期刊文献+
共找到79篇文章
< 1 2 4 >
每页显示 20 50 100
Preliminary engineering application of microseismic monitoring technique to rockburst prediction in tunneling of Jinping Ⅱ project 被引量:36
1
作者 Chun'an Tang Jimin Wang Jingjian Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第3期193-208,共16页
Monitoring and prediction of rockburst remain to be worldwide challenges in geotechnical engineering.In hydropower,transportation and other engineering fields in China,more deep,long and large tunnels have been under ... Monitoring and prediction of rockburst remain to be worldwide challenges in geotechnical engineering.In hydropower,transportation and other engineering fields in China,more deep,long and large tunnels have been under construction in recent years and underground caverns are more evidently featured by "long,large,deep and in group",which bring in many problems associated with rock mechanics problems at great depth,especially rockburst.Rockbursts lead to damages to not only underground structures and equipments but also personnel safety.It has been a major technical bottleneck in future deep underground engineering in China.In this paper,compared with earthquake prediction,the feasibility in principle of monitoring and prediction of rockbursts is discussed,considering the source zones,development cycle and scale.The authors think the feasibility of rockburst prediction can be understood in three aspects:(1) the heterogeneity of rock is the main reason for the existence of rockburst precursors;(2) deformation localization is the intrinsic cause of rockburst;and(3) the interaction between target rock mass and its surrounding rock mass is the external cause of rockburst.As an engineering practice,the application of microseismic monitoring techniques during tunnel construction of Jinping II Hydropower Station was reported.It is found that precursory microcracking exists prior to most rockbursts,which could be captured by the microseismic monitoring system.The stress concentration is evident near structural discontinuities(such as faults or joints),which shall be the focus of rockburst monitoring.It is concluded that,by integrating the microseismic monitoring and the rock failure process simulation,the feasibility of rockburst prediction is expected to be enhanced. 展开更多
关键词 microseismic monitoring numerical modeling ROCKBURST PREDICTION
下载PDF
Analysis of Tidal Current Energy Potential in the Major Channels of the Bohai Strait Based on Delft3D
2
作者 MA Pengcheng SHI Hongyuan +2 位作者 XUE Huaiyuan LI Pingping SUN Yongkang 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期859-870,共12页
The utilization and development of tidal current energy can help alleviate the current energy shortage,improve the global ecological environment,and maintain sustainable development.In this study,numerical simulation ... The utilization and development of tidal current energy can help alleviate the current energy shortage,improve the global ecological environment,and maintain sustainable development.In this study,numerical simulation is carried out on a rectangular grid using Delft3D.The tidal current energy potential of the major channels in the Bohai Strait is further simulated and estimated by comparing the simulated and measured data.Results show that the flow module in Delft3D has good modeling ability for the assessment of tidal current energy potential.The average flow velocity,maximum flow velocity,and energy flow density are consistent.The Laotieshan Channel,located in the northern part of the Bohai Strait,shows a large tidal current energy potential.The maximum flow velocity of this channel can reach 2 m s-1,and the maximum energy flow density can exceed 500 W m-2.The tidal current energy in the Laotieshan Channel is more than 10 times that in other channels.Therefore,this study advocates for the continued exploration and exploitation of the tidal current energy resources in the Laotieshan Channel. 展开更多
关键词 Delft3D Bohai Strait tidal current energy numerical simulation power density
下载PDF
Research on 3D visualization design system of hydraulic culvert
3
作者 Wang Ziru Zhang Fan +2 位作者 Qiu Bing Wang Gongyan Ma Baiyu 《Computer Aided Drafting,Design and Manufacturing》 2016年第4期1-4,共4页
The conventional 2D design method of culverts separated from 3D model cannot directly visualize the process of creating and renewal process. This paper explores graphics application framework of Open GL based on MFC, ... The conventional 2D design method of culverts separated from 3D model cannot directly visualize the process of creating and renewal process. This paper explores graphics application framework of Open GL based on MFC, developing the 3D visualization system of hydraulic culvert. This system effectively integrats with building design, structural design and parametric design and image processing technology. The results can be shown by 3D visualization design. 展开更多
关键词 hydraulic culvert PARAMETERIZATION Open GL MFC 3D visualization
下载PDF
Comparisons of Wave Force Model Effects on the Structural Responses and Fatigue Loads of a Semi-Submersible Floating Wind Turbine
4
