As global economic growth increases,the demand for energy sources boosts.While fossil fuels have traditionally satisfied this demand,their environmental influence and limited reserves require alternatives.Fossil fuel co...As global economic growth increases,the demand for energy sources boosts.While fossil fuels have traditionally satisfied this demand,their environmental influence and limited reserves require alternatives.Fossil fuel combustion contributes substantially to greenhouse gas emissions,with a pressing need to halve these emissions by 2030 and target net-zero by 2050.Renewable energy sources,contributing currently to 29%of global electricity,are viewed as promising substitutes.With wind energy's potential,Zheng's team developed a novel method to harness even low wind speeds using well-aligned nanofibers and an innovative“drop wind generator”.This system,combining moisture-saturated ionic liquid 3-Methyl-1-octylimidazolium chloride with specific nanofiber arrays,exploits wind-inducedflows for energy conversion.This study highlights the vast untapped potential of low-speed wind as a sustainable energy source potentially for electronics.展开更多
In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consump...In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consumption have always been one of the research hotspots.Recently,multifunctional sensors for perception of soft robotics have been rapidly developed,while more algorithms and models of machine learning with high accuracy have been optimized and proposed.Designs of soft robots with AI have also been advanced ranging from multimodal sensing,human-machine interaction to effective actuation in robotic systems.Nonethe-less,comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare.Here,the new development is systematically reviewed in the field of soft robots with AI.First,background and mechanisms of soft robotic systems are briefed,after which development focused on how to endow the soft robots with AI,including the aspects of feeling,thought and reaction,is illustrated.Next,applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement.Design thoughts for future intelligent soft robotics are pointed out.Finally,some perspectives are put forward.展开更多
Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants a...Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants and nozzles on droplet spectrum remain unclear.Here,we established the relationship between droplet spectrum evolution and liquid atomization by investigating the typical characteristics of droplet diameter distribution near the nozzle.Based on this,the regulation mechanisms of distinctive pesticide adjuvants on droplet spectrum were clarified,and the corresponding drift reduction performances were quantitively evaluated by wind tunnel experiments.It shows that the droplet diameter firstly shifts to the smaller due to the liquid sheet breakup and then prefers to increase caused by droplet interactions.Reducing the surface tension of sprayed liquid facilitates the uniform liquid breakup and increasing the viscosity inhibits the liquid deformation,which prolong the atomization process and effectively improve the droplet spectrum.As a result,the drift losses of flat-fan and hollow cone nozzles are reduced by about 50%after adding organosilicon and vegetable oil adjuvants.By contrast,the air induction nozzle shows a superior anti-drift ability,regardless of distinctive adjuvants.Our findings provide insights into rational adjuvant design and nozzle selection in the field application.展开更多
Festivals are intrinsic aspects of the culture of a group of people and allow displaying interesting crafts and elements such as fabrics, symbols, folktales, and paraphernalia. The dynamism in the culture is vast but ...Festivals are intrinsic aspects of the culture of a group of people and allow displaying interesting crafts and elements such as fabrics, symbols, folktales, and paraphernalia. The dynamism in the culture is vast but unexplored as inspiration for the creation of products. This created the need to explore the possibility of designing contemporary print and products from these crafts and elements from two festivals (Aboakyir and Gologo) using Adobe Photoshop in the design process. This phenomenon necessitated the consideration of this project which was undertaken by employing the design-based practice coupled with observation as an instrument. Elements related to the festivals were identified and using the design process, print designs were developed and further simulated on different products. This practice seeks to promote the cultural heritage of the people to a wider populace and the world at large. It is recommended that the Traditional Council should have a museum or gallery for keeping the artworks used in their festivals for archival purposes.展开更多
This article is focused on the fashion that inspired by corset and create a collection of the same kind that can reflect the needs of today' s consumers. In mixing and matching today' s a past corset' s elements wi...This article is focused on the fashion that inspired by corset and create a collection of the same kind that can reflect the needs of today' s consumers. In mixing and matching today' s a past corset' s elements with today' s sportive fashion.Since nowadays, people' s lifestyle is freer, casual and personal than before. Consumer' s wearing concept was also definitely different from the past.It is necessary to create the new direction for today' s consumers to satisfy the new mode of their lifestyle and the change of their wearing concept.展开更多
