The problem of designing a non-fragile delay-dependent H∞ state-feedback controller was investigated for a linear time-delay system with uncertainties in state and control input. First, a recently derived integral in...The problem of designing a non-fragile delay-dependent H∞ state-feedback controller was investigated for a linear time-delay system with uncertainties in state and control input. First, a recently derived integral inequality method and Lyapunov-Krasovskii stability theory were used to derive new delay-dependent bounded real lemmas for a non-fragile state-feedback controller containing additive or multiplicative uncertainties. They ensure that the closed-loop system is internally stable and has a given H∞ disturbance attenuation level. Then, methods of designing a non-fragile H∞ state feedback controller were presented. No parameters need to be tuned and can be easily determined by solving linear matrix inequalities. Finally, the validity of the proposed methods was demonstrated by a numerical example with the asymptotically stable curves of system state and controller output under the initial condition of x(0)=1 0 -1]T and h=0.8 time-delay boundary.展开更多
This paper presents a new distributed positioning algorithm for unknown nodes in a wireless sensor network. The algorithm is based exclusively on connectivity. First, assuming that the positions of the anchor nodes ar...This paper presents a new distributed positioning algorithm for unknown nodes in a wireless sensor network. The algorithm is based exclusively on connectivity. First, assuming that the positions of the anchor nodes are already known, a circular belt containing an unknown node is obtained using information about the anchor nodes that are in radio range of the unknown node, based on the geometric relationships and communication constraints among the unknown node and the anchor nodes. Then, the centroid of the circular belt is taken to be the estimated position of the unknown node. Since the algorithm is very simple and since the only communication needed is between the anchor nodes and the unknown node, the communication and computational loads are very small. Furthermore, the algorithm is robust because neither the failure of old unknown nodes nor the addition of new unknown nodes influences the positioning of unknown nodes to be located. A theoretical analysis and simulation results show that the algorithm does not produce any cumulative error and is insensitive to range error, and that a change in the number of sensor nodes does not affect the communication or computational load. These features make this algorithm suitable for all sizes of low-power wireless sensor networks.展开更多
A design method for controllers and a comprehensive stability analysis for an acrobat based on Lyapunov functions are presented. Three control laws based on three Lyapunov functions are designed to increase the energy...A design method for controllers and a comprehensive stability analysis for an acrobat based on Lyapunov functions are presented. Three control laws based on three Lyapunov functions are designed to increase the energy so as to move the acrobot into the unstable inverted equilibrium position, and solve the problem of posture and energy. The concept of a non-smooth Lyapunov function is employed to analyze the stability of the whole system. The validity of this strategy is demonstrated by simulations.展开更多
This paper discusses H-infinity state feedback control for a networked control system with time-varying delays. Based on the flee-weighing matrix method, a dehy-dependent stability criterion satisfying a prescribed H-...This paper discusses H-infinity state feedback control for a networked control system with time-varying delays. Based on the flee-weighing matrix method, a dehy-dependent stability criterion satisfying a prescribed H-infinity norm bound is presented for an NCS with unknown, time-varying and bounded delays. And then, the criterion is transformed into sufficient conditions based on linear matrix inequalities for H-infinity control. The conditions thus obtained are also used to design an H-infinity state feedback controller. This design method is further extended to solve the design problem of robust H-infinity state feedback control. A numerical example demonstrates the validity of the method.展开更多
This paper addresses the problems of the robust stability and robust stabilization of a discrete-time system with polytopic uncertainties. A new and simple method is presented to directly decouple the Lyapunov matrix ...This paper addresses the problems of the robust stability and robust stabilization of a discrete-time system with polytopic uncertainties. A new and simple method is presented to directly decouple the Lyapunov matrix and the system dynamic matrix. Combining this method with the parameter-dependent Lyapunov function approach yields new criteria that include some existing ones as special cases. A numerical example illustrates the improvement over the existing ones.展开更多
