is used by the vehicles to choose the optimal route.In networks,communication is crucial.In cellular-based vehicle-to-everything(CV2X)communication,vital information is shared using the cooperative awareness message(CAM)that is broadcast by each vehicle.Resources are allocated in a distributed manner,which is known as Mode 4 communication.The support vector machine(SVM)algorithm is used in the SVM-CV2X-M4 system proposed in this study.The k-fold model with different values of k is used to evaluate the accuracy of the SVM-CV2XM4 system.The results show that the proposed system achieves an accuracy of 99.6%.Thus,the proposed system allows vehicles to choose the optimal route and is highly convenient for users.展开更多
Education sector has witnessed several changes in the recent past.These changes have forced private universities into fierce competition with each other to get more students enrolled.This competition has resulted in t...Education sector has witnessed several changes in the recent past.These changes have forced private universities into fierce competition with each other to get more students enrolled.This competition has resulted in the adoption of marketing practices by private universities similar to commercial brands.To get competitive gain,universities must observe and examine the students’feedback on their own social media sites along with the social media sites of their competitors.This study presents a novel framework which integrates numerous analytical approaches including statistical analysis,sentiment analysis,and text mining to accomplish a competitive analysis of social media sites of the universities.These techniques enable local universities to utilize social media for the identification of the most-discussed topics by students as well as based on the most unfavorable comments received,major areas for improvement.A comprehensive case study was conducted utilizing the proposed framework for competitive analysis of few top ranked international universities as well as local private universities in Lahore Pakistan.Experimental results show that diversity of shared content,frequency of posts,and schedule of updates,are the key areas for improvement for the local universities.Based on the competitive intelligence gained several recommendations are included in this paper that would enable local universities generally and Riphah international university(RIU)Lahore specifically to promote their brand and increase their attractiveness for potential students using social media and launch successful marketing campaigns targeting a large number of audiences at significantly reduced cost resulting in an increased number of enrolments.展开更多
Progress in understanding multisensory integration in human have suggested researchers that the integration may result into the enhancement or depression of incoming signals.It is evident based on different psychologi...Progress in understanding multisensory integration in human have suggested researchers that the integration may result into the enhancement or depression of incoming signals.It is evident based on different psychological and behavioral experiments that stimuli coming from different perceptual modalities at the same time or from the same place,the signal having more strength under the influence of emotions effects the response accordingly.Current research inmultisensory integration has not studied the effect of emotions despite its significance and natural influence in multisensory enhancement or depression.Therefore,there is a need to integrate the emotional state of the agent with incoming stimuli for signal enhancement or depression.In this study,two different neural network-based learning algorithms have been employed to learn the impact of emotions on signal enhancement or depression.It was observed that the performance of a proposed system for multisensory integration increases when emotion features were present during enhancement or depression of multisensory signals.展开更多
Energy is essential to practically all exercises and is imperative for the development of personal satisfaction.So,valuable energy has been in great demand for many years,especially for using smart homes and structure...Energy is essential to practically all exercises and is imperative for the development of personal satisfaction.So,valuable energy has been in great demand for many years,especially for using smart homes and structures,as individuals quickly improve their way of life depending on current innovations.However,there is a shortage of energy,as the energy required is higher than that produced.Many new plans are being designed to meet the consumer’s energy requirements.In many regions,energy utilization in the housing area is 30%–40%.The growth of smart homes has raised the