作者 HAN Yanqing LE Conghuan +1 位作者 ZHANG Puyang XU Shengnan 《Journal of Ocean University of China》 CAS CSCD 2024年第1期69-79,共11页
The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a ... The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a semi-submersible floating wind turbine(SFWT)were conducted.Simulations were performed by employing the Morison equation(ME)with linear or second-order wave kinematics and potential flow theory(PFT)with first-or second-order wave forces.A comparison of regular waves,irregular waves,and coupled wind/waves analyses with the experimental data showed that many of the simulation results and experimental data are relatively consistent.However,notable discrepancies are found in the response amplitude operators for platform heave,tower base bending moment,and tension in mooring lines.PFT models give more satisfactory results of heave but more significant discrepan-cies in tower base bending moment than the ME models.In irregular wave analyses,low-frequency resonances were captured by PFT models with second-order difference-frequency terms,and high-frequency resonances were captured by the ME models or PFT models with second-order sum-frequency terms.These force models capture the response frequencies but do not reasonably predict the response amplitudes.The coupled wind/waves analyses showed more satisfactory results than the wave-only analyses.However,an important detail to note is that this satisfactory result is based on the overprediction of wind-induced responses. 展开更多
关键词 floating wind turbine wave force model potential flow theory Morison equation second-order wave forces
下载PDF
Optimization of Coarse Aggregate Content based on Efficacy Coefficient Method 被引量:11
5
作者 汪振双 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期330-335,共6页
The influence of coarse aggregate content on concrete properties was investigated.From the perspective of Frame Concrete Theory,six groups concrete were produced with the same proportion except for coarse aggregate co... The influence of coarse aggregate content on concrete properties was investigated.From the perspective of Frame Concrete Theory,six groups concrete were produced with the same proportion except for coarse aggregate content,with coarse aggregate content of 0%,40%,50%,60%,75%,and 80%,respectively.Slump,compressive and flexural tensile strengths,elastic modulus,and water penetration were tested to research the effect of coarse aggregate content on concrete.The experimental results reveal that slump reduces with increasing of coarse aggregate content,while compressive strength,elastic modulus and flexural tensile strength increase with the coarse aggregate content increasing,and water penetration reduces with coarse aggregate content increasing before 75% then increased.Workability,strength,durability and economical indexes system were established to optimize the coarse aggregate content in concrete based on efficacy coefficient method.The optimization results show that when coarse aggregate content is 60%,the system efficacy coefficient reaches to 0.89,and it expresses the better comprehensive performance. 展开更多
关键词 coarse aggregate content WORKABILITY STRENGTH DURABILITY efficacy coefficient method
下载PDF
Health diagnosis of concrete dams using hybrid FWA with RBF-based surrogate model 被引量:5
6
作者 Si-qi Dou Jun-jie Li Fei Kang 《Water Science and Engineering》 EI CAS CSCD 2019年第3期188-195,共8页
Structural health monitoring is important to ensuring the health and safety of dams.An inverse analysis method based on a novel hybrid fireworks algorithm (FWA) and the radial basis function (RBF) model is proposed to... Structural health monitoring is important to ensuring the health and safety of dams.An inverse analysis method based on a novel hybrid fireworks algorithm (FWA) and the radial basis function (RBF) model is proposed to diagnose the health condition of concrete dams.The damage of concrete dams is diagnosed by identifying the elastic modulus of materials using the displacement changes at different reservoir water levels.FWA is a global optimization intelligent algorithm.The proposed hybrid algorithm combines the FWA with the pattern search algorithm, which has a high capability for local optimization.Examples of benchmark functions and pseudo-experiment examples of concrete dams illustrate that the hybrid FWA improves the convergence speed and robustness of the original algorithm.To address the time consumption problem, an RBF-based surrogate model was established to replace part of the finite element method in inverse analysis.Numerical examples of concrete dams illustrate that the use of an RBF-based surrogate model significantly reduces the computation time of inverse analysis with little influence on identification accuracy.The presented hybrid FWA combined with the RBF network can quickly and accurately determine the elastic modulus of materials, and then determine the health status of the concrete dam. 展开更多
关键词 FIREWORKS algorithm(FWA) RADIAL BASIS function (RBF) network Surrogate model INVERSE analysis Structural HEALTH monitoring
下载PDF
Effect of Recycled Coarse Aggregate on Concrete Compressive Strength 被引量:7
