Introduction to Computer Science,as one of the fundamental courses in computer-related majors,plays an important role in the cultivation of computer professionals.However,traditional teaching models and content can no...Introduction to Computer Science,as one of the fundamental courses in computer-related majors,plays an important role in the cultivation of computer professionals.However,traditional teaching models and content can no longer fully meet the needs of modern information technology development.In response to these issues,this article introduces the concept of computational creative thinking,optimizes course content,adopts exploratory teaching methods,and innovates course assessment methods,aiming to comprehensively enhance students’computational thinking and innovative abilities.By continuously improving and promoting this teaching model,it will undoubtedly promote computer education in universities to a new level.展开更多
This paper discusses the innovative methods of school-enterprise cooperation education mode in computer applied talent training.An innovative training model based on school-enterprise cooperation is proposed to promot...This paper discusses the innovative methods of school-enterprise cooperation education mode in computer applied talent training.An innovative training model based on school-enterprise cooperation is proposed to promote the cultivation of students’practical and innovative skills,so as to better adapt to the needs of society.By analyzing the key links and influencing factors of the training mode,this paper puts forward some concrete suggestions and measures to provide guidelines for universities and enterprises in personnel training.展开更多
Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve it...Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods.展开更多
Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)la...Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process.展开更多
In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parame...In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parameter accuracy.This work proposes a fuzzy particle swarm optimization approach based on the transformation function and the filled function.This approach addresses the topic of particle swarmoptimization in parameter identification from two perspectives.Firstly,the algorithm uses a transformation function to change the form of the fitness function without changing the position of the extreme point of the fitness function,making the extreme point of the fitness function more prominent and improving the algorithm’s search ability while reducing the algorithm’s computational burden.Secondly,on the basis of themulti-loop fuzzy control systembased onmultiplemembership functions,it is merged with the filled function to improve the algorithm’s capacity to skip out of the local optimal solution.This approach can be used to identify the parameters of permanent magnet synchronous motors by sampling only the stator current,voltage,and speed data.The simulation results show that the method can effectively identify the electrical parameters of a permanent magnet synchronous motor,and it has superior global convergence performance and robustness.展开更多
The popularity of the Internet of Things(IoT)has enabled a large number of vulnerable devices to connect to the Internet,bringing huge security risks.As a network-level security authentication method,device fingerprin...The popularity of the Internet of Things(IoT)has enabled a large number of vulnerable devices to connect to the Internet,bringing huge security risks.As a network-level security authentication method,device fingerprint based on machine learning has attracted considerable attention because it can detect vulnerable devices in complex and heterogeneous access phases.However,flexible and diversified IoT devices with limited resources increase dif-ficulty of the device fingerprint authentication method executed in IoT,because it needs to retrain the model network to deal with incremental features or types.To address this problem,a device fingerprinting mechanism based on a Broad Learning System(BLS)is proposed in this paper.The mechanism firstly characterizes IoT devices by traffic analysis based on the identifiable differences of the traffic data of IoT devices,and extracts feature parameters of the traffic packets.A hierarchical hybrid sampling method is designed at the preprocessing phase to improve the imbalanced data distribution and reconstruct the fingerprint dataset.The complexity of the dataset is reduced using Principal Component Analysis(PCA)and the device type is identified by training weights using BLS.The experimental results show that the proposed method can achieve state-of-the-art accuracy and spend less training time than other existing methods.展开更多
With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical chall...With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical challenge due to the complexity of urban roadways and the variability of external conditions.Current research on detecting abnormal traffic behaviors is still nascent,with significant room for improvement in recognition accuracy.To address this,this research has developed a new model for recognizing abnormal traffic behaviors.This model employs the R3D network as its core architecture,incorporating a dense block to facilitate feature reuse.This approach not only enhances performance with fewer parameters and reduced computational demands but also allows for the acquisition of new features while simplifying the overall network structure.Additionally,this research integrates a self-attentive method that dynamically adjusts to the prevailing traffic conditions,optimizing the relevance of features for the task at hand.For temporal analysis,a Bi-LSTM layer is utilized to extract and learn from time-based data nuances.This research conducted a series of comparative experiments using the UCF-Crime dataset,achieving a notable accuracy of 89.30%on our test set.Our results demonstrate that our model not only operates with fewer parameters but also achieves superior recognition accuracy compared to previous models.展开更多