This paper presents a discussion of the characters and design patterns of the digital texture design in fashion fabrics. It starts from the characters of fabric texture design, taking digital printing technology as a ...This paper presents a discussion of the characters and design patterns of the digital texture design in fashion fabrics. It starts from the characters of fabric texture design, taking digital printing technology as a detailed example, and raises a possible design route and pattern of the innovative design of fashion fabrics under digital technology.展开更多
In order to realize the auto-generation of clothing paper pattern making and reduce the reliance on the experience of clothing pattern makers,by simulating the experience of the clothing pattern maker through back pro...In order to realize the auto-generation of clothing paper pattern making and reduce the reliance on the experience of clothing pattern makers,by simulating the experience of the clothing pattern maker through back propagation(BP)neural network,400 children’s body measurements are collected and drawn into the clothing paper pattern,and the children’s body measurements and the pattern sizes generated through the children’s clothing structure design rules are imported into MATLAB neural network toolbox and a neural network model is established to automatically become the predicted pattern size.Then the parametric mathematical model of children’s clothing paper pattern is established and the children’s body measurements is imported into Auto-CAD parametric function to generate children’s clothing paper pattern automatically.The experimental interface and the virtual try-on interface are demonstrated and their effects are evaluated.The results show that the production rate of clothing paper patterns is improved by the auto-generation method,which is of positive significance to the intelligent production of clothing enterprises.展开更多
Poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)] (PHBVs) copolymers are promising biopolymers, which could substitute petroleum-based plastics for various applications. PHB and PHBV pellets were processed on a custo...Poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)] (PHBVs) copolymers are promising biopolymers, which could substitute petroleum-based plastics for various applications. PHB and PHBV pellets were processed on a customized 3D printer via Fused Granular Manufacturing (FGM) approach modified with a Mahor screw extruder. To anticipate the behaviour of PHBVs when transformed using conventional thermo-mechanical shaping processes, thermal and mechanical analyses were carried out in order to better understand the effect of annealing temperature on their crystallization behaviour and mechanical properties of PHB polymer and PHBV copolymer. The objectives of the present work were to propose an experimental strategy to study the melting and crystallization events, crystalline structure changes, and mechanical performances of both PHB homopolymer and PHBV copolymer according to identical thermal annealing treatments. A monitoring of 3D printed PHB and PHBV structures was achieved by coupling Differential Scanning Calorimetry (DSC) and tensile tests. .展开更多
As professors are subjected to teaching their classes online due to the recent COVID-19, our local Hong Kong students find it difficult to consult their teachers, and ultimately would fail to achieve the intended lear...As professors are subjected to teaching their classes online due to the recent COVID-19, our local Hong Kong students find it difficult to consult their teachers, and ultimately would fail to achieve the intended learning outcomes, especially for practical-based subjects. In this research, students having online classes of a practical-based fabric design subject were encouraged to self-study from Open Educational Resource (OER) materials for a further and better understanding of their subject. Additionally, online materials were developed to improve students’ understanding via skill of digital literacy. Their learning progress was evaluated and compared to the face-to-face version. The majority of students found online classes combined with self-studying OER materials, potentially be a substitute for face-to-face classes. Most of the students further opined different OER videos assisted them without any face-to-face instructions in practical works, to develop new fabric samples from the inspiration. Analysis of test results, and comparison of students’ final grades with different learning modes, supported these phenomena.展开更多
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec...Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy.展开更多
Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building hea...Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.展开更多
Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and i...Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and inexpensive process.However,fabricating high-performance atop textiles with good dispersity,stability,biocompatibility,and wearability for high-resolution,large-scale manufacturing,and practical applications has remained challenging.Here,waterbased multi-walled carbon nanotubes(MWCNTs)-decorated liquid metal(LM)inks are proposed with carbonaceous gallium–indium micro-nanostructure.With the assistance of biopolymers,the sodium alginate-encapsulated LM droplets contain high carboxyl groups which non-covalently crosslink with silk sericin-mediated MWCNTs.E-textile can be prepared subsequently via printing technique and natural waterproof triboelectric coating,enabling good flexibility,hydrophilicity,breathability,wearability,biocompatibility,conductivity,stability,and excellent versatility,without any artificial chemicals.The obtained e-textile can be used in various applications with designable patterns and circuits.Multi-sensing applications of recognizing complex human motions,breathing,phonation,and pressure distribution are demonstrated with repeatable and reliable signals.Self-powered and energy-harvesting capabilities are also presented by driving electronic devices and lighting LEDs.As proof of concept,this work provides new opportunities in a scalable and sustainable way to develop novel wearable electronics and smart clothing for future commercial applications.展开更多
The burgeoning interest in flexible electronics necessitates the creation of patterning technology specifically tailored for flexible substrates and complex surface morphologies.Among a variety of patterning technique...The burgeoning interest in flexible electronics necessitates the creation of patterning technology specifically tailored for flexible substrates and complex surface morphologies.Among a variety of patterning techniques,transfer printing emerges as one of the most efficient,cost-effective,and scalable methods.It boasts the ability for high-throughput fabrication of 0–3D micro-and nano-structures on flexible substrates,working in tandem with traditional lithography methods.This review highlights the critical issue of transfer printing:the flawless transfer of devices during the pick-up and printing process.We encapsulate recent advancements in numerous transfer printing techniques,with a particular emphasis on strategies to control adhesion forces at the substrate/device/stamp interfaces.These strategies are employed to meet the requirements of competing fractures for successful pick-up and print processes.The mechanism,advantages,disadvantages,and typical applications of each transfer printing technique will be thoroughly discussed.The conclusion section provides design guidelines and probes potential directions for future advancements.展开更多
This study reviews the state of the art in structural design and the corresponding mechanical behaviours of composite vascular grafts. We critically analyse surface and matrix designs composed of layered, embedded, an...This study reviews the state of the art in structural design and the corresponding mechanical behaviours of composite vascular grafts. We critically analyse surface and matrix designs composed of layered, embedded, and hybrid structures along the radial and longitudinal directions;materials and manufacturing techniques, such as tissue engineering and the use of textiles or their combinations;and the corresponding mechanical behaviours of composite vascular grafts in terms of their physical–mechanical properties, especially their stress–strain relationships and elastic recovery. The role of computational studies is discussed with respect to optimizing the geometrics designs and the corresponding mechanical behaviours to satisfy specialized applications, such as those for the aorta and its subparts. Natural and synthetic endothelial materials yield improvements in the mechanical and biological compliance of composite graft surfaces with host arteries. Moreover,the diameter, wall thickness, stiffness, compliance, tensile strength, elasticity, and burst strength of the graft matrix are determined depending on the application and the patient. For composite vascular grafts, hybrid architectures are recommended featuring multiple layers, dimensions, and materials to achieve the desired optimal flexibility and function for complying with user-specific requirements. Rapidly emerging artificial intelligence and big data techniques for diagnostics and the threedimensional(3D) manufacturing of vascular grafts will likely yield highly compliant, subject-specific, long-lasting, and economical vascular grafts in the near-future.展开更多
In recent years,smart textiles have attracted the attention of scholars from all walks of life,but there is an imbalance between functionality and usability,which affects their marketization process.Firstly,five repre...In recent years,smart textiles have attracted the attention of scholars from all walks of life,but there is an imbalance between functionality and usability,which affects their marketization process.Firstly,five representative smart textiles are introduced and their respective wearability is described around preparation methods.Secondly,it is concluded that the preparation methods of smart textiles can be divided into two categories:fiber methods and finishing methods.The fiber methods refer to making smart fibers into smart textiles.Textiles made by fiber methods are breathable and feel good in the hand,but the mechanical properties are influenced by the production equipment,and the process cost is high.The finishing methods refer to the functional finishing of ordinary textiles.Although the finishing method is simple and convenient,it may reduce the comfort of the textile.Finally,applications and new research in various fields of smart textiles are presented with promising prospects.It is anticipated that this review will serve as a theoretical basis for future research and development of smart textiles.Researchers are expected to create new technologies to overcome the tension between functionality and usability,as well as to increase user comfort and convenience.展开更多
