期刊文献+
共找到100篇文章
< 1 2 5 >
每页显示 20 50 100
A Review of Lightweight Security and Privacy for Resource-Constrained IoT Devices
1
作者 Sunil Kumar Dilip Kumar +3 位作者 Ramraj Dangi Gaurav Choudhary Nicola Dragoni Ilsun You 《Computers, Materials & Continua》 SCIE EI 2024年第1期31-63,共33页
The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There ... The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There are several hurdles to overcome when putting IoT into practice,from managing server infrastructure to coordinating the use of tiny sensors.When it comes to deploying IoT,everyone agrees that security is the biggest issue.This is due to the fact that a large number of IoT devices exist in the physicalworld and thatmany of themhave constrained resources such as electricity,memory,processing power,and square footage.This research intends to analyse resource-constrained IoT devices,including RFID tags,sensors,and smart cards,and the issues involved with protecting them in such restricted circumstances.Using lightweight cryptography,the information sent between these gadgets may be secured.In order to provide a holistic picture,this research evaluates and contrasts well-known algorithms based on their implementation cost,hardware/software efficiency,and attack resistance features.We also emphasised how essential lightweight encryption is for striking a good cost-to-performance-to-security ratio. 展开更多
关键词 IOT a sensor device LIGHTWEIGHT CRYPTOGRAPHY block cipher smart card security and privacy
下载PDF
Classification and Comprehension of Software Requirements Using Ensemble Learning
2
作者 Jalil Abbas Arshad Ahmad +4 位作者 Syed Muqsit Shaheed Rubia Fatima Sajid Shah Mohammad Elaffendi Gauhar Ali 《Computers, Materials & Continua》 SCIE EI 2024年第8期2839-2855,共17页
The software development process mostly depends on accurately identifying both essential and optional features.Initially,user needs are typically expressed in free-form language,requiring significant time and human re... The software development process mostly depends on accurately identifying both essential and optional features.Initially,user needs are typically expressed in free-form language,requiring significant time and human resources to translate these into clear functional and non-functional requirements.To address this challenge,various machine learning(ML)methods have been explored to automate the understanding of these requirements,aiming to reduce time and human effort.However,existing techniques often struggle with complex instructions and large-scale projects.In our study,we introduce an innovative approach known as the Functional and Non-functional Requirements Classifier(FNRC).By combining the traditional random forest algorithm with the Accuracy Sliding Window(ASW)technique,we develop optimal sub-ensembles that surpass the initial classifier’s accuracy while using fewer trees.Experimental results demonstrate that our FNRC methodology performs robustly across different datasets,achieving a balanced Precision of 75%on the PROMISE dataset and an impressive Recall of 85%on the CCHIT dataset.Both datasets consistently maintain an F-measure around 64%,highlighting FNRC’s ability to effectively balance precision and recall in diverse scenarios.These findings contribute to more accurate and efficient software development processes,increasing the probability of achieving successful project outcomes. 展开更多
关键词 Ensemble learning machine learning non-functional requirements requirement engineering accuracy sliding window
下载PDF
An Implementation of Multiscale Line Detection and Mathematical Morphology for Efficient and Precise Blood Vessel Segmentation in Fundus Images
3
作者 Syed Ayaz Ali Shah Aamir Shahzad +4 位作者 Musaed Alhussein Chuan Meng Goh Khursheed Aurangzeb Tong Boon Tang Muhammad Awais 《Computers, Materials & Continua》 SCIE EI 2024年第5期2565-2583,共19页
Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when deal... Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when dealing with color fundus images due to issues like non-uniformillumination,low contrast,and variations in vessel appearance,especially in the presence of different pathologies.Furthermore,the speed of the retinal vessel segmentation system is of utmost importance.With the surge of now available big data,the speed of the algorithm becomes increasingly important,carrying almost equivalent weightage to the accuracy of the algorithm.To address these challenges,we present a novel approach for retinal vessel segmentation,leveraging efficient and robust techniques based on multiscale line detection and mathematical morphology.Our algorithm’s performance is evaluated on two publicly available datasets,namely the Digital Retinal Images for Vessel Extraction dataset(DRIVE)and the Structure Analysis of Retina(STARE)dataset.The experimental results demonstrate the effectiveness of our method,withmean accuracy values of 0.9467 forDRIVE and 0.9535 for STARE datasets,aswell as sensitivity values of 0.6952 forDRIVE and 0.6809 for STARE datasets.Notably,our algorithmexhibits competitive performance with state-of-the-art methods.Importantly,it operates at an average speed of 3.73 s per image for DRIVE and 3.75 s for STARE datasets.It is worth noting that these results were achieved using Matlab scripts containing multiple loops.This suggests that the processing time can be further reduced by replacing loops with vectorization.Thus the proposed algorithm can be deployed in real time applications.In summary,our proposed system strikes a fine balance between swift computation and accuracy that is on par with the best available methods in the field. 展开更多
