期刊文献+
共找到5,436篇文章
< 1 2 250 >
每页显示 20 50 100
A Review of Artificial Intelligence Applications in Contemporary Computer Network Technologies
1
作者 Ackim Lutepo Kai Zhang 《Communications and Network》 2024年第3期90-107,共18页
Rapid advancement in science and technology has seen computer network technology being upgraded constantly, and computer technology, in particular, has been applied more and more extensively, which has brought conveni... Rapid advancement in science and technology has seen computer network technology being upgraded constantly, and computer technology, in particular, has been applied more and more extensively, which has brought convenience to people’s lives. The number of people using the internet around the globe has also increased significantly, exerting a profound influence on artificial intelligence. Further, the constant upgrading and development of artificial intelligence has led to the continuous innovation and improvement of computer technology. Countries around the world have also registered an increase in investment, paying more attention to artificial intelligence. Through an analysis of the current development situation and the existing applications of artificial intelligence, this paper explicates the role of artificial intelligence in the face of the unceasing expansion of computer network technology. 展开更多
关键词 Artificial Intelligence Network Technology Internet of Things (IoT) CYBERSECURITY Mobile Communication
下载PDF
Thermo-hydro-poro-mechanical responses of a reservoir-induced landslide tracked by high-resolution fiber optic sensing nerves 被引量:3
2
作者 Xiao Ye Hong-Hu Zhu +4 位作者 Gang Cheng Hua-Fu Pei Bin Shi Luca Schenato Alessandro Pasuto 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1018-1032,共15页
Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond th... Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system. 展开更多
关键词 Reservoir landslide Thermo-hydro-poro-mechanical response Ultra-weak fiber bragg grating(UWFBG) subsurface evolution Engineering geological interface Geotechnical monitoring
下载PDF
A Review of Hybrid Cyber Threats Modelling and Detection Using Artificial Intelligence in IIoT 被引量:1
3
作者 Yifan Liu Shancang Li +1 位作者 Xinheng Wang Li Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1233-1261,共29页
The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated... The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats. 展开更多
关键词 Cyber security Industrial Internet of Things artificial intelligence machine learning algorithms hybrid cyber threats
下载PDF
Robust and Trustworthy Data Sharing Framework Leveraging On-Chain and Off-Chain Collaboration 被引量:1
4
作者 Jinyang Yu Xiao Zhang +4 位作者 Jinjiang Wang Yuchen Zhang Yulong Shi Linxuan Su Leijie Zeng 《Computers, Materials & Continua》 SCIE EI 2024年第2期2159-2179,共21页
The proliferation of Internet of Things(IoT)systems has resulted in the generation of substantial data,presenting new challenges in reliable storage and trustworthy sharing.Conventional distributed storage systems are... The proliferation of Internet of Things(IoT)systems has resulted in the generation of substantial data,presenting new challenges in reliable storage and trustworthy sharing.Conventional distributed storage systems are hindered by centralized management and lack traceability,while blockchain systems are limited by low capacity and high latency.To address these challenges,the present study investigates the reliable storage and trustworthy sharing of IoT data,and presents a novel system architecture that integrates on-chain and off-chain data manage systems.This architecture,integrating blockchain and distributed storage technologies,provides high-capacity,high-performance,traceable,and verifiable data storage and access.The on-chain system,built on Hyperledger Fabric,manages metadata,verification data,and permission information of the raw data.The off-chain system,implemented using IPFS Cluster,ensures the reliable storage and efficient access to massive files.A collaborative storage server is designed to integrate on-chain and off-chain operation interfaces,facilitating comprehensive data operations.We provide a unified access interface for user-friendly system interaction.Extensive testing validates the system’s reliability and stable performance.The proposed approach significantly enhances storage capacity compared to standalone blockchain systems.Rigorous reliability tests consistently yield positive outcomes.With average upload and download throughputs of roughly 20 and 30 MB/s,respectively,the system’s throughput surpasses the blockchain system by a factor of 4 to 18. 展开更多
关键词 On-chain and off-chain collaboration blockchain distributed storage system hyperledger fabric IPFS cluster