In this paper,we formulate the precoding problem of integrated sensing and communication(ISAC)waveform as a non-convex quadratically constrained quadratic programming(QCQP),in which the weighted sum of communication m...In this paper,we formulate the precoding problem of integrated sensing and communication(ISAC)waveform as a non-convex quadratically constrained quadratic programming(QCQP),in which the weighted sum of communication multi-user interference(MUI)and the gap between dual-use waveform and ideal radar waveform is minimized with peak-toaverage power ratio(PAPR)constraints.We propose an efficient algorithm based on alternating direction method of multipliers(ADMM),which is able to decouple multiple variables and provide a closed-form solution for each subproblem.In addition,to improve the sensing performance in both spatial and temporal domains,we propose a new criteria to design the ideal radar waveform,in which the beam pattern is made similar to the ideal one and the integrated sidelobe level of the ambiguity function in each target direction is minimized in the region of interest.The limited memory Broyden-Fletcher-Goldfarb-Shanno(LBFGS)algorithm is applied to the design of the ideal radar waveform which works as a reference in the design of the dual-function waveform.Numerical results indicate that the designed dual-function waveform is capable of offering good communication quality of service(QoS)and sensing performance.展开更多
The rapid evolution of artificial intelligence(AI)technologies has significantly propelled the advancement of the Internet of Vehicles(IoV).With AI support,represented by machine learning technology,vehicles gain the ...The rapid evolution of artificial intelligence(AI)technologies has significantly propelled the advancement of the Internet of Vehicles(IoV).With AI support,represented by machine learning technology,vehicles gain the capability to make intelligent decisions.As a distributed learning paradigm,federated learning(FL)has emerged as a preferred solution in IoV.Compared to traditional centralized machine learning,FL reduces communication overhead and improves privacy protection.Despite these benefits,FL still faces some security and privacy concerns,such as poisoning attacks and inference attacks,prompting exploration into blockchain integration to enhance its security posture.This paper introduces a novel blockchain-enabled federated learning(BCFL)scheme with differential privacy(DP)tailored for IoV.In order to meet the performance demanding IoV environment,the proposed methodology integrates a consortium blockchain with Practical Byzantine Fault Tolerance(PBFT)consensus,which offers superior efficiency over the conventional public blockchains.In addition,the proposed approach utilizes the Differentially Private Stochastic Gradient Descent(DP-SGD)algorithm in the local training process of FL for enhanced privacy protection.Experiment results indicate that the integration of blockchain elevates the security level of FL in that the proposed approach effectively safeguards FL against poisoning attacks.On the other hand,the additional overhead associated with blockchain integration is also limited to a moderate level to meet the efficiency criteria of IoV.Furthermore,by incorporating DP,the proposed approach is shown to have the(ε-δ)privacy guarantee while maintaining an acceptable level of model accuracy.This enhancement effectively mitigates the threat of inference attacks on private information.展开更多
Natural creatures and ancient cultures are full of potential sources to provide inspiration for applied sciences.Inspired by the fractal geometry in nature and the fretwork frame in ancient culture,here we design the ...Natural creatures and ancient cultures are full of potential sources to provide inspiration for applied sciences.Inspired by the fractal geometry in nature and the fretwork frame in ancient culture,here we design the acoustic metasurface to realize sound anomalous modulation,which manifests itself as an incident-dependent propagation behavior:sound wave propagating in the forward direction is allowed to transmit with high efficiency while in the backward direction is obviously suppressed.We quantitatively investigate the dependences of asymmetric transmission on the propagation direction,incident angle and operating frequency by calculating sound transmittance and energy contrast.This compact fractal fretwork metasurface for acoustic anomalous modulation would promote the development of integrated acoustic devices and expand versatile applications in acoustic communication and information encryption.展开更多
With the rapid development of machine learning,the demand for high-efficient computing becomes more and more urgent.To break the bottleneck of the traditional Von Neumann architecture,computing-in-memory(CIM)has attra...With the rapid development of machine learning,the demand for high-efficient computing becomes more and more urgent.To break the bottleneck of the traditional Von Neumann architecture,computing-in-memory(CIM)has attracted increasing attention in recent years.In this work,to provide a feasible CIM solution for the large-scale neural networks(NN)requiring continuous weight updating in online training,a flash-based computing-in-memory with high endurance(10^(9) cycles)and ultrafast programming speed is investigated.On the one hand,the proposed programming scheme of channel hot electron injection(CHEI)and hot hole injection(HHI)demonstrate high linearity,symmetric potentiation,and a depression process,which help to improve the training speed and accuracy.On the other hand,the low-damage programming scheme and memory window(MW)optimizations can suppress cell degradation effectively with improved computing accuracy.Even after 109 cycles,the leakage current(I_(off))of cells remains sub-10pA,ensuring the large-scale computing ability of memory.Further characterizations are done on read disturb to demonstrate its robust reliabilities.By processing CIFAR-10 tasks,it is evident that~90%accuracy can be achieved after 109 cycles in both ResNet50 and VGG16 NN.Our results suggest that flash-based CIM has great potential to overcome the limitations of traditional Von Neumann architectures and enable high-performance NN online training,which pave the way for further development of artificial intelligence(AI)accelerators.展开更多