requirement for intelligence in applications such as asset management,energy-efficient automation,security,and healthcare monitoring to learn about residents’actions and forecast their future demands.To overcome the challenges of energy consumption optimization,in this study,we apply an energy management technique.Data fusion has recently attracted much energy efficiency in buildings,where numerous types of information are processed.The proposed research developed a data fusion model to predict energy consumption for accuracy and miss rate.The results of the proposed approach are compared with those of the previously published techniques and found that the prediction accuracy of the proposed method is 92%,which is higher than the previously published approaches.展开更多
文摘Epilepsy is a type of brain disorder that causes recurrent seizures.It is the second most common neurological disease after Alzheimer’s.The effects of epilepsy in children are serious,since it causes a slower growth rate and a failure to develop certain skills.In the medical field,specialists record brain activity using an Electroencephalogram(EEG)to observe the epileptic seizures.The detection of these seizures is performed by specialists,but the results might not be accurate due to human errors;therefore,automated detection of epileptic pediatric seizures might be the optimal solution.This paper investigates the detection of epileptic seizures by applying supervised machine learning techniques.The techniques applied on the data of patients with ages seven years and below from children’s hospital boston massachusetts institute of technology(CHB-MIT)scalp EEG database of epileptic pediatric signals.A group of Naïve Bayes(NB),Support vector machine(SVM),Logistic regression(LR),k-nearest neighbor(KNN),Linear discernment(LD),Decision tree(DT),and ensemble learning methods were applied to the classification process.The results demonstrated the outperformance of the present study by achieving 100%for all parameters using the Ensemble learning model in contrast to state-of-the-art studies in the literature.Similarly,the SVM model achieved performance with 98.3%for sensitivity,97.7%for specificity,and 98%for accuracy.The results of the LD and LR models reveal the lower performance i.e.,the sensitivity at 66.9%–68.9%,specificity at 73.5%–77.1%,and accuracy at 70.2%–73%.
文摘Cloud computing is becoming popular technology due to its functional properties and variety of customer-oriented services over the Internet.The design of reliable and high-quality cloud applications requires a strong Quality of Service QoS parameter metric.In a hyperconverged cloud ecosystem environment,building high-reliability cloud applications is a challenging job.The selection of cloud services is based on the QoS parameters that play essential roles in optimizing and improving cloud rankings.The emergence of cloud computing is significantly reshaping the digital ecosystem,and the numerous services offered by cloud service providers are playing a vital role in this transformation.Hyperconverged software-based unified utilities combine storage virtualization,compute virtualization,and network virtualization.The availability of the latter has also raised the demand for QoS.Due to the diversity of services,the respective quality parameters are also in abundance and need a carefully designed mechanism to compare and identify the critical,common,and impactful parameters.It is also necessary to reconsider the market needs in terms of service requirements and the QoS provided by various CSPs.This research provides a machine learning-based mechanism to monitor the QoS in a hyperconverged environment with three core service parameters:service quality,downtime of servers,and outage of cloud services.
文摘Cloud computing is providing IT services to its customer based on Service level agreements(SLAs).It is important for cloud service providers to provide reliable Quality of service(QoS)and to maintain SLAs accountability.Cloud service providers need to predict possible service violations before the emergence of an issue to perform remedial actions for it.Cloud users’major concerns;the factors for service reliability are based on response time,accessibility,availability,and speed.In this paper,we,therefore,experiment with the parallel mutant-Particle swarm optimization(PSO)for the detection and predictions of QoS violations in terms of response time,speed,accessibility,and availability.This paper also compares Simple-PSO and Parallel MutantPSO.In simulation results,it is observed that the proposed Parallel MutantPSO solution for cloud QoS violation prediction achieves 94%accuracy which is many accurate results and is computationally the fastest technique in comparison of conventional PSO technique.