关键词 Line detector vessel detection LOCALIZATION mathematical morphology image processing
下载PDF
Intelligent Traffic Scheduling for Mobile Edge Computing in IoT via Deep Learning 被引量:1
4
作者 Shaoxuan Yun Ying Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1815-1835,共21页
Nowadays,with the widespread application of the Internet of Things(IoT),mobile devices are renovating our lives.The data generated by mobile devices has reached a massive level.The traditional centralized processing i... Nowadays,with the widespread application of the Internet of Things(IoT),mobile devices are renovating our lives.The data generated by mobile devices has reached a massive level.The traditional centralized processing is not suitable for processing the data due to limited computing power and transmission load.Mobile Edge Computing(MEC)has been proposed to solve these problems.Because of limited computation ability and battery capacity,tasks can be executed in the MEC server.However,how to schedule those tasks becomes a challenge,and is the main topic of this piece.In this paper,we design an efficient intelligent algorithm to jointly optimize energy cost and computing resource allocation in MEC.In view of the advantages of deep learning,we propose a Deep Learning-Based Traffic Scheduling Approach(DLTSA).We translate the scheduling problem into a classification problem.Evaluation demonstrates that our DLTSA approach can reduce energy cost and have better performance compared to traditional scheduling algorithms. 展开更多
关键词 Mobile Edge Computing(MEC) traffic scheduling deep learning Internet of Things(IoT)
下载PDF
Towards Developing Privacy-Preserved Data Security Approach(PP-DSA)in Cloud Computing Environment
5
作者 S.Stewart Kirubakaran V.P.Arunachalam +1 位作者 S.Karthik S.K annan 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1881-1895,共15页
In the present scenario of rapid growth in cloud computing models,several companies and users started to share their data on cloud servers.However,when the model is not completely trusted,the data owners face several ... In the present scenario of rapid growth in cloud computing models,several companies and users started to share their data on cloud servers.However,when the model is not completely trusted,the data owners face several security-related problems,such as user privacy breaches,data disclosure,data corruption,and so on,during the process of data outsourcing.For addressing and handling the security-related issues on Cloud,several models were proposed.With that concern,this paper develops a Privacy-Preserved Data Security Approach(PP-DSA)to provide the data security and data integrity for the out-sourcing data in Cloud Environment.Privacy preservation is ensured in this work with the Efficient Authentication Technique(EAT)using the Group Signature method that is applied with Third-Party Auditor(TPA).The role of the auditor is to secure the data and guarantee shared data integrity.Additionally,the Cloud Service Provider(CSP)and Data User(DU)can also be the attackers that are to be handled with the EAT.Here,the major objective of the work is to enhance cloud security and thereby,increase Quality of Service(QoS).The results are evaluated based on the model effectiveness,security,and reliability and show that the proposed model provides better results than existing works. 展开更多
关键词 Third-party auditor(TPA) efficient auditing technique(EAT) cloud service provider(CSP) data user(DU) data security PRIVACY-PRESERVING cloud computing cloud security
下载PDF
The Role of Deep Learning in Parking Space Identification and Prediction Systems
6
作者 Faizan Rasheed Yasir Saleem +2 位作者 Kok-Lim Alvin Yau Yung-Wey Chong Sye Loong Keoh 《Computers, Materials & Continua》 SCIE EI 2023年第4期761-784,共24页
In today’s smart city transportation,traffic congestion is a vexing issue,and vehicles seeking parking spaces have been identified as one of the causes leading to approximately 40%of traffic congestion.Identifying pa... In today’s smart city transportation,traffic congestion is a vexing issue,and vehicles seeking parking spaces have been identified as one of the causes leading to approximately 40%of traffic congestion.Identifying parking spaces alone is insufficient because an identified available parking space may have been taken by another vehicle when it arrives,resulting in the driver’s frustration and aggravating traffic jams while searching for another parking space.This explains the need to predict the availability of parking spaces.Recently,deep learning(DL)has