Emission and capture characteristics of a deep hole trap(H1)in n-GaN Schottky barrier diodes(SBDs)have been investigated by optical deep level transient spectroscopy(ODLTS).Activation energy(Eemi)and capture cross-sec...Emission and capture characteristics of a deep hole trap(H1)in n-GaN Schottky barrier diodes(SBDs)have been investigated by optical deep level transient spectroscopy(ODLTS).Activation energy(Eemi)and capture cross-section(σ_(p))of H1 are determined to be 0.75 eV and 4.67×10^(−15)cm^(2),respectively.Distribution of apparent trap concentration in space charge region is demonstrated.Temperature-enhanced emission process is revealed by decrease of emission time constant.Electricfield-boosted trap emission kinetics are analyzed by the Poole−Frenkel emission(PFE)model.In addition,H1 shows point defect capture properties and temperature-enhanced capture kinetics.Taking both hole capture and emission processes into account during laser beam incidence,H1 features a trap concentration of 2.67×10^(15)cm^(−3).The method and obtained results may facilitate understanding of minority carrier trap properties in wide bandgap semiconductor material and can be applied for device reliability assessment.展开更多
Dear Editor,This letter focuses on the distributed optimal containment control of continuous-time multi-agent systems(CTMASs)with respect to the minimum-energy performance index over fixed topology.To achieve this,we ...Dear Editor,This letter focuses on the distributed optimal containment control of continuous-time multi-agent systems(CTMASs)with respect to the minimum-energy performance index over fixed topology.To achieve this,we firstly investigate the optimal containment control problem using the inverse optimal control method,where all states of followers asymptotically converge to the convex hull spanned by the leaders while some quadratic performance indexes get minimized.A sufficient condition for existence of the distributed optimal containment control protocol is derived.By introducing the parametric algebraic Riccati equation(PARE),it is strictly proved that the global performance index can be used to approximate the standard minimumenergy performance index as the parameters tends to infinity.In consequence,the standard minimum-energy cooperative containment control can be solved by local steady state feedback protocols.展开更多
A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for det...A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.展开更多
This paper aimed to propose two algorithms,DA-M and RF-M,of reducing the impact of multipath interference(MPI)on intensity modulation direct detection(IM-DD)systems,particularly for four-level pulse amplitude modulati...This paper aimed to propose two algorithms,DA-M and RF-M,of reducing the impact of multipath interference(MPI)on intensity modulation direct detection(IM-DD)systems,particularly for four-level pulse amplitude modulation(PAM4)systems.DA-M reduced the fluctuation by averaging the signal in blocks,RF-M estimated MPI by subtracting the decision value of the corresponding block from the mean value of a signal block,and then generated interference-reduced samples by subtracting the interference signal from the product of the corresponding MPI estimate and then weighting factor.This paper firstly proposed to separate the signal before decision-making into multiple blocks,which significantly reduced the complexity of DA-M and RF-M.Simulation results showed that the MPI noise of 28 GBaud IMDD system under the linewidths of 1e5 Hz,1e6 Hz and 10e6 Hz can be effectively alleviated.展开更多
In the coal mining process,a large amount of Coal Mine-Associated energy(CMAE),such as coal mine methane and underground wastewater,is produced.Research on the modeling and optimization dispatching of a Coal Mine-Inte...In the coal mining process,a large amount of Coal Mine-Associated energy(CMAE),such as coal mine methane and underground wastewater,is produced.Research on the modeling and optimization dispatching of a Coal Mine-Integrated Energy System(CMIES)with CMAE effectively saves energy and reduces carbon pollution.CMAE has great uncertainties owing to the affections of the hydrogeology conditions and mining schedules.In addition,thermal loads have high comfort requirements in mines,which brings great challenges to the optimization dispatching of CMIESs.Therefore,this paper studies the architecture and solution of CMIESs with a flexible thermal load and source-load uncertainty.First,to effectively improve the electric and thermal conversion efficiency,the architecture of CMIES,including a concentrating solar power station,is built.Second,for the scheduling model with bilateral uncertainty,the interval representation method with interval variables is proposed,and a multi-objective scheduling model based on the interval variables and flexible thermal load is constructed.Finally,we propose a solution method for the model with interval variables.A case study is conducted to demonstrate the performance of our model and method for lowering carbon emissions and cost.展开更多