7
作者 汪振双 王立久 +1 位作者 崔正龙 周梅 《Transactions of Tianjin University》 EI CAS 2011年第3期229-234,共6页
The effect of recycled coarse aggregate on concrete compressive strength was investigated based on the concrete skeleton theory. For this purpose, 30 mix proportions of concrete with target cube compressive strength r... The effect of recycled coarse aggregate on concrete compressive strength was investigated based on the concrete skeleton theory. For this purpose, 30 mix proportions of concrete with target cube compressive strength ranging from 20 to 60 MPa were cast with normal coarse aggregate and recycled coarse aggregate from different strength parent concretes. Results of 28-d test show that the strength of different types of recycled aggregate affects the concrete strength obviously. The coarse aggregate added to mortar matrix plays a skeleton role and improves its compressive strength. The skeleton effect of coarse aggregate increases with the increasing strength of coarse aggregate, and normal coarse aggregate plays the highest, whereas the lowest concrete strength occurs when using the weak recycled coarse aggregate. There is a linear relationship between the concrete strength and the corresponding mortar matrix strength. Coarse aggregate skeleton formula is established, and values from experimental tests match the derived expressions. 展开更多
关键词 recycled coarse aggregate compressive strength concrete skeleton model skeleton formula crushing index
下载PDF
Sensitivity of WRF simulated typhoon track and intensity over the South China Sea to horizontal and vertical resolutions 被引量:6
8
作者 Zhiyuan Wu Changbo Jiang +2 位作者 Bin Deng Jie Chen Xiaojian Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第7期74-83,共10页
To determine the grid resolutions of the WRF model in the typhoon simulation,some sensitivity analysis of horizontal and vertical resolutions in different conditions has been carried out.Different horizontal resolutio... To determine the grid resolutions of the WRF model in the typhoon simulation,some sensitivity analysis of horizontal and vertical resolutions in different conditions has been carried out.Different horizontal resolutions(5,10,20,30 km),nesting grids(15 and 5 km),different vertical resolutions(35-layers,28-layers,20-layers)and different top maximum pressures(1 000,2 000,3 500,5 000 Pa)had been used in the mesoscale numerical model WRF to simulate the Typhoon Kai-tak.The simulation results of typhoon track,wind speed and sea level pressure at different horizontal and vertical resolutions have been compared and analyzed.The horizontal and vertical resolutions of the model have limited effect on the simulation effect of the typhoon track.Different horizontal and vertical resolutions have obvious effects on typhoon strength(defined by wind speed)and intensity(defined by sea level pressure,SLP),especially for sea level pressure.The typhoon intensity simulated by the high-resolution model is closer to the real situation and the nesting grids can improve computational accuracy and efficiency.The simulation results affected by vertical resolution using 35-layers is better than the simulation results using 20-layers and 28-layers simulations.Through comparison and analysis,the horizontal and vertical resolutions of WRF model are finally determined as follows:the two-way nesting grid of 15 and 5 km is comprehensively determined,and the vertical layers is 35-layers,the top maximum pressure is 2 000 Pa. 展开更多
关键词 sensitivity analysis TYPHOON track and INTENSITY HORIZONTAL and vertical RESOLUTIONS TYPHOON Kai-tak WRF
下载PDF
Numerical analysis of dislocations of the face slabs of the Zipingpu Concrete Faced Rockfill Dam during the Wenchuan earthquake 被引量:6
9
作者 Kong Xianjing Zhou Yang +2 位作者 Zou Degao Xu Bin Yu Long 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第4期581-589,共9页
The Zipingpu Concrete Faced Rockfill Dam (CFRD) was obviously damaged during the Wenchuan earthquake in 2008. A wide range of dislocations occurred along the horizontal construction joints at EL. 845m, between the f... The Zipingpu Concrete Faced Rockfill Dam (CFRD) was obviously damaged during the Wenchuan earthquake in 2008. A wide range of dislocations occurred along the horizontal construction joints at EL. 845m, between the face slabs constructed in the second and third stages. The maximum displacement of the dislocations reached 17cm. In this study, the slab dislocations were investigated using finite element (FE) analysis. The method based on strain potential was applied to compute the permanent deformation of the Zipingpu Dam during the Wenchuan earthquake. The calculated magnitude of the slab dislocation showed good agreements with the field measurements. The dislocation mechanism was discussed. The results show that the dislocation of the concrete slab is a subsequent damage after the permanent deformation of the rockfill materials. The effects of the shear strength and the direction of the construction joints, the reservoir water level and the seismic waves were studied. The shear strength and the direction of the construction joints, reservoir water level and have a significant effect on the dislocation displacement. The dislocation can be effectively reduced by measures such as changing the direction of the construction joints or improving the shear strength at the horizontal joints. 展开更多