been shown to facilitate drivers to find parking spaces efficiently,leading to a promising performance enhancement in parking identification and prediction systems.However,no work reviews DL approaches applied to solve parking identification and prediction problems.Inspired by this gap,the purpose of this work is to investigate,highlight,and report on recent advances inDLapproaches applied to predict and identify the availability of parking spaces.Ataxonomy of DL-based parking identification and prediction systems is established as a methodology by classifying and categorizing existing literature,and by doing so,the salient and supportive features of different DL techniques for providing parking solutions are presented.Moreover,several open research challenges are outlined.This work identifies that there are various DL architectures,datasets,and performance measures used to address parking identification and prediction problems.Moreover,there are some open-source implementations available that can be used directly either to extend existing works or explore a new domain.This is the first short survey article that focuses on the use of DL-based techniques in parking identification and prediction systems for smart cities.This study concludes that although the deployment of DL in parking identification and prediction systems provides various benefits,the convergence of these two types of systems and DL brings about new issues that must be resolved in the near future. 展开更多
关键词 Convolutional neural network deep learning neural networks parking identification parking prediction smart city
下载PDF
Efficient Certificateless Authenticated Key Agreement for Blockchain-Enabled Internet of Medical Things
7
作者 Chaoyang Li Yanbu Guo +4 位作者 Mianxiong Dong Gang Xu Xiu-Bo Chen Jian Li Kaoru Ota 《Computers, Materials & Continua》 SCIE EI 2023年第4期2043-2059,共17页
Internet of Medical Things(IoMT)plays an essential role in collecting and managing personal medical data.In recent years,blockchain technology has put power in traditional IoMT systems for data sharing between differe... Internet of Medical Things(IoMT)plays an essential role in collecting and managing personal medical data.In recent years,blockchain technology has put power in traditional IoMT systems for data sharing between different medical institutions and improved the utilization of medical data.However,some problems in the information transfer process between wireless medical devices and mobile medical apps,such as information leakage and privacy disclosure.This paper first designs a cross-device key agreement model for blockchain-enabled IoMT.This model can establish a key agreement mechanism for secure medical data sharing.Meanwhile,a certificateless authenticated key agreement(KA)protocol has been proposed to strengthen the information transfer security in the cross-device key agreement model.The proposed KA protocol only requires one exchange of messages between the two parties,which can improve the protocol execution efficiency.Then,any unauthorized tampering of the transmitted signed message sent by the sender can be detected by the receiver,so this can guarantee the success of the establishment of a session key between the strange entities.The blockchain ledger can ensure that the medical data cannot be tampered with,and the certificateless mechanism can weaken the key escrow problem.Moreover,the security proof and performance analysis are given,which show that the proposed model and KA protocol are more secure and efficient than other schemes in similar literature. 展开更多
关键词 CERTIFICATELESS key agreement authentication blockchain internet of medical things
下载PDF
A blockchain-empowered authentication scheme for worm detection in wireless sensor network
8
作者 Yuling Chen Xiong Yang +2 位作者 Tao Li Yi Ren Yangyang Long 《Digital Communications and Networks》 SCIE CSCD 2024年第2期265-272,共8页
Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For... Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network. 展开更多
关键词 Wireless Sensor Network(WSN) Node authentication Blockchain TANGLE Worm detection
下载PDF
Modern Mobile Malware Detection Framework Using Machine Learning and Random Forest Algorithm
9
作者 Mohammad Ababneh Ayat Al-Droos Ammar El-Hassan 《Computer Systems Science & Engineering》 2024年第5期1171-1191,共21页
With the high level of proliferation of connected mobile devices,the risk of intrusion becomes higher.Artificial Intelligence(AI)and Machine Learning(ML)algorithms started to feature in protection software and showed ... With the high level of proliferation of connected mobile devices,the risk of intrusion becomes higher.Artificial Intelligence(AI)and Machine Learning(ML)algorithms started to feature in protection software and showed effective results.These algorithms are nonetheless hindered by the lack of rich datasets and compounded by the appearance of new categories of malware such that the race between attackers’malware,especially with the assistance of Artificial Intelligence tools and protection solutions makes these systems and frameworks lose effectiveness