A networked control and supervision system (NCSS) based on LonWorks fieldbus and lntranet/Intemet was designed, which was composed of the universal intelligent control nodes (ICNs), the visual control and supervis...A networked control and supervision system (NCSS) based on LonWorks fieldbus and lntranet/Intemet was designed, which was composed of the universal intelligent control nodes (ICNs), the visual control and supervision configuration platforms (VCCP and VSCP) and an Intranet/Internet-based remote supervision platform (RSP). The ICNs were connected to field devices, such as sensors, actuators and controllers. The VCCP and VSCP were implemented by means of a graphical programming environment and network management so as to simplify the tasks of programming and maintaining the ICNs. The RSP was employed to perform the remote supervision function, which was based on a three-layer browser/server(B/S) structure mode. The validity of the NCSS was demonstrated by laboratory experiments.展开更多
This paper examines the delay-dependent H-infinity control problem for discrete-time linear systems with time-varying state delays and norm-bounded uncertainties. A new inequality for the finite sum of quadratic terms...This paper examines the delay-dependent H-infinity control problem for discrete-time linear systems with time-varying state delays and norm-bounded uncertainties. A new inequality for the finite sum of quadratic terms is first established. Then, some new delay-dependent criteria are derived by employing the new inequality to guarantee the robust stability of a closed-loop system with a prescribed H-infinity norm bound for all admissible uncertainties and bounded time-vary delays. A numerical example demonstrates that the proposed method is an improvement over existing ones.展开更多
LDL-factorization is an efficient way of solving Ax = b for a large symmetric positive definite sparse matrix A. This paper presents a new method that further improves the efficiency of LDL-factorization. It is based ...LDL-factorization is an efficient way of solving Ax = b for a large symmetric positive definite sparse matrix A. This paper presents a new method that further improves the efficiency of LDL-factorization. It is based on the theory of elimination trees for the factorization factor. It breaks the computations involved in LDL-factorization down into two stages: 1) the pattern of nonzero entries of the factor is predicted, and 2) the numerical values of the nonzero entries of the factor are computed. The factor is stored using the form of an elimination tree so as to reduce memory usage and avoid unnecessary numerical operations. The calculation results for some typical numerical examples demonstrate that this method provides a significantly higher calculation efficiency for the one-to-one marketing optimization algorithm.展开更多
At present,Animal Exercise courses rely too much on teachers’subjective ideas in teaching methods and test scores,and there is no set of standards as a benchmark for reference.As a result,students guided by different...At present,Animal Exercise courses rely too much on teachers’subjective ideas in teaching methods and test scores,and there is no set of standards as a benchmark for reference.As a result,students guided by different teachers have an uneven understanding of the Animal Exercise and cannot achieve the expected effect of the course.In this regard,the authors propose a scoring system based on action similarity,which enables teachers to guide students more objectively.The authors created QMonkey,a data set based on the body keys of monkeys in the coco dataset format,which contains 1,428 consecutive images from eight videos.The authors use QMonkey to train a model that recognizes monkey body movements.And the authors propose a new non-standing posture normalization method for motion transfer between monkeys and humans.Finally,the authors utilize motion transfer and structural similarity contrast algorithms to provide a reliable evaluation method for animal exercise courses,eliminating the subjective influence of teachers on scoring and providing experience in the combination of artificial intelligence and drama education.展开更多
The Karvonen formula, which is widely used to estimate exercise intensity, contains maximum heart rate, H Rmax, as a variable. This study employed pedaling experiments to assess which of the proposed formulas for calc...The Karvonen formula, which is widely used to estimate exercise intensity, contains maximum heart rate, H Rmax, as a variable. This study employed pedaling experiments to assess which of the proposed formulas for calculating H Rmaxwas the most suitable for use with the Karvonen formula. First, two kinds of experiments involving an ergometer were performed: an all-in-one-day experiment that tested eight pedaling loads in one day, and a one-load-per-day experiment that tested one load per day for eight days.A comparison of the data on 7 subjects showed that the all-in-one-day type of experiment was better for assessing H Rmaxformulas,at least for the load levels tested in our experiments. A statistical analysis of the experimental data on 47 subjects showed two of the H Rmaxformulas to be suitable for use in the Karvonen formula to estimate exercise intensity for males in their 20 s. In addition, the physical characteristics of a person having the greatest impact on exercise intensity were determined.展开更多