In this study, aqueous extraction method is used because of its high extraction ratio, light fastness and also functional properties. In 1st phase, for dyeing S/J cotton knit fabric with green walnut power ferrous sul...In this study, aqueous extraction method is used because of its high extraction ratio, light fastness and also functional properties. In 1st phase, for dyeing S/J cotton knit fabric with green walnut power ferrous sulfate is considered as a mordant. In this study, three different mordanting methods such as pre-, meta-, and post-mordanting are conveyed the dyeing process with the state of metallic mordant and without metallic salt mordants. In 2nd phase, in dyeing for fixation ferrous sulfate was considered as mordants. Furthermore, the analysis and evaluation of each colour dyed material was done through following two terms for instance CIELAB (L*, a*, and b*) and K/S values. According to AATCC test methods, colour fastness to washing, crocking, perspiration of the dyed samples is determined whereas according to the ISO standard, the colour fastness to light was estimated and tested. When dyeing was carried out on S/J cotton knit fabric through considering optimum parameter like at 80°C for 60 min and at pH 4 which showed optimum results. From the results we can see, very good wash fastness was obtained while there is no fading of the colour, whereas the outstanding and moderate level of colour fastness to light and crocking is achieved.展开更多
The thesis conducts its analysis fromthe perspective of cultural characteristics of Chu state of Pre-Qin period in ancient China.The culture of Chu,usually focusing on ceremony sacrifice and several other activities,p...The thesis conducts its analysis fromthe perspective of cultural characteristics of Chu state of Pre-Qin period in ancient China.The culture of Chu,usually focusing on ceremony sacrifice and several other activities,presents unique characteristics of the development of Chinese society and culture.Actually,the jade artifact at that time shows cultural features both at artistic and spiritual level and bears prominent cultural connotations like national spirit of solemnness and generosity.Chinese jade of Chu state of Pre-Qin period due to its abundant cultural connotations and meanings,poses to be an essential element of traditional Chinese culture,which shows artistic and national features of traditional jade culture and can directly influence development of modern society and culture.展开更多
A series of self-designed and woven compression stockings were used in this pressure comparison experiment. In order to compare the differences of the garment pressure values exerted by the compression stockings with ...A series of self-designed and woven compression stockings were used in this pressure comparison experiment. In order to compare the differences of the garment pressure values exerted by the compression stockings with different structure parameters among three methods. The experiments were carried out with Flexi force sensors. The pressure value of nine pairs of compression stockings on five subjects and the model leg was collected, and the tensile force of the every section of these stockings was collected to calculate the pressure according to Laplace's equation. The data analysis results show that the pressure values of the compression stockings obtained by comparing the three methods have great differences in various testing methods. There is a significant correlation between processing parameters and stitch density(SD). The pressure design of the compression stockings should be based on the actual wearing of the pressure.展开更多
In order to reveal the appearance of the clothing prototype on the human body,the characteristics of the human body’s structure above the waist section were studied.Based on the experimental data of the fit prototype...In order to reveal the appearance of the clothing prototype on the human body,the characteristics of the human body’s structure above the waist section were studied.Based on the experimental data of the fit prototype,three-dimensional prototypes features were comparatively analyzed.And then objectively evaluating the relationship was conducted between the planar structure lines of different prototypes and the human body.The results showed that the prototypes analyzed basically conformed to the size of the human body.However,when they were worn on the human body,there were problems in the structure and forming.The main reason was that the side seam was skewed to different degrees.The results of this study provide reference for many practitioners to choose prototypes.展开更多