文摘Due to unforeseen climate change,complicated chronic diseases,and mutation of viruses’hospital administration’s top challenge is to know about the Length of stay(LOS)of different diseased patients in the hospitals.Hospital management does not exactly know when the existing patient leaves the hospital;this information could be crucial for hospital management.It could allow them to take more patients for admission.As a result,hospitals face many problems managing available resources and new patients in getting entries for their prompt treatment.Therefore,a robust model needs to be designed to help hospital administration predict patients’LOS to resolve these issues.For this purpose,a very large-sized data(more than 2.3 million patients’data)related to New-York Hospitals patients and containing information about a wide range of diseases including Bone-Marrow,Tuberculosis,Intestinal Transplant,Mental illness,Leukaemia,Spinal cord injury,Trauma,Rehabilitation,Kidney and Alcoholic Patients,HIV Patients,Malignant Breast disorder,Asthma,Respiratory distress syndrome,etc.have been analyzed to predict the LOS.We selected six Machine learning(ML)models named:Multiple linear regression(MLR),Lasso regression(LR),Ridge regression(RR),Decision tree regression(DTR),Extreme gradient boosting regression(XGBR),and Random Forest regression(RFR).The selected models’predictive performance was checked using R square andMean square error(MSE)as the performance evaluation criteria.Our results revealed the superior predictive performance of the RFRmodel,both in terms of RS score(92%)and MSE score(5),among all selected models.By Exploratory data analysis(EDA),we conclude that maximumstay was between 0 to 5 days with the meantime of each patient 5.3 days and more than 50 years old patients spent more days in the hospital.Based on the average LOS,results revealed that the patients with diagnoses related to birth complications spent more days in the hospital than other diseases.This finding could help predict the future length of hospital stay of new patients,which will help the hospital administration estimate and manage their resources efficiently.
基金supported by the Center for Cyber-Physical Systems,Khalifa University,under Grant 8474000137-RC1-C2PS-T5.
文摘The software engineering field has long focused on creating high-quality software despite limited resources.Detecting defects before the testing stage of software development can enable quality assurance engineers to con-centrate on problematic modules rather than all the modules.This approach can enhance the quality of the final product while lowering development costs.Identifying defective modules early on can allow for early corrections and ensure the timely delivery of a high-quality product that satisfies customers and instills greater confidence in the development team.This process is known as software defect prediction,and it can improve end-product quality while reducing the cost of testing and maintenance.This study proposes a software defect prediction system that utilizes data fusion,feature selection,and ensemble machine learning fusion techniques.A novel filter-based metric selection technique is proposed in the framework to select the optimum features.A three-step nested approach is presented for predicting defective modules to achieve high accuracy.In the first step,three supervised machine learning techniques,including Decision Tree,Support Vector Machines,and Naïve Bayes,are used to detect faulty modules.The second step involves integrating the predictive accuracy of these classification techniques through three ensemble machine-learning methods:Bagging,Voting,and Stacking.Finally,in the third step,a fuzzy logic technique is employed to integrate the predictive accuracy of the ensemble machine learning techniques.The experiments are performed on a fused software defect dataset to ensure that the developed fused ensemble model can perform effectively on diverse datasets.Five NASA datasets are integrated to create the fused dataset:MW1,PC1,PC3,PC4,and CM1.According to the results,the proposed system exhibited superior performance to other advanced techniques for predicting software defects,achieving a remarkable accuracy rate of 92.08%.
文摘Energy management is an inspiring domain in developing of renewable energy sources.However,the growth of decentralized energy production is revealing an increased complexity for power grid managers,inferring more quality and reliability to regulate electricity flows and less imbalance between electricity production and demand.The major objective of an energy management system is to achieve optimum energy procurement and utilization throughout the organization,minimize energy costs without affecting production,and minimize environmental effects.Modern energy management is an essential and complex subject because of the excessive consumption in residential buildings,which necessitates energy optimization and increased user comfort.To address the issue of energy management,many researchers have developed various frameworks;while the objective of each framework was to sustain a balance between user comfort and energy consumption,this problem hasn’t been fully solved because of how difficult it is to solve it.An inclusive and Intelligent Energy Management System(IEMS)aims to provide overall energy efficiency regarding increased power generation,increase flexibility,increase renewable generation systems,improve energy consumption,reduce carbon dioxide emissions,improve stability,and reduce energy costs.Machine Learning(ML)is an emerging approach that may be beneficial to predict energy efficiency in a better way with the assistance of the Internet of Energy(IoE)network.The IoE network is playing a vital role in the energy sector for collecting effective data and usage,resulting in smart resource management.In this research work,an IEMS is proposed for Smart Cities(SC)using the ML technique to better resolve the energy management problem.The proposed system minimized the energy consumption with its intelligent nature and provided better outcomes than the previous approaches in terms of 92.11% accuracy,and 7.89% miss-rate.