关键词 Zipingpu CFRD construction joints DISLOCATION numerical simulation Wenchuan earthquake
下载PDF
Experimental and Numerical Investigation of Local Scour Around Submarine Piggyback Pipeline Under Steady Current 被引量:4
10
作者 ZHAO Enjin SHI Bing +2 位作者 QU Ke DONG Wenbin ZHANG Jing 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第2期244-256,共13页
As a new type of submarine pipeline, the piggyback pipeline has been gradually adopted in engineering practice to enhance the performance and safety of submarine pipelines. However, limited simulation work and few exp... As a new type of submarine pipeline, the piggyback pipeline has been gradually adopted in engineering practice to enhance the performance and safety of submarine pipelines. However, limited simulation work and few experimental studies have been published on the scour around the piggyback pipeline under steady current. This study numerically and experimentally investigates the local scour of the piggyback pipe under steady current. The influence of prominent factors such as pipe diameter, inflow Reynolds number, and gap between the main and small pipes, on the maximum scour depth have been examined and discussed in detail. Furthermore, one formula to predict the maximum scour depth under the piggyback pipeline has been derived based on the theoretical analysis of scour equilibrium. The feasibility of the proposed formula has been effectively calibrated by both experimental data and numerical results. The findings drawn from this study are instructive in the future design and application of the piggyback pipeline. 展开更多
关键词 PIGGYBACK PIPELINE local SCOUR SCOUR DEPTH current volume of fluid experiment numerical simulation
下载PDF
Validation and application of three-dimensional discontinuous deformation analysis with tetrahedron finite element meshed block 被引量:4
11
作者 Jun Liu Zheng Nan Ping Yi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第6期1602-1616,共15页
In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a ... In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a linear displacement function to describe the block movement and deformation, which would cause block expansion under rigid body rotation and thus limit its capability to model block de- formation. In this paper, 3D DDA is coupled with tetrahe- dron finite elements to tackle these two problems. Tetrahe- dron is the simplest in the 3D domain and makes it easy to implement automatic discretization, even for complex topol- ogy shape. Furthermore, element faces will remain planar and element edges will remain straight after deformation for tetrahedron finite elements and polyhedral contact detection schemes can be used directly. The matrices of equilibrium equations for this coupled method are given in detail and an effective contact searching algorithm is suggested. Valida- tion is conducted by comparing the results of the proposed coupled method with that of physical model tests using one of the most common failure modes, i.e., wedge failure. Most of the failure modes predicted by the coupled method agree with the physical model results except for 4 cases out of the total 65 cases. Finally, a complex rockslide example demon- strates the robustness and versatility of the coupled method. 展开更多
关键词 Three-dimensional discontinuous deformation analysis Finite element method Coupled method Valida-tion
下载PDF
Numerical study on the characteristics of flow field and wave propagation near submerged breakwater on slope 被引量:6
12
作者 CHEN Jie JIANG Changbo +1 位作者 HU Shixiong HUANG Wenwei 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2010年第1期88-99,共12页
In this study, characteristics of flow field and wave propagation near submerged breakwater on a sloping bed are investigated with numerical model. The governing equations of the vertical two-dimensional model are Rey... In this study, characteristics of flow field and wave propagation near submerged breakwater on a sloping bed are investigated with numerical model. The governing equations of the vertical two-dimensional model are Reynolds Averaged Navier Stokes equations. The Reynolds stress terms are closed by a nonlinear k - ε turbulence transportation model. The free surface is traced through the PILC-VOF method. The proposed numerical model is verified with experimental results. The numerical result shows that the wave profile may become more asymmetrical when wave propagates over breakwater. When wave crest propagates over breakwater, the anticlockwise vortex may generate. On the contrary, when wave hollow propagates over breakwater, the clockwise vortex may generate. Meanwhile, the influenced zone of vortex created by wave crest is larger than that created by wave hollow. All the maximum values of the turbulent kinetic energy, turbulent dissipation and eddy viscosity occur on the top of breakwater. Both the turbulent dissipation and eddy viscosity increase as the turbulent kinetic energy increases. Wave energy may rapidly decrease near the breakwater because turbulent dissipation increases and energy in lower harmonics is transferred into higher harmonics. 展开更多