This paper focuses on the preparation of titanium diboride (TiB2) coatings on the graphite substrate by continuous current plating (CCP) and pulse current plating (PIC) electrochemical techniques in fluoride ele...This paper focuses on the preparation of titanium diboride (TiB2) coatings on the graphite substrate by continuous current plating (CCP) and pulse current plating (PIC) electrochemical techniques in fluoride electrolytes (LiF-NaF-KF) containing K2T1F6 and KBF4 as the electrochemically-active components at 700℃. Thick leveled and uniform coatings were obtained and were composed of relatively pure TiB2. The effect of the experimental parameters on the microstructure of the coatings was studied. The results showed the electrodeposition with PIC produced coatings with better quality, when compared with those obtained by CCP, under the conditions of the current density i = 0.6 A/cm^2, frequency = 100 Hz, and todtofr = 4/1. XRD analysis indicated that the preferred orientation of coatings is (110) plane, which is in accordance with the prediction of the two-dimensional crystal nuclei theory. The effect of a ratio of ton/toff and frequency on the crystal size, textule coefficient and microstress was also investigated.展开更多
基金funding of the National Natural Science Foundation of China(no.21776235,no.21376197)the studentship by the Hong Kong Polytechnic University。
文摘As global economic growth increases,the demand for energy sources boosts.While fossil fuels have traditionally satisfied this demand,their environmental influence and limited reserves require alternatives.Fossil fuel combustion contributes substantially to greenhouse gas emissions,with a pressing need to halve these emissions by 2030 and target net-zero by 2050.Renewable energy sources,contributing currently to 29%of global electricity,are viewed as promising substitutes.With wind energy's potential,Zheng's team developed a novel method to harness even low wind speeds using well-aligned nanofibers and an innovative“drop wind generator”.This system,combining moisture-saturated ionic liquid 3-Methyl-1-octylimidazolium chloride with specific nanofiber arrays,exploits wind-inducedflows for energy conversion.This study highlights the vast untapped potential of low-speed wind as a sustainable energy source potentially for electronics.
基金supported by the Hong Kong Polytechnic University(Project No.1-WZ1Y).
文摘In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consumption have always been one of the research hotspots.Recently,multifunctional sensors for perception of soft robotics have been rapidly developed,while more algorithms and models of machine learning with high accuracy have been optimized and proposed.Designs of soft robots with AI have also been advanced ranging from multimodal sensing,human-machine interaction to effective actuation in robotic systems.Nonethe-less,comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare.Here,the new development is systematically reviewed in the field of soft robots with AI.First,background and mechanisms of soft robotic systems are briefed,after which development focused on how to endow the soft robots with AI,including the aspects of feeling,thought and reaction,is illustrated.Next,applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement.Design thoughts for future intelligent soft robotics are pointed out.Finally,some perspectives are put forward.
基金financially supported by the National Key Research and Development Program of China(2017YFD0200304)。
文摘Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants and nozzles on droplet spectrum remain unclear.Here,we established the relationship between droplet spectrum evolution and liquid atomization by investigating the typical characteristics of droplet diameter distribution near the nozzle.Based on this,the regulation mechanisms of distinctive pesticide adjuvants on droplet spectrum were clarified,and the corresponding drift reduction performances were quantitively evaluated by wind tunnel experiments.It shows that the droplet diameter firstly shifts to the smaller due to the liquid sheet breakup and then prefers to increase caused by droplet interactions.Reducing the surface tension of sprayed liquid facilitates the uniform liquid breakup and increasing the viscosity inhibits the liquid deformation,which prolong the atomization process and effectively improve the droplet spectrum.As a result,the drift losses of flat-fan and hollow cone nozzles are reduced by about 50%after adding organosilicon and vegetable oil adjuvants.By contrast,the air induction nozzle shows a superior anti-drift ability,regardless of distinctive adjuvants.Our findings provide insights into rational adjuvant design and nozzle selection in the field application.
文摘Festivals are intrinsic aspects of the culture of a group of people and allow displaying interesting crafts and elements such as fabrics, symbols, folktales, and paraphernalia. The dynamism in the culture is vast but unexplored as inspiration for the creation of products. This created the need to explore the possibility of designing contemporary print and products from these crafts and elements from two festivals (Aboakyir and Gologo) using Adobe Photoshop in the design process. This phenomenon necessitated the consideration of this project which was undertaken by employing the design-based practice coupled with observation as an instrument. Elements related to the festivals were identified and using the design process, print designs were developed and further simulated on different products. This practice seeks to promote the cultural heritage of the people to a wider populace and the world at large. It is recommended that the Traditional Council should have a museum or gallery for keeping the artworks used in their festivals for archival purposes.