文摘Security is a significant issue for everyone due to new and creative ways to commit cybercrime.The Closed-Circuit Television(CCTV)systems are being installed in offices,houses,shopping malls,and on streets to protect lives.Operators monitor CCTV;however,it is difficult for a single person to monitor the actions of multiple people at one time.Consequently,there is a dire need for an automated monitoring system that detects a person with ammunition or any other harmful material Based on our research and findings of this study,we have designed a new Intelligent Ammunition Detection and Classification(IADC)system using Convolutional Neural Network(CNN).The proposed system is designed to identify persons carrying weapons and ammunition using CCTV cameras.When weapons are identified,the cameras sound an alarm.In the proposed IADC system,CNN was used to detect firearms and ammunition.The CNN model which is a Deep Learning technique consists of neural networks,most commonly applied to analyzing visual imagery has gained popularity for unstructured(images,videos)data classification.Additionally,this system generates an early warning through detection of ammunition before conditions become critical.Hence the faster and earlier the prediction,the lower the response time,loses and potential victims.The proposed IADC system provides better results than earlier published models like VGGNet,OverFeat-1,OverFeat-2,and OverFeat-3.
文摘Diabetes mellitus,generally known as diabetes,is one of the most common diseases worldwide.It is a metabolic disease characterized by insulin deciency,or glucose(blood sugar)levels that exceed 200 mg/dL(11.1 ml/L)for prolonged periods,and may lead to death if left uncontrolled by medication or insulin injections.Diabetes is categorized into two main types—type 1 and type 2—both of which feature glucose levels above“normal,”dened as 140 mg/dL.Diabetes is triggered by malfunction of the pancreas,which releases insulin,a natural hormone responsible for controlling glucose levels in blood cells.Diagnosis and comprehensive analysis of this potentially fatal disease necessitate application of techniques with minimal rates of error.The primary purpose of this research study is to assess the potential role of machine learning in predicting a person’s risk of developing diabetes.Historically,research has supported the use of various machine algorithms,such as naïve Bayes,decision trees,and articial neural networks,for early diagnosis of diabetes.However,to achieve maximum accuracy and minimal error in diagnostic predictions,there remains an immense need for further research and innovation to improve the machine-learning tools and techniques available to healthcare professionals.Therefore,in this paper,we propose a novel cloud-based machine-learning fusion technique involving synthesis of three machine algorithms and use of fuzzy systems for collective generation of highly accurate nal decisions regarding early diagnosis of diabetes.
文摘Alzheimer’s disease is a severe neuron disease that damages brain cells which leads to permanent loss of memory also called dementia.Many people die due to this disease every year because this is not curable but early detection of this disease can help restrain the spread.Alzheimer’s ismost common in elderly people in the age bracket of 65 and above.An automated system is required for early detection of disease that can detect and classify the disease into multiple Alzheimer classes.Deep learning and machine learning techniques are used to solvemanymedical problems like this.The proposed system Alzheimer Disease detection utilizes transfer learning on Multi-class classification using brain Medical resonance imagining(MRI)working to classify the images in four stages,Mild demented(MD),Moderate demented(MOD),Non-demented(ND),Very mild demented(VMD).Simulation results have shown that the proposed systemmodel gives 91.70%accuracy.It also observed that the proposed system gives more accurate results as compared to previous approaches.
文摘In vehicular systems,driving is considered to be the most complex task,involving many aspects of external sensory skills as well as cognitive intelligence.External skills include the estimation of distance and speed,time perception,visual and auditory perception,attention,the capability to drive safely and action-reaction time.Cognitive intelligence works as an internal mechanism that manages and holds the overall driver’s intelligent system.These cognitive capacities constitute the frontiers for generating adaptive behaviour for dynamic environments.The parameters for understanding intelligent behaviour are knowledge,reasoning,decision making,habit and cognitive skill.Modelling intelligent behaviour reveals that many of these parameters operate simultaneously to enable drivers to react to current situations.Environmental changes prompt the parameter values to change,a process which continues unless and until all processes are completed.This paper model intelligent behaviour by using a‘driver behaviour model’to obtain accurate intelligent driving behaviour patterns.This model works on layering patterns in which hierarchy and coherence are maintained to transfer the data with accuracy from one module to another.These patterns constitute the outcome of different modules that collaborate to generate appropriate values.In this case,accurate patterns were acquired using ANN static and dynamic non-linear autoregressive approach was used and for further accuracy validation,time-series dynamic backpropagation artificial neural network,multilayer perceptron and random sub-space on real-world data were also applied.