quickly.In this article,we present a framework for mobile malware detection based on a new dataset containing new categories of mobile malware.We focus on categories of malware that were not tested before by Machine Learning algorithms proven effective in malware detection.We carefully select an optimal number of features,do necessary preprocessing,and then apply Machine Learning algorithms to discover malicious code effectively.From our experiments,we have found that the Random Forest algorithm is the best-performing algorithm with such mobile malware with detection rates of around 99%.We compared our results from this work and found that they are aligned well with our previous work.We also compared our work with State-of-the-Art works of others and found that the results are very close and competitive. 展开更多
关键词 Android MALWARE DETECT PREVENT artificial intelligence machine learning MOBILE CICMalDroid2020 CCCSCIC-AndMal-2020
下载PDF
Explainable Artificial Intelligence(XAI)Model for Cancer Image Classification
10
作者 Amit Singhal Krishna Kant Agrawal +3 位作者 Angeles Quezada Adrian Rodriguez Aguiñaga Samantha Jiménez Satya Prakash Yadav 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期401-441,共41页
The use of Explainable Artificial Intelligence(XAI)models becomes increasingly important for making decisions in smart healthcare environments.It is to make sure that decisions are based on trustworthy algorithms and ... The use of Explainable Artificial Intelligence(XAI)models becomes increasingly important for making decisions in smart healthcare environments.It is to make sure that decisions are based on trustworthy algorithms and that healthcare workers understand the decisions made by these algorithms.These models can potentially enhance interpretability and explainability in decision-making processes that rely on artificial intelligence.Nevertheless,the intricate nature of the healthcare field necessitates the utilization of sophisticated models to classify cancer images.This research presents an advanced investigation of XAI models to classify cancer images.It describes the different levels of explainability and interpretability associated with XAI models and the challenges faced in deploying them in healthcare applications.In addition,this study proposes a novel framework for cancer image classification that incorporates XAI models with deep learning and advanced medical imaging techniques.The proposed model integrates several techniques,including end-to-end explainable evaluation,rule-based explanation,and useradaptive explanation.The proposed XAI reaches 97.72%accuracy,90.72%precision,93.72%recall,96.72%F1-score,9.55%FDR,9.66%FOR,and 91.18%DOR.It will discuss the potential applications of the proposed XAI models in the smart healthcare environment.It will help ensure trust and accountability in AI-based decisions,which is essential for achieving a safe and reliable smart healthcare environment. 展开更多
关键词 Explainable artificial intelligence artificial intelligence XAI healthcare CANCER image classification
下载PDF
Optimizing Network Security via Ensemble Learning: A Nexus with Intrusion Detection
11
作者 Anu Baluguri Vasudha Pasumarthy +2 位作者 Indranil Roy Bidyut Gupta Nick Rahimi 《Journal of Information Security》 2024年第4期545-556,共12页
Network intrusion detection systems need to be updated due to the rise in cyber threats. In order to improve detection accuracy, this research presents a strong strategy that makes use of a stacked ensemble method, wh... Network intrusion detection systems need to be updated due to the rise in cyber threats. In order to improve detection accuracy, this research presents a strong strategy that makes use of a stacked ensemble method, which combines the advantages of several machine learning models. The ensemble is made up of various base models, such as Decision Trees, K-Nearest Neighbors (KNN), Multi-Layer Perceptrons (MLP), and Naive Bayes, each of which offers a distinct perspective on the properties of the data. The research adheres to a methodical workflow that begins with thorough data preprocessing to guarantee the accuracy and applicability of the data. In order to extract useful attributes from network traffic data—which are essential for efficient model training—feature engineering is used. The ensemble approach combines these models by training a Logistic Regression model meta-learner on base model predictions. In addition to increasing prediction accuracy, this tiered approach helps get around the drawbacks that come with using individual models. High accuracy, precision, and recall are shown in the model’s evaluation of a network intrusion dataset, indicating the model’s efficacy in identifying malicious activity. Cross-validation is used to make sure the models are reliable and well-generalized to new, untested data. In addition to advancing cybersecurity, the research establishes a foundation for the implementation of flexible and scalable intrusion detection systems. This hybrid, stacked ensemble model has a lot of potential for improving cyberattack prevention, lowering the likelihood of cyberattacks, and offering a scalable solution that can be adjusted to meet new threats and technological advancements. 展开更多