文摘This article is focused on the fashion that inspired by corset and create a collection of the same kind that can reflect the needs of today' s consumers. In mixing and matching today' s a past corset' s elements with today' s sportive fashion.Since nowadays, people' s lifestyle is freer, casual and personal than before. Consumer' s wearing concept was also definitely different from the past.It is necessary to create the new direction for today' s consumers to satisfy the new mode of their lifestyle and the change of their wearing concept.
文摘This paper presents a discussion of the characters and design patterns of the digital texture design in fashion fabrics. It starts from the characters of fabric texture design, taking digital printing technology as a detailed example, and raises a possible design route and pattern of the innovative design of fashion fabrics under digital technology.
文摘In order to realize the auto-generation of clothing paper pattern making and reduce the reliance on the experience of clothing pattern makers,by simulating the experience of the clothing pattern maker through back propagation(BP)neural network,400 children’s body measurements are collected and drawn into the clothing paper pattern,and the children’s body measurements and the pattern sizes generated through the children’s clothing structure design rules are imported into MATLAB neural network toolbox and a neural network model is established to automatically become the predicted pattern size.Then the parametric mathematical model of children’s clothing paper pattern is established and the children’s body measurements is imported into Auto-CAD parametric function to generate children’s clothing paper pattern automatically.The experimental interface and the virtual try-on interface are demonstrated and their effects are evaluated.The results show that the production rate of clothing paper patterns is improved by the auto-generation method,which is of positive significance to the intelligent production of clothing enterprises.
文摘Poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)] (PHBVs) copolymers are promising biopolymers, which could substitute petroleum-based plastics for various applications. PHB and PHBV pellets were processed on a customized 3D printer via Fused Granular Manufacturing (FGM) approach modified with a Mahor screw extruder. To anticipate the behaviour of PHBVs when transformed using conventional thermo-mechanical shaping processes, thermal and mechanical analyses were carried out in order to better understand the effect of annealing temperature on their crystallization behaviour and mechanical properties of PHB polymer and PHBV copolymer. The objectives of the present work were to propose an experimental strategy to study the melting and crystallization events, crystalline structure changes, and mechanical performances of both PHB homopolymer and PHBV copolymer according to identical thermal annealing treatments. A monitoring of 3D printed PHB and PHBV structures was achieved by coupling Differential Scanning Calorimetry (DSC) and tensile tests. .
文摘As professors are subjected to teaching their classes online due to the recent COVID-19, our local Hong Kong students find it difficult to consult their teachers, and ultimately would fail to achieve the intended learning outcomes, especially for practical-based subjects. In this research, students having online classes of a practical-based fabric design subject were encouraged to self-study from Open Educational Resource (OER) materials for a further and better understanding of their subject. Additionally, online materials were developed to improve students’ understanding via skill of digital literacy. Their learning progress was evaluated and compared to the face-to-face version. The majority of students found online classes combined with self-studying OER materials, potentially be a substitute for face-to-face classes. Most of the students further opined different OER videos assisted them without any face-to-face instructions in practical works, to develop new fabric samples from the inspiration. Analysis of test results, and comparison of students’ final grades with different learning modes, supported these phenomena.
基金supported by the National Natural Science Foundation of China(52272194)Liaoning Revitalization Talents Program(XLYC2007155)。
文摘Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy.
基金support from the Research Grants Council of the Hong Kong Special Administrative Region,China(PolyU152052/21E)Green Tech Fund of Hong Kong(Project No.:GTF202220106)+1 种基金Innovation and Technology Fund of the Hong Kong Special Administrative Region,China(ITP/018/21TP)PolyU Endowed Young Scholars Scheme(Project No.:84CC).
文摘Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.
基金funded by The Hong Kong Polytechnic University(Project No.1-WZ1Y,1-YXAK,1-W21C).