下载PDF
A Blockchain and CP-ABE Based Access Control Scheme with Fine-Grained Revocation of Attributes in Cloud Health 被引量:1
5
作者 Ye Lu Tao Feng +1 位作者 Chunyan Liu Wenbo Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第2期2787-2811,共25页
The Access control scheme is an effective method to protect user data privacy.The access control scheme based on blockchain and ciphertext policy attribute encryption(CP–ABE)can solve the problems of single—point of... The Access control scheme is an effective method to protect user data privacy.The access control scheme based on blockchain and ciphertext policy attribute encryption(CP–ABE)can solve the problems of single—point of failure and lack of trust in the centralized system.However,it also brings new problems to the health information in the cloud storage environment,such as attribute leakage,low consensus efficiency,complex permission updates,and so on.This paper proposes an access control scheme with fine-grained attribute revocation,keyword search,and traceability of the attribute private key distribution process.Blockchain technology tracks the authorization of attribute private keys.The credit scoring method improves the Raft protocol in consensus efficiency.Besides,the interplanetary file system(IPFS)addresses the capacity deficit of blockchain.Under the premise of hiding policy,the research proposes a fine-grained access control method based on users,user attributes,and file structure.It optimizes the data-sharing mode.At the same time,Proxy Re-Encryption(PRE)technology is used to update the access rights.The proposed scheme proved to be secure.Comparative analysis and experimental results show that the proposed scheme has higher efficiency and more functions.It can meet the needs of medical institutions. 展开更多
关键词 Blockchain access-control CP-ABE cloud health
下载PDF
Exploiting Data Science for Measuring the Performance of Technology Stocks
6
作者 Tahir Sher Abdul Rehman +1 位作者 Dongsun Kim Imran Ihsan 《Computers, Materials & Continua》 SCIE EI 2023年第9期2979-2995,共17页
The rise or fall of the stock markets directly affects investors’interest and loyalty.Therefore,it is necessary to measure the performance of stocks in the market in advance to prevent our assets from suffering signi... The rise or fall of the stock markets directly affects investors’interest and loyalty.Therefore,it is necessary to measure the performance of stocks in the market in advance to prevent our assets from suffering significant losses.In our proposed study,six supervised machine learning(ML)strategies and deep learning(DL)models with long short-term memory(LSTM)of data science was deployed for thorough analysis and measurement of the performance of the technology stocks.Under discussion are Apple Inc.(AAPL),Microsoft Corporation(MSFT),Broadcom Inc.,Taiwan Semiconductor Manufacturing Company Limited(TSM),NVIDIA Corporation(NVDA),and Avigilon Corporation(AVGO).The datasets were taken from the Yahoo Finance API from 06-05-2005 to 06-05-2022(seventeen years)with 4280 samples.As already noted,multiple studies have been performed to resolve this problem using linear regression,support vectormachines,deep long short-termmemory(LSTM),and many other models.In this research,the Hidden Markov Model(HMM)outperformed other employed machine learning ensembles,tree-based models,the ARIMA(Auto Regressive IntegratedMoving Average)model,and long short-term memory with a robust mean accuracy score of 99.98.Other statistical analyses and measurements for machine learning ensemble algorithms,the Long Short-TermModel,and ARIMA were also carried out for further investigation of the performance of advanced models for forecasting time series data.Thus,the proposed research found the best model to be HMM,and LSTM was the second-best model that performed well in all aspects.A developedmodel will be highly recommended and helpful for early measurement of technology stock performance for investment or withdrawal based on the future stock rise or fall for creating smart environments. 展开更多
关键词 Machine learning data science smart environments stocks movement deep learning stock marketing
下载PDF
Recognition of mortar pumpability via computer vision and deep learning
7
作者 Hao-Zhe Feng Hong-Yang Yu +2 位作者 Wen-Yong Wang Wen-Xuan Wang Ming-Qian Du 《Journal of Electronic Science and Technology》 EI CAS CSCD 2023年第3期73-81,共9页