关键词 submerged breakwater characteristics of flow field PLIC-VOF method sloping bed
下载PDF
Evaluation of numerical wave model for typhoon wave simulation in South China Sea 被引量:3
13
作者 Zhi-yuan Wu Chang-bo Jiang +3 位作者 Bin Deng Jie Chen Yong-gang Cao Lian-jie Li 《Water Science and Engineering》 EI CAS CSCD 2018年第3期229-235,共7页
The simulating waves nearshore(SWAN) model has typically been designed for wave simulations in near-shore regions. In this study, the model's applicability to the simulation of typhoon waves in the South China Sea... The simulating waves nearshore(SWAN) model has typically been designed for wave simulations in near-shore regions. In this study, the model's applicability to the simulation of typhoon waves in the South China Sea(SCS) was evaluated. A blended wind field, consisting of an interior domain based on Fujita's model and an exterior domain based on Takahashi's model, was used as the driving wind field. The waves driven by Typhoon Kai-tak over the SCS that occurred in 2012 were selected for the numerical simulation research. Sensitivity analyses of time step, grid resolution, and angle resolution were performed in order to obtain optimal model settings. Through sensitivity analyses, it can be found that the time step has a large influence on the results, while grid resolution and angle resolution have a little effect on the results. 展开更多
关键词 TYPHOON WAVE South China Sea SWAN MODEL NUMERICAL WAVE MODEL WAVE prediction and SIMULATION
下载PDF
Study on Hydrodynamic Coefficients of Double Submerged Inclined Plates 被引量:3
14
作者 WANG Ke ZHANG Zhi-qiang 《China Ocean Engineering》 SCIE EI CSCD 2018年第1期85-89,共5页
Added mass and damping coefficients are very important in hydrodynamic analysis of naval structures. In this paper,a double submerged inclined plates with ‘/\’ configuration is firstly considered. By use of the boun... Added mass and damping coefficients are very important in hydrodynamic analysis of naval structures. In this paper,a double submerged inclined plates with ‘/\’ configuration is firstly considered. By use of the boundary element method(BEM) based on Green function with the wave term, the radiation problem of this special type structure is investigated. The added mass and damping coefficients due to different plate lengths and inclined angles are obtained. The results show that: the added mass and damping coefficients for sway are the largest. Heave is the most sensitive mode to inclined angles. The wave frequencies of the maximal added mass and damping coefficients for sway and roll are the same. 展开更多
关键词 double submerged inclined plates boundary element method(BEM) added mass and damping coefficients GMRES method
下载PDF
Dynamic response of concrete face rockfill dam affected by polarity reversal of near-fault earthquake 被引量:3
15
作者 Jiang Qiuting Zou Degao +1 位作者 Han Huichao Liu Jingmao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第1期81-99,共19页
In China,an increasing number of high concrete face rockfill dams(CFRDs)are located in high intensity earthquake zones,some of which are close to the seismic fault line.Recordings suggest that near-fault ground motion... In China,an increasing number of high concrete face rockfill dams(CFRDs)are located in high intensity earthquake zones,some of which are close to the seismic fault line.Recordings suggest that near-fault ground motions are characterized by large one-sided velocity pulses.The conventional dynamic analysis of dams,however,neglects the features of strong ground movements.In this study,under different ground motion levels some numerical dynamic studies considering the one-sided broadband pulses of near-fault earthquakes are presented for CFRDs based on a generalized plasticity model for rockfill materials.The results indicate that the displacements of dam crest corresponding to positive and reverse input of near-fault ground motion make a significant difference,while the displacements of the dam crest under artificial seismic waves are similar.Furthermore,using the horizontal and vertical components as simultaneous excitations near the faults,the displacements of the dam crest before and after reversing the motion produce a larger difference than that using a single component.More importantly,the difference of horizontal displacements of the dam crest caused by polarity reversal of near-fault ground motions increases with the increase of earthquake intensity.Due to the randomness and uncertainties of earthquakes,using a stochastic near-field motion input as excitation without considering the polarity(i.e.,positive vs reversed waveform),does not necessarily obtain a conservative result. 展开更多
关键词 near-fault ground motion polarity high concrete face rockfill dam dynamic response
下载PDF
The numerical study of wave-induced pore water pressure response in highly permeable seabed 被引量:2
16