基金Project(60574014) supported by the National Natural Science Foundation of ChinaProject(20050533015) supported by the Doctor Subject Foundation of ChinaProject(60425310) supported by the National Science Foundation for Distinguished Youth Scholars, China
文摘The problem of designing a non-fragile delay-dependent H∞ state-feedback controller was investigated for a linear time-delay system with uncertainties in state and control input. First, a recently derived integral inequality method and Lyapunov-Krasovskii stability theory were used to derive new delay-dependent bounded real lemmas for a non-fragile state-feedback controller containing additive or multiplicative uncertainties. They ensure that the closed-loop system is internally stable and has a given H∞ disturbance attenuation level. Then, methods of designing a non-fragile H∞ state feedback controller were presented. No parameters need to be tuned and can be easily determined by solving linear matrix inequalities. Finally, the validity of the proposed methods was demonstrated by a numerical example with the asymptotically stable curves of system state and controller output under the initial condition of x(0)=1 0 -1]T and h=0.8 time-delay boundary.
基金This work was supported by the National Science Foundation of P.R.China(No.60425310)the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Ministry of Education,P.R.China (TRAPOYT).
文摘This paper presents a new distributed positioning algorithm for unknown nodes in a wireless sensor network. The algorithm is based exclusively on connectivity. First, assuming that the positions of the anchor nodes are already known, a circular belt containing an unknown node is obtained using information about the anchor nodes that are in radio range of the unknown node, based on the geometric relationships and communication constraints among the unknown node and the anchor nodes. Then, the centroid of the circular belt is taken to be the estimated position of the unknown node. Since the algorithm is very simple and since the only communication needed is between the anchor nodes and the unknown node, the communication and computational loads are very small. Furthermore, the algorithm is robust because neither the failure of old unknown nodes nor the addition of new unknown nodes influences the positioning of unknown nodes to be located. A theoretical analysis and simulation results show that the algorithm does not produce any cumulative error and is insensitive to range error, and that a change in the number of sensor nodes does not affect the communication or computational load. These features make this algorithm suitable for all sizes of low-power wireless sensor networks.
基金Project (60425310) supported by the National Science Foundation of China project (2001AA4422200) supported by theTeaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Ministry of Education of China
文摘A design method for controllers and a comprehensive stability analysis for an acrobat based on Lyapunov functions are presented. Three control laws based on three Lyapunov functions are designed to increase the energy so as to move the acrobot into the unstable inverted equilibrium position, and solve the problem of posture and energy. The concept of a non-smooth Lyapunov function is employed to analyze the stability of the whole system. The validity of this strategy is demonstrated by simulations.
文摘This paper discusses H-infinity state feedback control for a networked control system with time-varying delays. Based on the flee-weighing matrix method, a dehy-dependent stability criterion satisfying a prescribed H-infinity norm bound is presented for an NCS with unknown, time-varying and bounded delays. And then, the criterion is transformed into sufficient conditions based on linear matrix inequalities for H-infinity control. The conditions thus obtained are also used to design an H-infinity state feedback controller. This design method is further extended to solve the design problem of robust H-infinity state feedback control. A numerical example demonstrates the validity of the method.
基金This work was supported in part by the Doctor Subject Foundation of China (No. 20050533015)the National Science Foundation of China(No. 60425310,60574014).
文摘This paper addresses the problems of the robust stability and robust stabilization of a discrete-time system with polytopic uncertainties. A new and simple method is presented to directly decouple the Lyapunov matrix and the system dynamic matrix. Combining this method with the parameter-dependent Lyapunov function approach yields new criteria that include some existing ones as special cases. A numerical example illustrates the improvement over the existing ones.