The mortar pumpability is essential in the construction industry,which requires much labor to estimate manually and always causes material waste.This paper proposes an effective method by combining a 3-dimensional con... The mortar pumpability is essential in the construction industry,which requires much labor to estimate manually and always causes material waste.This paper proposes an effective method by combining a 3-dimensional convolutional neural network(3D CNN)with a 2-dimensional convolutional long short-term memory network(ConvLSTM2D)to automatically classify the mortar pumpability.Experiment results show that the proposed model has an accuracy rate of 100%with a fast convergence speed,based on the dataset organized by collecting the corresponding mortar image sequences.This work demonstrates the feasibility of using computer vision and deep learning for mortar pumpability classification. 展开更多
关键词 Classification Computer vision Deep learning PUMPABILITY 2-dimensional convolutional long short-term memory network (ConvLSTM2D) 3-dimensional convolutional neural network(3D CNN)
下载PDF
Evolution and Prospects of Foundation Models: From Large Language Models to Large Multimodal Models 被引量:1
8
作者 Zheyi Chen Liuchang Xu +5 位作者 Hongting Zheng Luyao Chen Amr Tolba Liang Zhao Keping Yu Hailin Feng 《Computers, Materials & Continua》 SCIE EI 2024年第8期1753-1808,共56页
Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the ... Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the last two decades.Recently,transformer-based Pre-trained Language Models(PLM)have excelled in Natural Language Processing(NLP)tasks by leveraging large-scale training corpora.Increasing the scale of these models enhances performance significantly,introducing abilities like context learning that smaller models lack.The advancement in Large Language Models,exemplified by the development of ChatGPT,has made significant impacts both academically and industrially,capturing widespread societal interest.This survey provides an overview of the development and prospects from Large Language Models(LLM)to Large Multimodal Models(LMM).It first discusses the contributions and technological advancements of LLMs in the field of natural language processing,especially in text generation and language understanding.Then,it turns to the discussion of LMMs,which integrates various data modalities such as text,images,and sound,demonstrating advanced capabilities in understanding and generating cross-modal content,paving new pathways for the adaptability and flexibility of AI systems.Finally,the survey highlights the prospects of LMMs in terms of technological development and application potential,while also pointing out challenges in data integration,cross-modal understanding accuracy,providing a comprehensive perspective on the latest developments in this field. 展开更多
关键词 Artificial intelligence large language models large multimodal models foundation models
下载PDF
Sustainable Mining in the Era of Artificial Intelligence 被引量:1
9
作者 Long Chen Yuting Xie +2 位作者 Yutong Wang Shirong Ge Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期1-4,共4页
The mining sector historically drove the global economy but at the expense of severe environmental and health repercussions,posing sustainability challenges[1]-[3].Recent advancements on artificial intelligence(AI)are... The mining sector historically drove the global economy but at the expense of severe environmental and health repercussions,posing sustainability challenges[1]-[3].Recent advancements on artificial intelligence(AI)are revolutionizing mining through robotic and data-driven innovations[4]-[7].While AI offers mining industry advantages,it is crucial to acknowledge the potential risks associated with its widespread use.Over-reliance on AI may lead to a loss of human control over mining operations in the future,resulting in unpredictable consequences. 展开更多
关键词 SUSTAINABLE MINING consequences
下载PDF
Research on Automatic Elimination of Laptop Computer in Security CT Images Based on Projection Algorithm and YOLOv7-Seg
10
作者 Fei Wang Baosheng Liu +1 位作者 Yijun Tang Lei Zhao 《Journal of Computer and Communications》 2023年第9期1-17,共17页
In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to in... In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to individually present their laptops for inspection. The paper introduced a method for laptop removal. By combining projection algorithms with the YOLOv7-Seg model, a laptop’s three views were generated through projection, and instance segmentation of these views was achieved using YOLOv7-Seg. The resulting 2D masks from instance segmentation at different angles were employed to reconstruct a 3D mask through angle restoration. Ultimately, the intersection of this 3D mask with the original 3D data enabled the successful extraction of the laptop’s 3D information. Experimental results demonstrated that the fusion of projection and instance segmentation facilitated the automatic removal of laptops from CT data. Moreover, higher instance segmentation model accuracy leads to more precise removal outcomes. By implementing the laptop removal functionality, the civil aviation security screening process becomes more efficient and convenient. Passengers will no longer be required to individually handle their laptops, effectively enhancing the efficiency and accuracy of security screening. 展开更多
