Aimed at the hydrodynamic response for marine structures slamming into water, based on the mechanism analysis to the slamming process, and by combining 3D N-S equation and k-ε turbulent kinetic equation with structur...Aimed at the hydrodynamic response for marine structures slamming into water, based on the mechanism analysis to the slamming process, and by combining 3D N-S equation and k-ε turbulent kinetic equation with structure fully 6DOF motion equation, a mathematical model for the wind-fluid-solid interaction is established in 3D marine structure slamming wave at free poses and wind-wave-flow complex environments. Compared with the results of physical model test, the numerical results from the slamming wave well correspond with the experimental results. Through the mathematical model, the wave-making issue of 3D marine structure at initial pose falls into water in different complex wind, wave and flow environments is investigated. The research results show that various kinds of natural factors and structure initial poses have different influence on the slamming wave, and there is an obvious rule in this process.展开更多
This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in...This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.展开更多
Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium cond...Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium conditions were investigated accordingly.The results indicate that the optimal scouring effects occur when the jet angle is in the ranges between 15°and 20°.Moreover,the dimensionless profiles of the scour hole exhibit a high degree of similarity at different jet angles.Numerical simulations conducted using the Flow-3D software to investigate the bed shear stress along the jet impingement surface have shown that this stress is influenced by both the resultant force and the jet impingement surface area.It reaches its maximum value when the jet is vertical,decreases rapidly as the jet starts to tilt,then increases slightly,and decreases again significantly when the angle exceeds 20°.展开更多
Water jet technology is widely used in submerged buried pipes as a non-traditional trenching process,often invol-ving a complex sediment response.An important adjustable and influential engineering variable in this tec...Water jet technology is widely used in submerged buried pipes as a non-traditional trenching process,often invol-ving a complex sediment response.An important adjustable and influential engineering variable in this technol-ogy is represented by the impinging distance.In this study,the FLOW-3D software was used to simulate the jet scouring of sand beds in a submerged environment.In particular,four sets of experimental conditions were con-sidered to discern the relationship between the maximum scour depth and mass and the impinging distance.As shown by the results,a critical impinging distance h0 exists by which the static scour depth can be maximized;the scour mass ratio between dynamic and static conditions decreases as the impinging distance increases.Moreover,the profile contours are similar when the erosion parameter Ec is in the range 0.35<Ec<2.Empirical equations applicable for predicting the jet trenching contour under both dynamic and static scour modes are also provided in this study.展开更多
Dear Editor,This letter addresses long duration coverage problem of multiple robotic surface vehicles(RSVs) subject to battery energy constraints,in addition to uncertainties and disturbances. An anti-disturbance ener...Dear Editor,This letter addresses long duration coverage problem of multiple robotic surface vehicles(RSVs) subject to battery energy constraints,in addition to uncertainties and disturbances. An anti-disturbance energy-aware control method is proposed for performing coverage task of RSVs. Firstly, a centroidal Voronoi tessellation(CVT) is used to optimize the partition of the given coverage area.展开更多
High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate tor...High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate torsional vibration. This paper presents the construction of a highly compact HSLDS torsional vibration isolator by connecting positive and negative stiffness components in paral lel. Based on mechanical model analysis, the restoring torque of negative stiffness components is de rived from their springs and connecting rods, while that of positive stiffness components is obtained through their circular section flexible rods. The quasizero stiffness characteristics of the HSLDS iso lator are achieved through a combination of static structural simulation and experimental test. The tor sional vibration isolation performance is assessed by means of numerical simulation and theory analy sis. Finally, the frequency-sweep vibration test is conducted. The test results indicate that the HSLDS torsional vibration isolator exhibits superior low-frequency isolation performance compared to its linear counterpart, rendering it a promising solution for mitigating low-frequency torsional vi bration in ship shafting.展开更多
LaF_(3) was doped to the Mg(Al)solid solution alloy for enhancing the hydrogen absorption and desorption by ball milling.XRD was used to analyze the phases of the samples and the phase transition induced by hydrogenat...LaF_(3) was doped to the Mg(Al)solid solution alloy for enhancing the hydrogen absorption and desorption by ball milling.XRD was used to analyze the phases of the samples and the phase transition induced by hydrogenation and dehydrogenation.The microstructure and phase distribution were investigated by SEM and STEM.The hydrogen storage properties were measured by Sieverts method.For Mg_(0.93)Al_(0.07)−5wt.%LaF_(3) nanocomposite,the hydrogen storage kinetic properties were significantly improved by reducing the hydriding and dehydriding activation energies to 65 and 78 kJ/mol,respectively,and the dehydriding enthalpy was calculated to be 69.7 kJ/mol.The improved hydrogen storage properties were mainly attributed to the catalytic effects of the in situ formed nanostructure Al_(11)La_(3) and MgF_(2) together with the dissolving of Al in Mg lattice.展开更多
Dear editor,This letter addresses the multi-target tracking of underactuated unmanned surface vehicles(USVs)subject to multiple stationary/moving obstacles.The kinetic model parameters of each USV are totally unknown....Dear editor,This letter addresses the multi-target tracking of underactuated unmanned surface vehicles(USVs)subject to multiple stationary/moving obstacles.The kinetic model parameters of each USV are totally unknown.A safety-critical model-free control method is proposed for tracking multiple targets with a collision-free containment formation.Specifically,a distributed containment extended state observer(DCESO)is designed to estimate the convex hull spanned by the multiple targets.At the kinematic level,a collision-free kinematic guidance law is presented using a control barrier function(CBF)and an extended state observer for each follower USV.At the kinetic level,a model-free position tracking control law by using an adaptive ESO(AESO)is presented for each follower USV.By the designed safety-critical model-free control method,cooperative tracking of multiple targets under multiple stationary/moving obstacles can be achieved using completely unknown kinetic model parameters.Simulations are provided to illustrate the efficacy of the proposed safety-critical model-free control method for a fleet of USVs.展开更多