文摘Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and inexpensive process.However,fabricating high-performance atop textiles with good dispersity,stability,biocompatibility,and wearability for high-resolution,large-scale manufacturing,and practical applications has remained challenging.Here,waterbased multi-walled carbon nanotubes(MWCNTs)-decorated liquid metal(LM)inks are proposed with carbonaceous gallium–indium micro-nanostructure.With the assistance of biopolymers,the sodium alginate-encapsulated LM droplets contain high carboxyl groups which non-covalently crosslink with silk sericin-mediated MWCNTs.E-textile can be prepared subsequently via printing technique and natural waterproof triboelectric coating,enabling good flexibility,hydrophilicity,breathability,wearability,biocompatibility,conductivity,stability,and excellent versatility,without any artificial chemicals.The obtained e-textile can be used in various applications with designable patterns and circuits.Multi-sensing applications of recognizing complex human motions,breathing,phonation,and pressure distribution are demonstrated with repeatable and reliable signals.Self-powered and energy-harvesting capabilities are also presented by driving electronic devices and lighting LEDs.As proof of concept,this work provides new opportunities in a scalable and sustainable way to develop novel wearable electronics and smart clothing for future commercial applications.
基金financial support from the RGC Senior Research Fellowship Scheme(SRFS2122-5S04)General Research Fund(15304322)+1 种基金RGC Postdoctoral Fellowship(PDFS2324-5S10)State Key Laboratory for Ultraprecision Machining Technology(1-BBXR).
文摘The burgeoning interest in flexible electronics necessitates the creation of patterning technology specifically tailored for flexible substrates and complex surface morphologies.Among a variety of patterning techniques,transfer printing emerges as one of the most efficient,cost-effective,and scalable methods.It boasts the ability for high-throughput fabrication of 0–3D micro-and nano-structures on flexible substrates,working in tandem with traditional lithography methods.This review highlights the critical issue of transfer printing:the flawless transfer of devices during the pick-up and printing process.We encapsulate recent advancements in numerous transfer printing techniques,with a particular emphasis on strategies to control adhesion forces at the substrate/device/stamp interfaces.These strategies are employed to meet the requirements of competing fractures for successful pick-up and print processes.The mechanism,advantages,disadvantages,and typical applications of each transfer printing technique will be thoroughly discussed.The conclusion section provides design guidelines and probes potential directions for future advancements.
基金the Innovation and Technology Fund-The Hong Kong Research Institute of Textiles and Apparel (ITF-HKRITA, PRP/059/19TI)the Department General Research Fund, the Hong Kong Polytechnic University (G-UAHB) for supporting this study。
文摘This study reviews the state of the art in structural design and the corresponding mechanical behaviours of composite vascular grafts. We critically analyse surface and matrix designs composed of layered, embedded, and hybrid structures along the radial and longitudinal directions;materials and manufacturing techniques, such as tissue engineering and the use of textiles or their combinations;and the corresponding mechanical behaviours of composite vascular grafts in terms of their physical–mechanical properties, especially their stress–strain relationships and elastic recovery. The role of computational studies is discussed with respect to optimizing the geometrics designs and the corresponding mechanical behaviours to satisfy specialized applications, such as those for the aorta and its subparts. Natural and synthetic endothelial materials yield improvements in the mechanical and biological compliance of composite graft surfaces with host arteries. Moreover,the diameter, wall thickness, stiffness, compliance, tensile strength, elasticity, and burst strength of the graft matrix are determined depending on the application and the patient. For composite vascular grafts, hybrid architectures are recommended featuring multiple layers, dimensions, and materials to achieve the desired optimal flexibility and function for complying with user-specific requirements. Rapidly emerging artificial intelligence and big data techniques for diagnostics and the threedimensional(3D) manufacturing of vascular grafts will likely yield highly compliant, subject-specific, long-lasting, and economical vascular grafts in the near-future.
基金Innovation Team Building Program of Beijing Institute of Fashion Technology,China。
文摘In recent years,smart textiles have attracted the attention of scholars from all walks of life,but there is an imbalance between functionality and usability,which affects their marketization process.Firstly,five representative smart textiles are introduced and their respective wearability is described around preparation methods.Secondly,it is concluded that the preparation methods of smart textiles can be divided into two categories:fiber methods and finishing methods.The fiber methods refer to making smart fibers into smart textiles.Textiles made by fiber methods are breathable and feel good in the hand,but the mechanical properties are influenced by the production equipment,and the process cost is high.The finishing methods refer to the functional finishing of ordinary textiles.Although the finishing method is simple and convenient,it may reduce the comfort of the textile.Finally,applications and new research in various fields of smart textiles are presented with promising prospects.It is anticipated that this review will serve as a theoretical basis for future research and development of smart textiles.Researchers are expected to create new technologies to overcome the tension between functionality and usability,as well as to increase user comfort and convenience.