关键词 Instance Segmentation PROJECTION CT Image 3D Segmentation Real-Time Detection
下载PDF
A Privacy Preservation Method for Attributed Social Network Based on Negative Representation of Information
11
作者 Hao Jiang Yuerong Liao +2 位作者 Dongdong Zhao Wenjian Luo Xingyi Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1045-1075,共31页
Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself disc... Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components. 展开更多
关键词 Attributed social network topology privacy node attribute privacy negative representation of information negative survey negative database
下载PDF
Analysis and Modeling of Mobile Phone Activity Data Using Interactive Cyber-Physical Social System
12
作者 Farhan Amin Gyu Sang Choi 《Computers, Materials & Continua》 SCIE EI 2024年第9期3507-3521,共15页
Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community.The call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the ... Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community.The call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the mobile user’s behavior.It is evident from the recent literature that cyber-physical systems(CPS)were used in the analytics and modeling of telecom data.In addition,CPS is used to provide valuable services in smart cities.In general,a typical telecom company hasmillions of subscribers and thus generatesmassive amounts of data.From this aspect,data storage,analysis,and processing are the key concerns.To solve these issues,herein we propose a multilevel cyber-physical social system(CPSS)for the analysis and modeling of large internet data.Our proposed multilevel system has three levels and each level has a specific functionality.Initially,raw Call Detail Data(CDR)was collected at the first level.Herein,the data preprocessing,cleaning,and error removal operations were performed.In the second level,data processing,cleaning,reduction,integration,processing,and storage were performed.Herein,suggested internet activity record measures were applied.Our proposed system initially constructs a graph and then performs network analysis.Thus proposed CPSS system accurately identifies different areas of internet peak usage in a city(Milan city).Our research is helpful for the network operators to plan effective network configuration,management,and optimization of resources. 展开更多
关键词 Cyber-physical social systems big data cyber-physical systems pervasive computing smart city big data management techniques
下载PDF
Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction
13
作者 Sureka Sivavelu Venkatesh Palanisamy 《Computers, Materials & Continua》 SCIE EI 2024年第3期3469-3487,共19页
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w... The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods. 展开更多
关键词 Software defect prediction feature selection nonparametric statistical Torgerson-Gower scaling technique quadratic censored regressive convolution deep neural network softstep activation function nelder-mead method
下载PDF
Dynamics modeling and optimal control for multi-information diffusion in Social Internet of Things
14
作者 Yaguang Lin Xiaoming Wang +1 位作者 Liang Wang Pengfei Wan 《Digital Communications and Networks》 SCIE CSCD 2024年第3期655-665,共11页
As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for... As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method. 展开更多
关键词 Social Internet of Things Information diffusion Dynamics modeling Trend prediction Optimal control
下载PDF
Computation Tree Logic Model Checking of Multi-Agent Systems Based on Fuzzy Epistemic Interpreted Systems
15
作者 Xia Li Zhanyou Ma +3 位作者 Zhibao Mian Ziyuan Liu Ruiqi Huang Nana He 《Computers, Materials & Continua》 SCIE EI 2024年第3期4129-4152,共24页
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s... Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system. 展开更多
关键词 Model checking multi-agent systems fuzzy epistemic interpreted systems fuzzy computation tree logic transformation algorithm
下载PDF
Detection and Diagnosis of Small Target Breast Masses Based on Convolutional Neural Networks
16
作者 Ling Tan Ying Liang +2 位作者 Jingming Xia Hui Wu Jining Zhu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第5期1524-1539,共16页