Detection of maneuvering small targets has always been an important yet challenging task for radar signal processing.One primary reason is that target variable motions within coherent processing interval generate ener...Detection of maneuvering small targets has always been an important yet challenging task for radar signal processing.One primary reason is that target variable motions within coherent processing interval generate energy migrations across multiple resolution bins,which severely deteriorate the parameter estimation performance.A coarse-to-fine strategy for the detection of maneuvering small targets is proposed.Integration of small points segmented coherently is performed first,and then an optimal inter-segment integration is utilized to derive the coarse estimation of the chirp rate.Sparse fractional Fourier transform(FrFT)is then employed to refine the coarse estimation at a significantly reduced computational complexity.Simulation results verify the proposed scheme that achieves an efficient and reliable maneuvering target detection with-16dB input signal-to-noise ratio(SNR),while requires no exact a priori knowledge on the motion parameters.展开更多
This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing singl...This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.展开更多
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ...When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ML models to be trained on local devices without any need for centralized data transfer,thereby reducing both the exposure of sensitive data and the possibility of data interception by malicious third parties.This paradigm has gained momentum in the last few years,spurred by the plethora of real-world applications that have leveraged its ability to improve the efficiency of distributed learning and to accommodate numerous participants with their data sources.By virtue of FL,models can be learned from all such distributed data sources while preserving data privacy.The aim of this paper is to provide a practical tutorial on FL,including a short methodology and a systematic analysis of existing software frameworks.Furthermore,our tutorial provides exemplary cases of study from three complementary perspectives:i)Foundations of FL,describing the main components of FL,from key elements to FL categories;ii)Implementation guidelines and exemplary cases of study,by systematically examining the functionalities provided by existing software frameworks for FL deployment,devising a methodology to design a FL scenario,and providing exemplary cases of study with source code for different ML approaches;and iii)Trends,shortly reviewing a non-exhaustive list of research directions that are under active investigation in the current FL landscape.The ultimate purpose of this work is to establish itself as a referential work for researchers,developers,and data scientists willing to explore the capabilities of FL in practical applications.展开更多
Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images.Methods A total of 1001 images of s...Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images.Methods A total of 1001 images of stained tongue coating from healthy students at Hunan University of Chinese Medicine and 1007 images of pathological(non-stained)tongue coat-ing from hospitalized patients at The First Hospital of Hunan University of Chinese Medicine withlungcancer;diabetes;andhypertensionwerecollected.Thetongueimageswererandomi-zed into the training;validation;and testing datasets in a 7:2:1 ratio.A deep learning model was constructed using the ResNet50 for recognizing stained tongue coating in the training and validation datasets.The training period was 90 epochs.The model’s performance was evaluated by its accuracy;loss curve;recall;F1 score;confusion matrix;receiver operating characteristic(ROC)curve;and precision-recall(PR)curve in the tasks of predicting stained tongue coating images in the testing dataset.The accuracy of the deep learning model was compared with that of attending physicians of traditional Chinese medicine(TCM).Results The training results showed that after 90 epochs;the model presented an excellent classification performance.The loss curve and accuracy were stable;showing no signs of overfitting.The model achieved an accuracy;recall;and F1 score of 92%;91%;and 92%;re-spectively.The confusion matrix revealed an accuracy of 92%for the model and 69%for TCM practitioners.The areas under the ROC and PR curves were 0.97 and 0.95;respectively.Conclusion The deep learning model constructed using ResNet50 can effectively recognize stained coating images with greater accuracy than visual inspection of TCM practitioners.This model has the potential to assist doctors in identifying false tongue coating and prevent-ing misdiagnosis.展开更多
基金2024 Education and Teaching Reform Research Project of Hainan Normal University(hsjg2024-04)。
文摘Introduction to Computer Science,as one of the fundamental courses in computer-related majors,plays an important role in the cultivation of computer professionals.However,traditional teaching models and content can no longer fully meet the needs of modern information technology development.In response to these issues,this article introduces the concept of computational creative thinking,optimizes course content,adopts exploratory teaching methods,and innovates course assessment methods,aiming to comprehensively enhance students’computational thinking and innovative abilities.By continuously improving and promoting this teaching model,it will undoubtedly promote computer education in universities to a new level.
文摘This paper discusses the innovative methods of school-enterprise cooperation education mode in computer applied talent training.An innovative training model based on school-enterprise cooperation is proposed to promote the cultivation of students’practical and innovative skills,so as to better adapt to the needs of society.By analyzing the key links and influencing factors of the training mode,this paper puts forward some concrete suggestions and measures to provide guidelines for universities and enterprises in personnel training.
基金supported in part by National Key Research and Development Program of China under Grant 2021YFB2900404.