文摘In this study, aqueous extraction method is used because of its high extraction ratio, light fastness and also functional properties. In 1st phase, for dyeing S/J cotton knit fabric with green walnut power ferrous sulfate is considered as a mordant. In this study, three different mordanting methods such as pre-, meta-, and post-mordanting are conveyed the dyeing process with the state of metallic mordant and without metallic salt mordants. In 2nd phase, in dyeing for fixation ferrous sulfate was considered as mordants. Furthermore, the analysis and evaluation of each colour dyed material was done through following two terms for instance CIELAB (L*, a*, and b*) and K/S values. According to AATCC test methods, colour fastness to washing, crocking, perspiration of the dyed samples is determined whereas according to the ISO standard, the colour fastness to light was estimated and tested. When dyeing was carried out on S/J cotton knit fabric through considering optimum parameter like at 80°C for 60 min and at pH 4 which showed optimum results. From the results we can see, very good wash fastness was obtained while there is no fading of the colour, whereas the outstanding and moderate level of colour fastness to light and crocking is achieved.
基金Humanities and Social Sciences Program of 2011 Funded by Ministry of Education:Studies on Chinese Jade for Clothes in Chu State of Pre-Qin Period(No.10YJAZHD95)
文摘The thesis conducts its analysis fromthe perspective of cultural characteristics of Chu state of Pre-Qin period in ancient China.The culture of Chu,usually focusing on ceremony sacrifice and several other activities,presents unique characteristics of the development of Chinese society and culture.Actually,the jade artifact at that time shows cultural features both at artistic and spiritual level and bears prominent cultural connotations like national spirit of solemnness and generosity.Chinese jade of Chu state of Pre-Qin period due to its abundant cultural connotations and meanings,poses to be an essential element of traditional Chinese culture,which shows artistic and national features of traditional jade culture and can directly influence development of modern society and culture.
基金National Key Research and Development Program of China(No.2018YFC2000900)
文摘A series of self-designed and woven compression stockings were used in this pressure comparison experiment. In order to compare the differences of the garment pressure values exerted by the compression stockings with different structure parameters among three methods. The experiments were carried out with Flexi force sensors. The pressure value of nine pairs of compression stockings on five subjects and the model leg was collected, and the tensile force of the every section of these stockings was collected to calculate the pressure according to Laplace's equation. The data analysis results show that the pressure values of the compression stockings obtained by comparing the three methods have great differences in various testing methods. There is a significant correlation between processing parameters and stitch density(SD). The pressure design of the compression stockings should be based on the actual wearing of the pressure.
文摘In order to reveal the appearance of the clothing prototype on the human body,the characteristics of the human body’s structure above the waist section were studied.Based on the experimental data of the fit prototype,three-dimensional prototypes features were comparatively analyzed.And then objectively evaluating the relationship was conducted between the planar structure lines of different prototypes and the human body.The results showed that the prototypes analyzed basically conformed to the size of the human body.However,when they were worn on the human body,there were problems in the structure and forming.The main reason was that the side seam was skewed to different degrees.The results of this study provide reference for many practitioners to choose prototypes.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50204006)
文摘This paper focuses on the preparation of titanium diboride (TiB2) coatings on the graphite substrate by continuous current plating (CCP) and pulse current plating (PIC) electrochemical techniques in fluoride electrolytes (LiF-NaF-KF) containing K2T1F6 and KBF4 as the electrochemically-active components at 700℃. Thick leveled and uniform coatings were obtained and were composed of relatively pure TiB2. The effect of the experimental parameters on the microstructure of the coatings was studied. The results showed the electrodeposition with PIC produced coatings with better quality, when compared with those obtained by CCP, under the conditions of the current density i = 0.6 A/cm^2, frequency = 100 Hz, and todtofr = 4/1. XRD analysis indicated that the preferred orientation of coatings is (110) plane, which is in accordance with the prediction of the two-dimensional crystal nuclei theory. The effect of a ratio of ton/toff and frequency on the crystal size, textule coefficient and microstress was also investigated.