基金Project (60425310) supported by the National Natural Science Foundation of ChinaProject(2006AA04Z172) supported by the High-TechResearch and Development Program of China
文摘A networked control and supervision system (NCSS) based on LonWorks fieldbus and lntranet/Intemet was designed, which was composed of the universal intelligent control nodes (ICNs), the visual control and supervision configuration platforms (VCCP and VSCP) and an Intranet/Internet-based remote supervision platform (RSP). The ICNs were connected to field devices, such as sensors, actuators and controllers. The VCCP and VSCP were implemented by means of a graphical programming environment and network management so as to simplify the tasks of programming and maintaining the ICNs. The RSP was employed to perform the remote supervision function, which was based on a three-layer browser/server(B/S) structure mode. The validity of the NCSS was demonstrated by laboratory experiments.
基金This work was partially supported by the National Science Foundation of China (No. 60425310, 60574014), the Doctor Subject Foundation of China(No. 20050533015) and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Ministryof Education, P. R. China (TRAPOYT).
文摘This paper examines the delay-dependent H-infinity control problem for discrete-time linear systems with time-varying state delays and norm-bounded uncertainties. A new inequality for the finite sum of quadratic terms is first established. Then, some new delay-dependent criteria are derived by employing the new inequality to guarantee the robust stability of a closed-loop system with a prescribed H-infinity norm bound for all admissible uncertainties and bounded time-vary delays. A numerical example demonstrates that the proposed method is an improvement over existing ones.
基金This work was supported in part by the National Natural Science Foundation of PRC (No.60425310)the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE,PRC.
文摘LDL-factorization is an efficient way of solving Ax = b for a large symmetric positive definite sparse matrix A. This paper presents a new method that further improves the efficiency of LDL-factorization. It is based on the theory of elimination trees for the factorization factor. It breaks the computations involved in LDL-factorization down into two stages: 1) the pattern of nonzero entries of the factor is predicted, and 2) the numerical values of the nonzero entries of the factor are computed. The factor is stored using the form of an elimination tree so as to reduce memory usage and avoid unnecessary numerical operations. The calculation results for some typical numerical examples demonstrate that this method provides a significantly higher calculation efficiency for the one-to-one marketing optimization algorithm.
文摘At present,Animal Exercise courses rely too much on teachers’subjective ideas in teaching methods and test scores,and there is no set of standards as a benchmark for reference.As a result,students guided by different teachers have an uneven understanding of the Animal Exercise and cannot achieve the expected effect of the course.In this regard,the authors propose a scoring system based on action similarity,which enables teachers to guide students more objectively.The authors created QMonkey,a data set based on the body keys of monkeys in the coco dataset format,which contains 1,428 consecutive images from eight videos.The authors use QMonkey to train a model that recognizes monkey body movements.And the authors propose a new non-standing posture normalization method for motion transfer between monkeys and humans.Finally,the authors utilize motion transfer and structural similarity contrast algorithms to provide a reliable evaluation method for animal exercise courses,eliminating the subjective influence of teachers on scoring and providing experience in the combination of artificial intelligence and drama education.
基金supported by Health Science Center Foundation,Japan
文摘The Karvonen formula, which is widely used to estimate exercise intensity, contains maximum heart rate, H Rmax, as a variable. This study employed pedaling experiments to assess which of the proposed formulas for calculating H Rmaxwas the most suitable for use with the Karvonen formula. First, two kinds of experiments involving an ergometer were performed: an all-in-one-day experiment that tested eight pedaling loads in one day, and a one-load-per-day experiment that tested one load per day for eight days.A comparison of the data on 7 subjects showed that the all-in-one-day type of experiment was better for assessing H Rmaxformulas,at least for the load levels tested in our experiments. A statistical analysis of the experimental data on 47 subjects showed two of the H Rmaxformulas to be suitable for use in the Karvonen formula to estimate exercise intensity for males in their 20 s. In addition, the physical characteristics of a person having the greatest impact on exercise intensity were determined.