作者 JIANG Changbo CHENG Yongzhou +1 位作者 CHANG Liuhong XIA Bo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第6期46-55,共10页
The coupling numerical model of wave interaction with porous medium is used to study wave- induced pore water pressure in high permeability seabed. In the model, the wave field solver is based on the two dimensional R... The coupling numerical model of wave interaction with porous medium is used to study wave- induced pore water pressure in high permeability seabed. In the model, the wave field solver is based on the two dimensional Reynolds-averaged Navier-Stokes (RANS) equations with a k-s closure, and Forchheimer equations are adopted for flow within the porous media. By introducing a Velocity-Pressure Correction equation for the wave flow and porous flow, a highly efficient coupling between the two flows is implemented. The numerical tests are conducted to study the effects of seabed thickness, porosity, particle size and intrinsic permeability coefficient on regular wave and solitary wave-induced pore water pressure response. The results indicate that, as compared with regular wave-induced, solitary wave-induced pore water pressure has larger values and stronger action on seabed with different parameters. The results also clearly show the flow characteristics of pore water flow within seabed and water wave flow on seabed. The maximum pore water flow velocities within seabed under solitary wave action are higher than those under regular wave action. 展开更多
关键词 solitary wave regular wave highly permeable SEABED pore water pressure numericalstudy
下载PDF
Influence of seismic wave type and incident direction on the dynamic response of tall concrete-faced rockfill dams 被引量:3
17
作者 Chen-guang Zhou De-gao Zou Xiang Yu 《Earthquake Science》 2022年第5期343-354,共12页
Owing to the stochastic behavior of earthquakes and complex crustal structure,wave type and incident direction are uncertain when seismic waves arrive at a structure.In addition,because of the different types of the s... Owing to the stochastic behavior of earthquakes and complex crustal structure,wave type and incident direction are uncertain when seismic waves arrive at a structure.In addition,because of the different types of the structures and terrains,the traveling wave effects have different influences on the dynamic response of the structures.For the tall concrete-faced rockfill dam(CFRD),it is not only built in the complex terrain such as river valley,but also its height has reached 300 m level,which puts forward higher requirements for the seismic safety of the anti-seepage system mainly comprising concrete face slabs,especially the accurate location of the weak area in seism.Considering the limitations of the traditional uniform vibration analysis method,we implemented an efficient dynamic interaction analysis between a tall CFRD and its foundation using a non-uniform wave input method with a viscous-spring artificial boundary and equivalent nodal loads.This method was then applied to investigate the dynamic stress distribution on the concrete face slabs for different seismic wave types and incident directions.The results indicate that dam-foundation interactions behave differently at different wave incident angles,and that the traveling wave effect becomes more evident in valley topography.Seismic wave type and incident direction dramatically influenced stress in the face slab,and the extreme stress values and distribution law will vary under oblique wave incidence.The influence of the incident direction on slab stress was particularly apparent when SH-waves arrived from the left bank.Specifically,the extreme stress values in the face slab increased with an increasing incident angle.Interestingly,the locations of the extreme stress values changed mainly along the axis of the dam,and did not exhibit large changes in height.The seismic safety of CFRDs is therefore lower at higher incident angles from an anti-seepage perspective.Therefore,it is necessary to consider both the seismic wave type and incident direction during seismic capacity evaluations of tall CFRDs. 展开更多
关键词 tall CFRD wave analysis vibration analysis seismic wave type incident direction face slab stress
下载PDF
Wave Attenuation Properties of Double Trapezoidal Submerged Breakwaters on Flat-Bed 被引量:2
18
作者 曹永港 蒋昌波 白玉川 《Transactions of Tianjin University》 EI CAS 2012年第6期401-410,共10页
This paper investigates the wave attenuation properties of the double trapezoidal submerged breakwaters on the flat-bed by conducting physical experiments subjected to linear and cnoidal incident waves.The method of G... This paper investigates the wave attenuation properties of the double trapezoidal submerged breakwaters on the flat-bed by conducting physical experiments subjected to linear and cnoidal incident waves.The method of Goda's two points is used to separate the heights of incident,reflected and transmitted waves based on the experimental data.The possible factors affecting the wave attenuation properties of the double trapezoidal submerged breakwaters(i.e.,the relative submerged water depth,relative breakwater spacing,wave steepness and relative wave height) are investigated