文摘Coronaviruses are a family of viruses that can be transmitted from one person to another.Earlier strains have only been mild viruses,but the current form,known as coronavirus disease 2019(COVID-19),has become a deadly infection.The outbreak originated in Wuhan,China,and has since spread worldwide.The symptoms of COVID-19 include a dry cough,sore throat,fever,and nasal congestion.Antimicrobial drugs,pathogen–host interaction,and 2 weeks of isolation have been recommended for the treatment of the infection.Safe operating procedures,such as the use of face masks,hand sanitizer,handwashing with soap,and social distancing,are also suggested.Moreover,travel bans for cities,states,and countries have been put in place,along with lockdowns to control the outbreak.Travel restrictions,mask use,sanitizer or soap use,and avoidance of touching the face and nose have produced encouraging results,whereas the effectiveness of antibiotics has not been proved.The results of isolation for the recovery of infected people have also been promising.Travel bans and lockdowns have caused a slump in economies,and unemployment has risen sharply,resulting in an increase in mental health cases globally.To date,vaccines have been developed and are in use in certain countries,but following standard operating procedures remain critical.The countries following the guidelines can eradicate this virus.New Zealand was the rst country to eliminate the virus from their territory.
文摘This paper presents a handwritten document recognition system based on the convolutional neural network technique.In today’s world,handwritten document recognition is rapidly attaining the attention of researchers due to its promising behavior as assisting technology for visually impaired users.This technology is also helpful for the automatic data entry system.In the proposed systemprepared a dataset of English language handwritten character images.The proposed system has been trained for the large set of sample data and tested on the sample images of user-defined handwritten documents.In this research,multiple experiments get very worthy recognition results.The proposed systemwill first performimage pre-processing stages to prepare data for training using a convolutional neural network.After this processing,the input document is segmented using line,word and character segmentation.The proposed system get the accuracy during the character segmentation up to 86%.Then these segmented characters are sent to a convolutional neural network for their recognition.The recognition and segmentation technique proposed in this paper is providing the most acceptable accurate results on a given dataset.The proposed work approaches to the accuracy of the result during convolutional neural network training up to 93%,and for validation that accuracy slightly decreases with 90.42%.
文摘One of the most difficult jobs in the post-genomic age is identifying a genetic disease from a massive amount of genetic data.Furthermore,the complicated genetic disease has a very diverse genotype,making it challenging to find genetic markers.This is a challenging process since it must be completed effectively and efficiently.This research article focuses largely on which patients are more likely to have a genetic disorder based on numerous medical parameters.Using the patient’s medical history,we used a genetic disease prediction algorithm that predicts if the patient is likely to be diagnosed with a genetic disorder.To predict and categorize the patient with a genetic disease,we utilize several deep and machine learning techniques such as Artificial neural network(ANN),K-nearest neighbors(KNN),and Support vector machine(SVM).To enhance the accuracy of predicting the genetic disease in any patient,a highly efficient approach was utilized to control how the model can be used.To predict genetic disease,deep and machine learning approaches are performed.The most productive tool model provides more precise efficiency.The simulation results demonstrate that by using the proposed model with the ANN,we achieve the highest model performance of 85.7%,84.9%,84.3%accuracy of training,testing and validation respectively.This approach will undoubtedly transform genetic disorder prediction and give a real competitive strategy to save patients’lives.