文摘Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12204132 and 12304376)Excellent Youth Science Foundation of Shandong Province (Overseas) (Grant No.2022HWYQ-073)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.HIT.OCEF.2022042)Natural Science Foundation of Shandong Province (Grant No.ZR2023QA075)。
文摘Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process.
基金the Natural Science Foundation of China under Grant 52077027in part by the Liaoning Province Science and Technology Major Project No.2020JH1/10100020.
文摘In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parameter accuracy.This work proposes a fuzzy particle swarm optimization approach based on the transformation function and the filled function.This approach addresses the topic of particle swarmoptimization in parameter identification from two perspectives.Firstly,the algorithm uses a transformation function to change the form of the fitness function without changing the position of the extreme point of the fitness function,making the extreme point of the fitness function more prominent and improving the algorithm’s search ability while reducing the algorithm’s computational burden.Secondly,on the basis of themulti-loop fuzzy control systembased onmultiplemembership functions,it is merged with the filled function to improve the algorithm’s capacity to skip out of the local optimal solution.This approach can be used to identify the parameters of permanent magnet synchronous motors by sampling only the stator current,voltage,and speed data.The simulation results show that the method can effectively identify the electrical parameters of a permanent magnet synchronous motor,and it has superior global convergence performance and robustness.
基金supported by National Key R&D Program of China(2019YFB2102303)National Natural Science Foundation of China(NSFC61971014,NSFC11675199)Young Backbone Teacher Training Program of Henan Colleges and Universities(2021GGJS170).
文摘The popularity of the Internet of Things(IoT)has enabled a large number of vulnerable devices to connect to the Internet,bringing huge security risks.As a network-level security authentication method,device fingerprint based on machine learning has attracted considerable attention because it can detect vulnerable devices in complex and heterogeneous access phases.However,flexible and diversified IoT devices with limited resources increase dif-ficulty of the device fingerprint authentication method executed in IoT,because it needs to retrain the model network to deal with incremental features or types.To address this problem,a device fingerprinting mechanism based on a Broad Learning System(BLS)is proposed in this paper.The mechanism firstly characterizes IoT devices by traffic analysis based on the identifiable differences of the traffic data of IoT devices,and extracts feature parameters of the traffic packets.A hierarchical hybrid sampling method is designed at the preprocessing phase to improve the imbalanced data distribution and reconstruct the fingerprint dataset.The complexity of the dataset is reduced using Principal Component Analysis(PCA)and the device type is identified by training weights using BLS.The experimental results show that the proposed method can achieve state-of-the-art accuracy and spend less training time than other existing methods.
基金supported by the National Natural Science Foundation of China(61971007&61571013).
文摘With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical challenge due to the complexity of urban roadways and the variability of external conditions.Current research on detecting abnormal traffic behaviors is still nascent,with significant room for improvement in recognition accuracy.To address this,this research has developed a new model for recognizing abnormal traffic behaviors.This model employs the R3D network as its core architecture,incorporating a dense block to facilitate feature reuse.This approach not only enhances performance with fewer parameters and reduced computational demands but also allows for the acquisition of new features while simplifying the overall network structure.Additionally,this research integrates a self-attentive method that dynamically adjusts to the prevailing traffic conditions,optimizing the relevance of features for the task at hand.For temporal analysis,a Bi-LSTM layer is utilized to extract and learn from time-based data nuances.This research conducted a series of comparative experiments using the UCF-Crime dataset,achieving a notable accuracy of 89.30%on our test set.Our results demonstrate that our model not only operates with fewer parameters but also achieves superior recognition accuracy compared to previous models.
基金supported in part by the National Natural Science Foundation of China under Grant 62271142in part by the Key Research and Development Program of Jiangsu Province BE2023021+2 种基金in part by the Jiangsu Key Research and Development Program Project under Grant BE2023011-2in part by the Young Scholar Funding of Southeast Universityin part by the Fundamental Research Funds for the Central Universities 2242022k60001。
文摘In this paper,we formulate the precoding problem of integrated sensing and communication(ISAC)waveform as a non-convex quadratically constrained quadratic programming(QCQP),in which the weighted sum of communication multi-user interference(MUI)and the gap between dual-use waveform and ideal radar waveform is minimized with peak-toaverage power ratio(PAPR)constraints.We propose an efficient algorithm based on alternating direction method of multipliers(ADMM),which is able to decouple multiple variables and provide a closed-form solution for each subproblem.In addition,to improve the sensing performance in both spatial and temporal domains,we propose a new criteria to design the ideal radar waveform,in which the beam pattern is made similar to the ideal one and the integrated sidelobe level of the ambiguity function in each target direction is minimized in the region of interest.The limited memory Broyden-Fletcher-Goldfarb-Shanno(LBFGS)algorithm is applied to the design of the ideal radar waveform which works as a reference in the design of the dual-function waveform.Numerical results indicate that the designed dual-function waveform is capable of offering good communication quality of service(QoS)and sensing performance.