with respect to the reflection and transmission coefficients.The results show that there is a range,within which the breakwater spacing has little impact on the reflection coefficient,and the transmission coefficient tends to be a constant.The influence of the wave steepness is reduced while the breakwater spacing is too large or too small.Within the range of the relative wave height tested in this study,the reflection and transmission coefficients increase and decrease with the relative wave height,respectively.The double trapezoidal submerged breakwaters model indicates a good attenuation effect for larger wave steepness,big relative wave height and within the range of the relative breakwater spacing between 12.5 and 14 according to linear and cnoidal waves.The changes of wave energy spectra between the double submerged breakwaters on the flat-bed are investigated by the fast Fourier transform(FFT) method,showing that wave energy dissipation can be reached more effectively when the relative breakwater spacing is 12.5. 展开更多
关键词 linear wave cnoidal wave double trapezoidal submerged breakwaters reflection coefficient transmis- sion coefficient attenuation coefficient
下载PDF
Experimental Study of Pore Water Pressure and Bed Profile Change Under Regular Breaking Waves 被引量:1
19
作者 程永舟 蒋昌波 +2 位作者 赵利平 潘昀 李青峰 《China Ocean Engineering》 SCIE EI 2012年第3期457-468,共12页
There lies a close relationship between the seabed destruction and the distribution of pore water pressure under the action of breaking wave. The experiments were carried out in a wave flume with a 1:30 sloping sandy... There lies a close relationship between the seabed destruction and the distribution of pore water pressure under the action of breaking wave. The experiments were carried out in a wave flume with a 1:30 sloping sandy seabed to study regular breaking wave induced pore water pressure. A wide range of measurements from the regular wave runs were reported, including time series of wave heights, pore pressures. The video records were analysed to measure the time development of the seabed form and the characteristics of the orbital motion of the sand in the wave breaking region. The pore water pressure in the breaker zone showed the time variation depending on the wave phases including wave breaking and bore propagation. The time-averaged pore water pressure was higher near the seabed surface. The peak values of pore water pressure increase significantly at the breaking point. The direction of pore water pressure difference forces in the breaker zone is of fundamental importance for a correct description of the sediment dynamics. The upwards- directed pressure differences may increase sand transport by reducing the effective weight of the sediment, thereby increasing the bed form evolution. The seabed configuration changed greatly at the wave breaking zone and a sand bar was generated remarkably. The amplitude of the pore water pressure changed with the seabed surface. The results are to improve the understanding of sand transport mechanisms and seabed responses due to breaking regular waves over a sloping sandy bed. 展开更多
关键词 breaking wave pore water pressure sloping sandy seabed flume experiment
下载PDF
Simulation of coupled THM process in surrounding rock mass of nuclear waste repository in argillaceous formation 被引量:1
20
作者 蒋中明 HOXHA Dashnor +1 位作者 HOMAND Fran?oise 陈永贵 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期631-637,共7页
To investigate and analyze the thermo-hydro-mechanical(THM) coupling phenomena of a surrounding rock mass in an argillaceous formation, a nuclear waste disposal concept in drifts was represented physically in an in-si... To investigate and analyze the thermo-hydro-mechanical(THM) coupling phenomena of a surrounding rock mass in an argillaceous formation, a nuclear waste disposal concept in drifts was represented physically in an in-situ test way. A transversely isotropic model was employed to reproduce the whole test process numerically. Parameters of the rock mass were determined by laboratory and in-situ experiments. Based on the numerical simulation results and in-situ test data, the variation processes of pore water pressure, temperature and deformation of surrounding rock were analyzed. Both the measured data and numerical results reveal that the thermal perturbation is the principal driving force which leads to the variation of pore water pressure and deformations in the surrounding rock. The temperature, pore pressure and deformation of rock mass change rapidly at each initial heating stage with a constant heating power. The temperature field near the heater borehole is relatively steady in the subsequent stages of the heating phase. However, the pore pressure and deformation fields decrease gradually with temperature remaining unchanged condition. It also shows that a transversely isotropic model can reproduce the THM coupling effects generating in the near-field of a nuclear waste repository in an argillaceous formation. 展开更多
关键词 argillaceous formation thermo-hydro-mechanical(THM) process in-situ test
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部