期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Redundant Data Detection and Deletion to Meet Privacy Protection Requirements in Blockchain-Based Edge Computing Environment
1
作者 Zhang Lejun Peng Minghui +6 位作者 Su Shen Wang Weizheng Jin Zilong Su Yansen Chen Huiling Guo Ran Sergey Gataullin 《China Communications》 SCIE CSCD 2024年第3期149-159,共11页
With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for clou... With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for cloud servers and edge nodes.The storage capacity of edge nodes close to users is limited.We should store hotspot data in edge nodes as much as possible,so as to ensure response timeliness and access hit rate;However,the current scheme cannot guarantee that every sub-message in a complete data stored by the edge node meets the requirements of hot data;How to complete the detection and deletion of redundant data in edge nodes under the premise of protecting user privacy and data dynamic integrity has become a challenging problem.Our paper proposes a redundant data detection method that meets the privacy protection requirements.By scanning the cipher text,it is determined whether each sub-message of the data in the edge node meets the requirements of the hot data.It has the same effect as zero-knowledge proof,and it will not reveal the privacy of users.In addition,for redundant sub-data that does not meet the requirements of hot data,our paper proposes a redundant data deletion scheme that meets the dynamic integrity of the data.We use Content Extraction Signature(CES)to generate the remaining hot data signature after the redundant data is deleted.The feasibility of the scheme is proved through safety analysis and efficiency analysis. 展开更多
关键词 blockchain data integrity edge computing privacy protection redundant data
下载PDF
A Covert Communication Method Using Special Bitcoin Addresses Generated by Vanitygen 被引量:7
2
作者 Lejun Zhang Zhijie Zhang +4 位作者 Weizheng Wang Rasheed Waqas Chunhui Zhao Seokhoon Kim Huiling Chen 《Computers, Materials & Continua》 SCIE EI 2020年第10期597-616,共20页
As an extension of the traditional encryption technology,information hiding has been increasingly used in the fields of communication and network media,and the covert communication technology has gradually developed.T... As an extension of the traditional encryption technology,information hiding has been increasingly used in the fields of communication and network media,and the covert communication technology has gradually developed.The blockchain technology that has emerged in recent years has the characteristics of decentralization and tamper resistance,which can effectively alleviate the disadvantages and problems of traditional covert communication.However,its combination with covert communication thus far has been mostly at the theoretical level.The BLOCCE method,as an early result of the combination of blockchain and covert communication technology,has the problems of low information embedding efficiency,the use of too many Bitcoin addresses,low communication efficiency,and high costs.The present research improved on this method,designed the V-BLOCCE which uses base58 to encrypt the plaintext and reuses the addresses generated by Vanitygen multiple times to embed information.This greatly improves the efficiency of information embedding and decreases the number of Bitcoin addresses used.Under the premise of ensuring the order,the Bitcoin transaction OP_RETURN field is used to store the information required to restore the plaintext and the transactions are issued at the same time to improve the information transmission efficiency.Thus,a more efficient and feasible method for the application of covert communication on the blockchain is proposed.In addition,this paper also provides a more feasible scheme and theoretical support for covert communication in blockchain. 展开更多
关键词 Covert communication blockchain Bitcoin address
下载PDF
Secure and Efficient Data Storage and Sharing Scheme Based on Double Blockchain 被引量:4
3
作者 Lejun Zhang Minghui Peng +3 位作者 Weizheng Wang Yansen Su Shuna Cui Seokhoon Kim 《Computers, Materials & Continua》 SCIE EI 2021年第1期499-515,共17页
In the digital era,electronic medical record(EMR)has been a major way for hospitals to store patients’medical data.The traditional centralized medical system and semi-trusted cloud storage are difficult to achieve dy... In the digital era,electronic medical record(EMR)has been a major way for hospitals to store patients’medical data.The traditional centralized medical system and semi-trusted cloud storage are difficult to achieve dynamic balance between privacy protection and data sharing.The storage capacity of blockchain is limited and single blockchain schemes have poor scalability and low throughput.To address these issues,we propose a secure and efficient medical data storage and sharing scheme based on double blockchain.In our scheme,we encrypt the original EMR and store it in the cloud.The storage blockchain stores the index of the complete EMR,and the shared blockchain stores the index of the shared part of the EMR.Users with different attributes can make requests to different blockchains to share different parts according to their own permissions.Through experiments,it was found that cloud storage combined with blockchain not only solved the problem of limited storage capacity of blockchain,but also greatly reduced the risk of leakage of the original EMR.Content Extraction Signature(CES)combined with the double blockchain technology realized the separation of the privacy part and the shared part of the original EMR.The symmetric encryption technology combined with Ciphertext-Policy Attribute-Based Encryption(CP–ABE)not only ensures the safe storage of data in the cloud,but also achieves the consistency and convenience of data update,avoiding redundant backup of data.Safety analysis and performance analysis verified the feasibility and effectiveness of our scheme. 展开更多
关键词 Cloud storage blockchain electronic medical records access control data sharing PRIVACY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部