基金supported in part by the Natural Science Foundation of Henan Province(Grant No.202300410510)the Consulting Research Project of Chinese Academy of Engineering(Grant No.2020YNZH7)+3 种基金the Key Scientific Research Project of Colleges and Universities in Henan Province(Grant Nos.23A520043 and 23B520010)the International Science and Technology Cooperation Project of Henan Province(Grant No.232102521004)the National Key Research and Development Program of China(Grant No.2020YFB1005404)the Henan Provincial Science and Technology Research Project(Grant No.212102210100).
文摘The rapid evolution of artificial intelligence(AI)technologies has significantly propelled the advancement of the Internet of Vehicles(IoV).With AI support,represented by machine learning technology,vehicles gain the capability to make intelligent decisions.As a distributed learning paradigm,federated learning(FL)has emerged as a preferred solution in IoV.Compared to traditional centralized machine learning,FL reduces communication overhead and improves privacy protection.Despite these benefits,FL still faces some security and privacy concerns,such as poisoning attacks and inference attacks,prompting exploration into blockchain integration to enhance its security posture.This paper introduces a novel blockchain-enabled federated learning(BCFL)scheme with differential privacy(DP)tailored for IoV.In order to meet the performance demanding IoV environment,the proposed methodology integrates a consortium blockchain with Practical Byzantine Fault Tolerance(PBFT)consensus,which offers superior efficiency over the conventional public blockchains.In addition,the proposed approach utilizes the Differentially Private Stochastic Gradient Descent(DP-SGD)algorithm in the local training process of FL for enhanced privacy protection.Experiment results indicate that the integration of blockchain elevates the security level of FL in that the proposed approach effectively safeguards FL against poisoning attacks.On the other hand,the additional overhead associated with blockchain integration is also limited to a moderate level to meet the efficiency criteria of IoV.Furthermore,by incorporating DP,the proposed approach is shown to have the(ε-δ)privacy guarantee while maintaining an acceptable level of model accuracy.This enhancement effectively mitigates the threat of inference attacks on private information.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1404500)the National Natural Science Foundation of China(Grant Nos.T2222024 and 12034005)the STCSM Science and Technology Innovation Plan of Shanghai Science and Technology Commission(Grant Nos.20ZR1404200 and 21JC1400300)。
文摘Natural creatures and ancient cultures are full of potential sources to provide inspiration for applied sciences.Inspired by the fractal geometry in nature and the fretwork frame in ancient culture,here we design the acoustic metasurface to realize sound anomalous modulation,which manifests itself as an incident-dependent propagation behavior:sound wave propagating in the forward direction is allowed to transmit with high efficiency while in the backward direction is obviously suppressed.We quantitatively investigate the dependences of asymmetric transmission on the propagation direction,incident angle and operating frequency by calculating sound transmittance and energy contrast.This compact fractal fretwork metasurface for acoustic anomalous modulation would promote the development of integrated acoustic devices and expand versatile applications in acoustic communication and information encryption.
基金This work was supported by the National Natural Science Foundation of China(Nos.62034006,92264201,and 91964105)the Natural Science Foundation of Shandong Province(Nos.ZR2020JQ28 and ZR2020KF016)the Program of Qilu Young Scholars of Shandong University.
文摘With the rapid development of machine learning,the demand for high-efficient computing becomes more and more urgent.To break the bottleneck of the traditional Von Neumann architecture,computing-in-memory(CIM)has attracted increasing attention in recent years.In this work,to provide a feasible CIM solution for the large-scale neural networks(NN)requiring continuous weight updating in online training,a flash-based computing-in-memory with high endurance(10^(9) cycles)and ultrafast programming speed is investigated.On the one hand,the proposed programming scheme of channel hot electron injection(CHEI)and hot hole injection(HHI)demonstrate high linearity,symmetric potentiation,and a depression process,which help to improve the training speed and accuracy.On the other hand,the low-damage programming scheme and memory window(MW)optimizations can suppress cell degradation effectively with improved computing accuracy.Even after 109 cycles,the leakage current(I_(off))of cells remains sub-10pA,ensuring the large-scale computing ability of memory.Further characterizations are done on read disturb to demonstrate its robust reliabilities.By processing CIFAR-10 tasks,it is evident that~90%accuracy can be achieved after 109 cycles in both ResNet50 and VGG16 NN.Our results suggest that flash-based CIM has great potential to overcome the limitations of traditional Von Neumann architectures and enable high-performance NN online training,which pave the way for further development of artificial intelligence(AI)accelerators.