关键词 Machine Learning Cyber-Security Data Preprocessing Model Training
下载PDF
Multi-objective Topology Optimization of Thermo-mechanical Compliant Mechanisms 被引量:6
12
作者 LI Dongmei ZHANG Xianmin +2 位作者 GUAN Yisheng ZHANG Hong WANG Nianfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期1123-1129,共7页
The material characteristics of a structure will change with temperature variation,and will induce stress within the structure.Currently,the optimal design for the topology of compliant mechanisms is mainly performed ... The material characteristics of a structure will change with temperature variation,and will induce stress within the structure.Currently,the optimal design for the topology of compliant mechanisms is mainly performed in single physical field.However,when compliant mechanisms work in high temperature environments,their displacement outputs are generated not only by mechanical load,but also by the temperature variation which may become the prominent factor.Therefore,the influence of temperature must be considered in the design.In this paper,a novel optimization method for multi-objective topology of thermo-mechanical compliant mechanisms is presented.First,the thermal field is analyzed with finite-element method,where the thermal strain is taken into account in the constitutive relation,and the equivalent nodal thermal load is derived with the principle of virtual work.Then the thermal load is converted into physical loads in elastic field,and the control equation of the thermo-mechanical compliant mechanism is obtained.Second,the mathematical model of the multi-objective topology optimization is built by incorporating both the flexibility and stiffness.Meanwhile,the coupling sensitivity function and the sensitivity analysis equations of thermal steady-state response are derived.Finally,optimality criteria algorithm is employed to obtain numerical solution of the multi-objective topology optimization.Numerical examples show that the compliant mechanisms have better performance and are more applicable if the temperature effect is taken into account in the design process.The presented modeling and analysis methods provide a new idea and an effective approach to topology optimization of compliant mechanisms in electrothermic coupling field and multiphysics fields. 展开更多
关键词 compliant mechanisms topology optimization thermo-mechanical coupling MULTI-OBJECTIVE coupling sensitivity
下载PDF
Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture:A case study of lettuce production 被引量:19
13
作者 Alan Bauer Aaron George Bostrom +6 位作者 Joshua Ball Christopher Applegate Tao Cheng Stephen Laycock Sergio Moreno Rojas Jacob Kirwan Ji Zhou 《Horticulture Research》 SCIE 2019年第1期906-917,共12页
Aerial imagery is regularly used by crop researchers,growers and farmers to monitor crops during the growing season.To extract meaningful information from large-scale aerial images collected from the field,high-throug... Aerial imagery is regularly used by crop researchers,growers and farmers to monitor crops during the growing season.To extract meaningful information from large-scale aerial images collected from the field,high-throughput phenotypic analysis solutions are required,which not only produce high-quality measures of key crop traits,but also support professionals to make prompt and reliable crop management decisions.Here,we report AirSurf,an automated and open-source analytic platform that combines modern computer vision,up-to-date machine learning,and modular software engineering in order to measure yield-related phenotypes from ultra-large aerial imagery.To quantify millions of in-field lettuces acquired by fixed-wing light aircrafts equipped with normalised difference vegetation index(NDVI)sensors,we customised AirSurf by combining computer vision algorithms and a deep-learning classifier trained with over 100,000 labelled lettuce signals.The tailored platform,AirSurf-Lettuce,is capable of scoring and categorising iceberg lettuces with high accuracy(>98%).Furthermore,novel analysis functions have been developed to map lettuce size distribution across the field,based on which associated global positioning system(GPS)tagged harvest regions have been identified to enable growers and farmers to conduct precision agricultural practises in order to improve the actual yield as well as crop marketability before the harvest. 展开更多
关键词 COMPUTER analysis equipped
下载PDF
Finding the Hidden Hands:A Case Study of Detecting Organized Posters and Promoters in SINA Weibo 被引量:1
14
作者 WANG Xiang ZHANG Zhilin +3 位作者 YU Xiang JIA Yan ZHOU Bin LI Shasha 《China Communications》 SCIE CSCD 2015年第11期143-155,共13页