Breast mass identification is of great significance for early screening of breast cancer,while the existing detection methods have high missed and misdiagnosis rate for small masses.We propose a small target breast ma... Breast mass identification is of great significance for early screening of breast cancer,while the existing detection methods have high missed and misdiagnosis rate for small masses.We propose a small target breast mass detection network named Residual asymmetric dilated convolution-Cross layer attention-Mean standard deviation adaptive selection-You Only Look Once(RCM-YOLO),which improves the identifiability of small masses by increasing the resolution of feature maps,adopts residual asymmetric dilated convolution to expand the receptive field and optimize the amount of parameters,and proposes the cross-layer attention that transfers the deep semantic information to the shallow layer as auxiliary information to obtain key feature locations.In the training process,we propose an adaptive positive sample selection algorithm to automatically select positive samples,which considers the statistical features of the intersection over union sets to ensure the validity of the training set and the detection accuracy of the model.To verify the performance of our model,we used public datasets to carry out the experiments.The results showed that the mean Average Precision(mAP)of RCM-YOLO reached 90.34%,compared with YOLOv5,the missed detection rate for small masses of RCM-YOLO was reduced to 11%,and the single detection time was reduced to 28 ms.The detection accuracy and speed can be effectively improved by strengthening the feature expression of small masses and the relationship between features.Our method can help doctors in batch screening of breast images,and significantly promote the detection rate of small masses and reduce misdiagnosis. 展开更多
关键词 mammography diagnosis mass detection deep learning cross-layer attention adaptive positive sample selection
原文传递
Suitability of SDN and MEC to facilitate digital twin communication over LTE-A
17
作者 Hikmat Adhami Mohammad Alja’afreh +3 位作者 Mohamed Hoda Jiaqi Zhao Yong Zhou Abdulmotaleb El Saddik 《Digital Communications and Networks》 SCIE CSCD 2024年第2期347-354,共8页
Haptic is the modality that complements traditional multimedia,i.e.,audiovisual,to evolve the next wave of innovation at which the Internet data stream can be exchanged to enable remote skills and control applications... Haptic is the modality that complements traditional multimedia,i.e.,audiovisual,to evolve the next wave of innovation at which the Internet data stream can be exchanged to enable remote skills and control applications.This will require ultra-low latency and ultra-high reliability to evolve the mobile experience into the era of Digital Twin and Tactile Internet.While the 5th generation of mobile networks is not yet widely deployed,Long-Term Evolution(LTE-A)latency remains much higher than the 1 ms requirement for the Tactile Internet and therefore the Digital Twin.This work investigates an interesting solution based on the incorporation of Software-defined networking(SDN)and Multi-access Mobile Edge Computing(MEC)technologies in an LTE-A network,to deliver future multimedia applications over the Tactile Internet while overcoming the QoS challenges.Several network scenarios were designed and simulated using Riverbed modeler and the performance was evaluated using several time-related Key Performance Indicators(KPIs)such as throughput,End-2-End(E2E)delay,and jitter.The best scenario possible is clearly the one integrating MEC and SDN approaches,where the overall delay,jitter,and throughput for haptics-attained 2 ms,0.01 ms,and 1000 packets per second.The results obtained give clear evidence that the integration of,both SDN and MEC,in LTE-A indicates performance improvement,and fulfills the standard requirements in terms of the above KPIs,for realizing a Digital Twin/Tactile Internet-based system. 展开更多
关键词 LTE-A 5G Digital twin Tactile Internet KPIs SDN MEC NFV Haptic
下载PDF
Terrorism Attack Classification Using Machine Learning: The Effectiveness of Using Textual Features Extracted from GTD Dataset
18
作者 Mohammed Abdalsalam Chunlin Li +1 位作者 Abdelghani Dahou Natalia Kryvinska 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1427-1467,共41页