基金supported by ShanghaiTech University Startup Fund 2017F0203-000-14the National Natural Science Foundation of China(Grant No.52131303)+1 种基金Natural Science Foundation of Shanghai(Grant No.22ZR1442300)in part by CAS Strategic Science and Technology Program(Grant No.XDA18000000).
文摘Emission and capture characteristics of a deep hole trap(H1)in n-GaN Schottky barrier diodes(SBDs)have been investigated by optical deep level transient spectroscopy(ODLTS).Activation energy(Eemi)and capture cross-section(σ_(p))of H1 are determined to be 0.75 eV and 4.67×10^(−15)cm^(2),respectively.Distribution of apparent trap concentration in space charge region is demonstrated.Temperature-enhanced emission process is revealed by decrease of emission time constant.Electricfield-boosted trap emission kinetics are analyzed by the Poole−Frenkel emission(PFE)model.In addition,H1 shows point defect capture properties and temperature-enhanced capture kinetics.Taking both hole capture and emission processes into account during laser beam incidence,H1 features a trap concentration of 2.67×10^(15)cm^(−3).The method and obtained results may facilitate understanding of minority carrier trap properties in wide bandgap semiconductor material and can be applied for device reliability assessment.
基金supported by the National Nat-ural Science Foundation of China(61873215,62103342)the Natural Science Foundation of Sichuan Province(2022NSFSC0470,2022NSFSC0892).
文摘Dear Editor,This letter focuses on the distributed optimal containment control of continuous-time multi-agent systems(CTMASs)with respect to the minimum-energy performance index over fixed topology.To achieve this,we firstly investigate the optimal containment control problem using the inverse optimal control method,where all states of followers asymptotically converge to the convex hull spanned by the leaders while some quadratic performance indexes get minimized.A sufficient condition for existence of the distributed optimal containment control protocol is derived.By introducing the parametric algebraic Riccati equation(PARE),it is strictly proved that the global performance index can be used to approximate the standard minimumenergy performance index as the parameters tends to infinity.In consequence,the standard minimum-energy cooperative containment control can be solved by local steady state feedback protocols.
文摘A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.
基金supported by the National Key Research and Development Program of China 2021YFB2900801the Young Elite Scientists Sponsorship Program of CIC 2021QNRC001+1 种基金National Natural Science Foundation of China NSFC,62201033,U22A2005the Foundation of the Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services.
文摘This paper aimed to propose two algorithms,DA-M and RF-M,of reducing the impact of multipath interference(MPI)on intensity modulation direct detection(IM-DD)systems,particularly for four-level pulse amplitude modulation(PAM4)systems.DA-M reduced the fluctuation by averaging the signal in blocks,RF-M estimated MPI by subtracting the decision value of the corresponding block from the mean value of a signal block,and then generated interference-reduced samples by subtracting the interference signal from the product of the corresponding MPI estimate and then weighting factor.This paper firstly proposed to separate the signal before decision-making into multiple blocks,which significantly reduced the complexity of DA-M and RF-M.Simulation results showed that the MPI noise of 28 GBaud IMDD system under the linewidths of 1e5 Hz,1e6 Hz and 10e6 Hz can be effectively alleviated.
基金supported by the National Key R&D Program of China(No.2022YFE0199000)the National Natural Science Foundation of China(No.62133015).
文摘In the coal mining process,a large amount of Coal Mine-Associated energy(CMAE),such as coal mine methane and underground wastewater,is produced.Research on the modeling and optimization dispatching of a Coal Mine-Integrated Energy System(CMIES)with CMAE effectively saves energy and reduces carbon pollution.CMAE has great uncertainties owing to the affections of the hydrogeology conditions and mining schedules.In addition,thermal loads have high comfort requirements in mines,which brings great challenges to the optimization dispatching of CMIESs.Therefore,this paper studies the architecture and solution of CMIESs with a flexible thermal load and source-load uncertainty.First,to effectively improve the electric and thermal conversion efficiency,the architecture of CMIES,including a concentrating solar power station,is built.Second,for the scheduling model with bilateral uncertainty,the interval representation method with interval variables is proposed,and a multi-objective scheduling model based on the interval variables and flexible thermal load is constructed.Finally,we propose a solution method for the model with interval variables.A case study is conducted to demonstrate the performance of our model and method for lowering carbon emissions and cost.