文摘This research proposes a method called enhanced collaborative andgeometric multi-kernel learning (E-CGMKL) that can enhance the CGMKLalgorithm which deals with multi-class classification problems with non-lineardata distributions. CGMKL combines multiple kernel learning with softmaxfunction using the framework of multi empirical kernel learning (MEKL) inwhich empirical kernel mapping (EKM) provides explicit feature constructionin the high dimensional kernel space. CGMKL ensures the consistent outputof samples across kernel spaces and minimizes the within-class distance tohighlight geometric features of multiple classes. However, the kernels constructed by CGMKL do not have any explicit relationship among them andtry to construct high dimensional feature representations independently fromeach other. This could be disadvantageous for learning on datasets with complex hidden structures. To overcome this limitation, E-CGMKL constructskernel spaces from hidden layers of trained deep neural networks (DNN).Due to the nature of the DNN architecture, these kernel spaces not onlyprovide multiple feature representations but also inherit the compositionalhierarchy of the hidden layers, which might be beneficial for enhancing thepredictive performance of the CGMKL algorithm on complex data withnatural hierarchical structures, for example, image data. Furthermore, ourproposed scheme handles image data by constructing kernel spaces from aconvolutional neural network (CNN). Considering the effectiveness of CNNarchitecture on image data, these kernel spaces provide a major advantageover the CGMKL algorithm which does not exploit the CNN architecture forconstructing kernel spaces from image data. Additionally, outputs of hiddenlayers directly provide features for kernel spaces and unlike CGMKL, do notrequire an approximate MEKL framework. E-CGMKL combines the consistency and geometry preserving aspects of CGMKL with the compositionalhierarchy of kernel spaces extracted from DNN hidden layers to enhance the predictive performance of CGMKL significantly. The experimental results onvarious data sets demonstrate the superior performance of the E-CGMKLalgorithm compared to other competing methods including the benchmarkCGMKL.
文摘With the advent of state-of-art technologies,the Telecare Medicine Information System(TMIS)now offers fast and convenient healthcare services to patients at their doorsteps.However,this architecture engenders new risks and challenges to patients'and the server's confidentiality,integrity and security.In order to avoid any resource abuse and malicious attack,employing an authentication scheme is widely considered as the most effective approach for the TMIS to verify the legitimacy of patients and the server.Therefore,several authentication protocols have been proposed to this end.Very recently,Chaudhry et al.identified that there are vulnerabilities of impersonation attacks in Islam et al.'s scheme.Therefore,they introduced an improved protocol to mitigate those security flaws.Later,Qiu et al.proved that these schemes are vulnerable to the man-in-the-middle,impersonation and offline password guessing attacks.Thus,they introduced an improved scheme based on the fuzzy verifier techniques,which overcome all the security flaws of Chaudhry et al.'s scheme.However,there are still some security flaws in Qiu et al.'s protocol.In this article,we prove that Qiu et al.'s protocol has an incorrect notion of perfect user anonymity and is vulnerable to user impersonation attacks.Therefore,we introduce an improved protocol for authentication,which reduces all the security flaws of Qiu et al.'s protocol.We also make a comparison of our protocol with related protocols,which shows that our introduced protocol is more secure and efficient than previous protocols.
文摘Heart disease,which is also known as cardiovascular disease,includes various conditions that affect the heart and has been considered a major cause of death over the past decades.Accurate and timely detection of heart disease is the single key factor for appropriate investigation,treatment,and prescription of medication.Emerging technologies such as fog,cloud,and mobile computing provide substantial support for the diagnosis and prediction of fatal diseases such as diabetes,cancer,and cardiovascular disease.Cloud computing provides a cost-efficient infrastructure for data processing,storage,and retrieval,with much of the extant research recommending machine learning(ML)algorithms for generating models for sample data.ML is considered best suited to explore hidden patterns,which is ultimately helpful for analysis and prediction.Accordingly,this study combines cloud computing with ML,collecting datasets from different geographical areas and applying fusion techniques to maintain data accuracy and consistency for the ML algorithms.Our recommended model considered three ML techniques:Artificial Neural Network,Decision Tree,and Naïve Bayes.Real-time patient data were extracted using the fuzzy-based model stored in the cloud.