With the development of online social networks,a special group of online users named organized posters(or Internet water army,Internet paid posters in some literatures) have fl ooded the social network communities. Th... With the development of online social networks,a special group of online users named organized posters(or Internet water army,Internet paid posters in some literatures) have fl ooded the social network communities. They are organized in groups to post with specific purposes and sometimes even confuse or mislead normal users.In this paper,we study the individual and group characteristics of organized posters. A classifier is constructed based on the individual and group characteristics to detect them. Extensive experimental results on three real datasets demonstrate that our method based on individual and group characteristics using SVM model(IGCSVM) is effective in detecting organized posters and better than existing methods. We take a first look at finding the promoters based on the detected organized posters of our IGCSVM method. Our experiments show that it is effective in detecting promoters. 展开更多
关键词 organized posters internet water army online paid posters promoter MICROBLOGGING
下载PDF
Dimension-Enhanced Ultra-High Performance Liquid Chromatography/Ion Mobility-Quadrupole Time-of-Flight Mass Spectrometry Combined with Intelligent Peak Annotation for the Rapid Characterization of the Multiple Components from Seeds of Descurainia sophia 被引量:1
15
作者 Simiao Wang Xue Li +7 位作者 Boxue Chen Shitong Li Jiali Wang Jing Wang Mingshuo Yang Xiaoyan Xu Hongda Wang Wenzhi Yang 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第3期541-567,共27页
The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components.The seeds of Descurainia sophia(SDS)are utilized in China as a co... The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components.The seeds of Descurainia sophia(SDS)are utilized in China as a cough and asthma relieving agent.Herein,a dimension-enhanced integral approach,by combining ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry(UHPLC/IMQTOF-MS)and intelligent peak annotation,was developed to rapidly characterize the multicomponents from SDS.Good chromatographic separation was achieved within 38 min on a UPLC CSH C18(2.1×100 mm,1.7μm)column which was eluted by 0.1%formic acid in water(water phase)and acetonitrile(organic phase).Collision-induced dissociation-MS^(2)data were acquired by the data-independent high-definition MS^(E)(HDMS^(E))in both the negative and positive electrospray ionization modes.A major components knockout strategy was applied to improve the characterization of those minor ingredients by enhancing the injection volume.Moreover,a self-built chemistry library was established,which could be matched by the UNIFI software enabling automatic peak annotation of the obtained HDMS^(E)data.As a result of applying the intelligent peak annotation workflows and further confirmation process,a total of 53 compounds were identified or tentatively characterized from the SDS,including 29 flavonoids,one uridine derivative,four glucosides,one lignin,one phenolic compound,and 17 others.Notably,four-dimensional information related to the structure(e.g.,retention time,collision cross section,MS^(1)and MS^(2)data)was obtained for each component by the developed integral approach,and the results would greatly benefit the quality control of SDS. 展开更多
关键词 Descurainia sophia multicomponent characterization ultra-high performance liquid chromatography ion mobility/quadrupole time-of-flight mass spectrometry high-definition MS^(E) flavonoid
下载PDF
Evaluation of 3-D Printed Immobilisation Shells for Head and Neck IMRT 被引量:1
16
作者 Mark Fisher Christopher Applegate +4 位作者 Mohammad Ryalat Stephen Laycock Mark Hulse Daniel Emmens Duncan Bell 《Open Journal of Radiology》 2014年第4期322-328,共7页
This paper presents the preclinical evaluation of a novel immobilization system for patients undergoing external beam radiation treatment of head and neck tumors. An immobilization mask is manufactured directly from a... This paper presents the preclinical evaluation of a novel immobilization system for patients undergoing external beam radiation treatment of head and neck tumors. An immobilization mask is manufactured directly from a 3-D model, built using the CT data routinely acquired for treatment planning so there is no need to take plaster of Paris moulds. Research suggests that many patients find the mould room visit distressing and so rapid prototyping could potentially improve the overall patient experience. Evaluation of a computer model of the immobilization system using an anthropomorphic phantom shows that >99% of vertices are within a tolerance of ±0.2 mm. Hausdorff distance was used to analyze CT slices obtained by rescanning the phantom with a printed mask in position. These results show that for >80% of the slices the median “worse-case” tolerance is approximately 4 mm. These measurements suggest that printed masks can achieve similar levels of immobilization to those of systems currently in clinical use. 展开更多
关键词 Intensity Modulated RADIOTHERAPY Treatment (IMRT) Patient IMMOBILIZATION System 3-D PRINTING
下载PDF
Hadoop Based Defense Solution to Handle Distributed Denial of Service (DDoS) Attacks 被引量:2
17