基金supported in part by the National Natural Science Foundation of China (Nos.62171029,61931015,U1833203)Natural Science Foundation of Beijing Municipality (No.4172052)supported in part by the Basic Research Program of Jiangsu Province (No.SBK2019042353)。
文摘Detection of maneuvering small targets has always been an important yet challenging task for radar signal processing.One primary reason is that target variable motions within coherent processing interval generate energy migrations across multiple resolution bins,which severely deteriorate the parameter estimation performance.A coarse-to-fine strategy for the detection of maneuvering small targets is proposed.Integration of small points segmented coherently is performed first,and then an optimal inter-segment integration is utilized to derive the coarse estimation of the chirp rate.Sparse fractional Fourier transform(FrFT)is then employed to refine the coarse estimation at a significantly reduced computational complexity.Simulation results verify the proposed scheme that achieves an efficient and reliable maneuvering target detection with-16dB input signal-to-noise ratio(SNR),while requires no exact a priori knowledge on the motion parameters.
基金supported in part by the National Natural Science Foundation of China (62373065,61873304,62173048,62106023)the Innovation and Entrepreneurship Talent funding Project of Jilin Province(2022QN04)+1 种基金the Changchun Science and Technology Project (21ZY41)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (2024D09)。
文摘This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.
基金the R&D&I,Spain grants PID2020-119478GB-I00 and,PID2020-115832GB-I00 funded by MCIN/AEI/10.13039/501100011033.N.Rodríguez-Barroso was supported by the grant FPU18/04475 funded by MCIN/AEI/10.13039/501100011033 and by“ESF Investing in your future”Spain.J.Moyano was supported by a postdoctoral Juan de la Cierva Formación grant FJC2020-043823-I funded by MCIN/AEI/10.13039/501100011033 and by European Union NextGenerationEU/PRTR.J.Del Ser acknowledges funding support from the Spanish Centro para el Desarrollo Tecnológico Industrial(CDTI)through the AI4ES projectthe Department of Education of the Basque Government(consolidated research group MATHMODE,IT1456-22)。
文摘When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ML models to be trained on local devices without any need for centralized data transfer,thereby reducing both the exposure of sensitive data and the possibility of data interception by malicious third parties.This paradigm has gained momentum in the last few years,spurred by the plethora of real-world applications that have leveraged its ability to improve the efficiency of distributed learning and to accommodate numerous participants with their data sources.By virtue of FL,models can be learned from all such distributed data sources while preserving data privacy.The aim of this paper is to provide a practical tutorial on FL,including a short methodology and a systematic analysis of existing software frameworks.Furthermore,our tutorial provides exemplary cases of study from three complementary perspectives:i)Foundations of FL,describing the main components of FL,from key elements to FL categories;ii)Implementation guidelines and exemplary cases of study,by systematically examining the functionalities provided by existing software frameworks for FL deployment,devising a methodology to design a FL scenario,and providing exemplary cases of study with source code for different ML approaches;and iii)Trends,shortly reviewing a non-exhaustive list of research directions that are under active investigation in the current FL landscape.The ultimate purpose of this work is to establish itself as a referential work for researchers,developers,and data scientists willing to explore the capabilities of FL in practical applications.
基金National Natural Science Foundation of China(82274411)Science and Technology Innovation Program of Hunan Province(2022RC1021)Leading Research Project of Hunan University of Chinese Medicine(2022XJJB002).
文摘Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images.Methods A total of 1001 images of stained tongue coating from healthy students at Hunan University of Chinese Medicine and 1007 images of pathological(non-stained)tongue coat-ing from hospitalized patients at The First Hospital of Hunan University of Chinese Medicine withlungcancer;diabetes;andhypertensionwerecollected.Thetongueimageswererandomi-zed into the training;validation;and testing datasets in a 7:2:1 ratio.A deep learning model was constructed using the ResNet50 for recognizing stained tongue coating in the training and validation datasets.The training period was 90 epochs.The model’s performance was evaluated by its accuracy;loss curve;recall;F1 score;confusion matrix;receiver operating characteristic(ROC)curve;and precision-recall(PR)curve in the tasks of predicting stained tongue coating images in the testing dataset.The accuracy of the deep learning model was compared with that of attending physicians of traditional Chinese medicine(TCM).Results The training results showed that after 90 epochs;the model presented an excellent classification performance.The loss curve and accuracy were stable;showing no signs of overfitting.The model achieved an accuracy;recall;and F1 score of 92%;91%;and 92%;re-spectively.The confusion matrix revealed an accuracy of 92%for the model and 69%for TCM practitioners.The areas under the ROC and PR curves were 0.97 and 0.95;respectively.Conclusion The deep learning model constructed using ResNet50 can effectively recognize stained coating images with greater accuracy than visual inspection of TCM practitioners.This model has the potential to assist doctors in identifying false tongue coating and prevent-ing misdiagnosis.