One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelli... One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelligence (AI) havebecome the basis for making strategic decisions in many sensitive areas, such as fraud detection, risk management,medical diagnosis, and counter-terrorism. However, there is still a need to assess how terrorist attacks are related,initiated, and detected. For this purpose, we propose a novel framework for classifying and predicting terroristattacks. The proposed framework posits that neglected text attributes included in the Global Terrorism Database(GTD) can influence the accuracy of the model’s classification of terrorist attacks, where each part of the datacan provide vital information to enrich the ability of classifier learning. Each data point in a multiclass taxonomyhas one or more tags attached to it, referred as “related tags.” We applied machine learning classifiers to classifyterrorist attack incidents obtained from the GTD. A transformer-based technique called DistilBERT extracts andlearns contextual features from text attributes to acquiremore information from text data. The extracted contextualfeatures are combined with the “key features” of the dataset and used to perform the final classification. Thestudy explored different experimental setups with various classifiers to evaluate the model’s performance. Theexperimental results show that the proposed framework outperforms the latest techniques for classifying terroristattacks with an accuracy of 98.7% using a combined feature set and extreme gradient boosting classifier. 展开更多
关键词 Artificial intelligence machine learning natural language processing data analytic DistilBERT feature extraction terrorism classification GTD dataset
下载PDF
Effect of strain on structure and electronic properties of monolayer C_(4)N_(4)
19
作者 陈昊 徐瑛 +1 位作者 赵家石 周丹 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期595-600,共6页
The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to atte... The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to attenuate shuttle effect in Li–S batteries stemming from its large absorption energy and low diffusion energy barrier.Our results show that the ideal strengths of C_(4)N_(4)under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28,respectively.The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C_(4)N_(4).The orderly bond-rearranging behaviors under the weak tensile loading path along the[100]direction cause the impressive semiconductor–metal transition and inverse semiconductor–metal transition.The present results enrich the knowledge of the structure and electronic properties of C_(4)N_(4)under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions. 展开更多
关键词 two-dimensional materials strain effect structural evolution electronic properties
下载PDF
A Systematic Review and Performance Evaluation of Open-Source Tools for Smart Contract Vulnerability Detection
20
作者 Yaqiong He Jinlin Fan Huaiguang Wu 《Computers, Materials & Continua》 SCIE EI 2024年第7期995-1032,共38页
With the rise of blockchain technology,the security issues of smart contracts have become increasingly critical.Despite the availability of numerous smart contract vulnerability detection tools,many face challenges su... With the rise of blockchain technology,the security issues of smart contracts have become increasingly critical.Despite the availability of numerous smart contract vulnerability detection tools,many face challenges such as slow updates,usability issues,and limited installation methods.These challenges hinder the adoption and practicality of these tools.This paper examines smart contract vulnerability detection tools from 2016 to 2023,sourced from the Web of Science(WOS)and Google Scholar.By systematically collecting,screening,and synthesizing relevant research,38 open-source tools that provide installation methods were selected for further investigation.From a developer’s perspective,this paper offers a comprehensive survey of these 38 open-source tools,discussing their operating principles,installation methods,environmental dependencies,update frequencies,and installation challenges.Based on this,we propose an Ethereum smart contract vulnerability detection framework.This framework enables developers to easily utilize various detection tools and accurately analyze contract security issues.To validate the framework’s stability,over 1700 h of testing were conducted.Additionally,a comprehensive performance test was performed on the mainstream detection tools integrated within the framework,assessing their hardware requirements and vulnerability detection coverage.Experimental results indicate that the Slither tool demonstrates satisfactory performance in terms of system resource consumption and vulnerability detection coverage.This study represents the first performance evaluation of testing tools in this domain,providing significant reference value. 展开更多
关键词 Blockchain security ethereum smart contracts detection tools evaluation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部