文摘Vehicular ad-hoc networks(VANETs)are mobile networks that use and transfer data with vehicles as the network nodes.Thus,VANETs are essentially mobile ad-hoc networks(MANETs).They allow all the nodes to communicate and connect with one another.One of the main requirements in a VANET is to provide self-decision capability to the vehicles.Cognitive memory,which stores all the previous routes,is used by the vehicles to choose the optimal route.In networks,communication is crucial.In cellular-based vehicle-to-everything(CV2X)communication,vital information is shared using the cooperative awareness message(CAM)that is broadcast by each vehicle.Resources are allocated in a distributed manner,which is known as Mode 4 communication.The support vector machine(SVM)algorithm is used in the SVM-CV2X-M4 system proposed in this study.The k-fold model with different values of k is used to evaluate the accuracy of the SVM-CV2XM4 system.The results show that the proposed system achieves an accuracy of 99.6%.Thus,the proposed system allows vehicles to choose the optimal route and is highly convenient for users.
基金This work was supported by the GRRC program of Gyeonggi province.[GRRC-Gachon2020(B04),Development of AI-based Healthcare Devices].
文摘Education sector has witnessed several changes in the recent past.These changes have forced private universities into fierce competition with each other to get more students enrolled.This competition has resulted in the adoption of marketing practices by private universities similar to commercial brands.To get competitive gain,universities must observe and examine the students’feedback on their own social media sites along with the social media sites of their competitors.This study presents a novel framework which integrates numerous analytical approaches including statistical analysis,sentiment analysis,and text mining to accomplish a competitive analysis of social media sites of the universities.These techniques enable local universities to utilize social media for the identification of the most-discussed topics by students as well as based on the most unfavorable comments received,major areas for improvement.A comprehensive case study was conducted utilizing the proposed framework for competitive analysis of few top ranked international universities as well as local private universities in Lahore Pakistan.Experimental results show that diversity of shared content,frequency of posts,and schedule of updates,are the key areas for improvement for the local universities.Based on the competitive intelligence gained several recommendations are included in this paper that would enable local universities generally and Riphah international university(RIU)Lahore specifically to promote their brand and increase their attractiveness for potential students using social media and launch successful marketing campaigns targeting a large number of audiences at significantly reduced cost resulting in an increased number of enrolments.
基金This work was supported by the GRRC program of Gyeonggi province.[GRRC-Gachon2020(B04),Development of AI-based Healthcare Devices].
文摘Progress in understanding multisensory integration in human have suggested researchers that the integration may result into the enhancement or depression of incoming signals.It is evident based on different psychological and behavioral experiments that stimuli coming from different perceptual modalities at the same time or from the same place,the signal having more strength under the influence of emotions effects the response accordingly.Current research inmultisensory integration has not studied the effect of emotions despite its significance and natural influence in multisensory enhancement or depression.Therefore,there is a need to integrate the emotional state of the agent with incoming stimuli for signal enhancement or depression.In this study,two different neural network-based learning algorithms have been employed to learn the impact of emotions on signal enhancement or depression.It was observed that the performance of a proposed system for multisensory integration increases when emotion features were present during enhancement or depression of multisensory signals.
文摘Energy is essential to practically all exercises and is imperative for the development of personal satisfaction.So,valuable energy has been in great demand for many years,especially for using smart homes and structures,as individuals quickly improve their way of life depending on current innovations.However,there is a shortage of energy,as the energy required is higher than that produced.Many new plans are being designed to meet the consumer’s energy requirements.In many regions,energy utilization in the housing area is 30%–40%.The growth of smart homes has raised the requirement for intelligence in applications such as asset management,energy-efficient automation,security,and healthcare monitoring to learn about residents’actions and forecast their future demands.To overcome the challenges of energy consumption optimization,in this study,we apply an energy management technique.Data fusion has recently attracted much energy efficiency in buildings,where numerous types of information are processed.The proposed research developed a data fusion model to predict energy consumption for accuracy and miss rate.The results of the proposed approach are compared with those of the previously published techniques and found that the prediction accuracy of the proposed method is 92%,which is higher than the previously published approaches.