作者 Shweta Tripathi Brij Gupta +2 位作者 Ammar Almomani Anupama Mishra Suresh Veluru 《Journal of Information Security》 2013年第3期150-164,共15页
Distributed denial of service (DDoS) attacks continues to grow as a threat to organizations worldwide. From the first known attack in 1999 to the highly publicized Operation Ababil, the DDoS attacks have a history of ... Distributed denial of service (DDoS) attacks continues to grow as a threat to organizations worldwide. From the first known attack in 1999 to the highly publicized Operation Ababil, the DDoS attacks have a history of flooding the victim network with an enormous number of packets, hence exhausting the resources and preventing the legitimate users to access them. After having standard DDoS defense mechanism, still attackers are able to launch an attack. These inadequate defense mechanisms need to be improved and integrated with other solutions. The purpose of this paper is to study the characteristics of DDoS attacks, various models involved in attacks and to provide a timeline of defense mechanism with their improvements to combat DDoS attacks. In addition to this, a novel scheme is proposed to detect DDoS attack efficiently by using MapReduce programming model. 展开更多
关键词 DDOS DoS DEFENSE Mechanism Characteristics HADOOP MAPREDUCE
下载PDF
Global Warming Impacts on Alpine Vegetation Dynamic in Qinghai-Tibet Plateau of China 被引量:1
18
作者 Yan Qing Zhang Jeffery M. Welker 《Journal of Geoscience and Environment Protection》 2014年第3期54-59,共6页
This study is to illustrate alpine vegetation dynamics in Qinghai-Tibetan Plateau of China from simulated filed experimental climate change, vegetation community dynamic simulation integrated with scenarios of global ... This study is to illustrate alpine vegetation dynamics in Qinghai-Tibetan Plateau of China from simulated filed experimental climate change, vegetation community dynamic simulation integrated with scenarios of global temperature increase of 1 to 3&deg;C, and simulated regional alpine vegetation distribution changes in responses to global warming. Our warming treatment increased air temperatures by 5&deg;C on average and soil temperatures were elevated by 3&deg;C at 5 cm depth. Above- ground biomass of grasses responded rapidly to the warmer conditions whereby biomass was 25% greater than that of controls after only 5 wk of experimental warming. This increase was accompanied by a simultaneous decrease in forb biomass, resulting in almost no net change in community biomass after 5 wk. Under warmed conditions, peak community bio-mass was extended into October due in part to continued growth of grasses and the postponement of senescence. The Vegetation Dynamic Simulation Model calculates a probability surface for each vegetation type, and then combines all vegetation types into a composite map, determined by the maximum likelihood that each vegetation type should distribute to each raster unit. With scenarios of global temperature increase of 1&deg;C to 3&deg;C, the vegetation types such as Dry Kobresia Meadow and Dry Potentilla Shrub that are adapted to warm and dry conditions tend to become more dominant in the study area. 展开更多
关键词 Global WARMING ALPINE Vegetaion Qinghai-Tibet PLATEAU
下载PDF
A State-of-the-Art Survey on Semantic Web Mining 被引量:1
19
作者 Qudamah K. Quboa Mohamad Saraee 《Intelligent Information Management》 2013年第1期10-17,共8页
The integration of the two fast-developing scientific research areas Semantic Web and Web Mining is known as Semantic Web Mining. The huge increase in the amount of Semantic Web data became a perfect target for many r... The integration of the two fast-developing scientific research areas Semantic Web and Web Mining is known as Semantic Web Mining. The huge increase in the amount of Semantic Web data became a perfect target for many researchers to apply Data Mining techniques on it. This paper gives a detailed state-of-the-art survey of on-going research in this new area. It shows the positive effects of Semantic Web Mining, the obstacles faced by researchers and propose number of approaches to deal with the very complex and heterogeneous information and knowledge which are produced by the technologies of Semantic Web. 展开更多
关键词 WEB MINING SEMANTIC WEB DATA MINING SEMANTIC WEB MINING
下载PDF
CLOUD COMPUTING
20
作者 崔勇 Rajkumar Buyya 刘江川 《China Communications》 SCIE CSCD 2014年第4期I0001-I0002,共2页
Cloud computing is a novel computing paradigm that utilizes remote cloud resources to achieve a high-performance computation.Cloud provides infrastructure,platform and software as different on-demand services.China ha... Cloud computing is a novel computing paradigm that utilizes remote cloud resources to achieve a high-performance computation.Cloud provides infrastructure,platform and software as different on-demand services.China has made remarkable progress in cloudbased products and operating system technology.The government,enterprises and research institutions are all active in the development of cloud computing-related projects.Despite the progress,many important 展开更多
关键词 计算模式 性能计算 基础设施 操作系统 科研机构 远程 软件
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部