HAISHEN is a long-ranged and highly maneuverable AUV which has two operating modes: glider mode and flapping-foil propulsion mode. As part of the vehicle development, a three-dimensional mathematical model of the con...HAISHEN is a long-ranged and highly maneuverable AUV which has two operating modes: glider mode and flapping-foil propulsion mode. As part of the vehicle development, a three-dimensional mathematical model of the conceptual vehicle was developed on the assumption that HAISHEN has a rigid body with two independently controlled oscillating hydrofoils. A flapping-foil model was developed based on the work done by Georgiades et al. (2009). Effect of controllable hydrofoils on the vehicle stable motion performance was studied theoretically. Finally, a dynamics simulation of the vehicle in both operating modes is created in this paper. The simulation demonstrates that: (1) in the glider mode, owing to the independent control of the pitch angle of each hydrofoil, HAISHEN travels faster and more efficiently and has a smaller turning radius than conventional fix-winged gliders; (2) in the flapping-foil propulsion mode, HAISHEN has a high maneuverability with a turning radius smaller than 15 m and a forward motion velocity about 1.8 m/s; (3) the vehicle is stable under all expected operating conditions.展开更多
Energy shortages and environmental pollution are becoming increasingly severe globally. The exploitation and utilization of renewable energy have become an effective way to alleviate these problems. To improve power p...Energy shortages and environmental pollution are becoming increasingly severe globally. The exploitation and utilization of renewable energy have become an effective way to alleviate these problems. To improve power production capacity, power output quality, and cost effectiveness, comprehensive marine energy utilization has become an inevitable trend in marine energy development. Based on a semi-submersible wind-tidal combined power generation device,a three-dimensional frequency domain potential flow theory is used to study the hydrodynamic performance of such a device. For this study, the RAOs and hydrodynamic coefficients of the floating carrier platform to the regular wave were obtained. The influence of the tidal turbine on the platform in terms of frequency domain was considered as added mass and damping. The direct load of the tidal turbine was obtained by CFX.FORTRAN software was used for the second development of adaptive query workload aware software, which can include the external force. The motion response of the platform to the irregular wave and the tension of the mooring line were calculated under the limiting condition(one mooring line breakage). The results showed that the motion response of the carrier to the surge and sway direction is more intense, but the swing amplitude is within the acceptable range. Even in the worst case scenario, the balance position of the platform was still in the positioning range, which met the requirements of the working sea area. The safety factor of the mooring line tension also complied with the requirements of the design specification. Therefore, it was found that the hydrodynamic performance and motion responses of a semi-submersible wind-tidal combined power generation device can meet the power generation requirements under all design conditions, and the device presents a reliable power generation system.展开更多
According to the disadvantages of traditional mechanical gyro inertial measurement unit('IMU') for steering system not being available for missile attitude control, a concept based on laser gyro IMU is propose...According to the disadvantages of traditional mechanical gyro inertial measurement unit('IMU') for steering system not being available for missile attitude control, a concept based on laser gyro IMU is proposed to realize navigation & positioning and attitude control. The concept will save three single-axis rate gyros compared with traditional missile attitude control system, and is available both for strapdown and platform inertial navigation systems. Firstly, this article analyzes the selection requirements of sensitive device for missile attitude control system, and then analyzes the feasibility of missile attitude control based on laser gyro theoretically, on this basis, from four aspects of error characteristics, anti-vibration characteristics, temperature characteristics and dynamic characteristics, validate the feasibility of the concept practically. Secondly according to the strict requirements of dynamic characteristics on attitude control system, a special design is made for gyro signal filtering used for attitude control. By changing the traditional high order FIR filter to adaptive filter and low order FIR filter, laser gyro's signal phase delay is reduced. The delay time of theoretical design is 1.5 ms. Lastly, this design is validated through an angle vibration test, and test curve indicates that the dynamic characteristics of laser gyro completely meets the requirements of the attitude control system, and the maximum delay time is 1.6144 ms, which satisfies with the attitude update rate of 2 ms per frame. This concept can simplify the missile guidance system design, at the same time, it does not reduce missile guidance accuracy, and also provides reference for the broadening of the application of laser gyro.展开更多
Natural and human-induced changes may exert considerable impacts on the seasonal and nodal dynamics of M2 and K1 tidal constituents.Therefore,quantifying the influences of these factors on tidal regime changes is esse...Natural and human-induced changes may exert considerable impacts on the seasonal and nodal dynamics of M2 and K1 tidal constituents.Therefore,quantifying the influences of these factors on tidal regime changes is essential for sustainable water resources management in coastal environments.In this study,the enhanced harmonic analysis was applied to extract the seasonal variability of the M2 and K1 tidal amplitudes and phases at three gauging stations along Lingdingyang Bay of the Zhujiang River Delta.The seasonal dynamics in terms of tidal wave celerity and amplification/damping rate were used to quantify the impacts of human-induced estuarine morphological alterations on M2 and K1 tidal hydrodynamics in inner and outer Lingdingyang Bay.The results show that both tidal amplification/damping rate and wave celerity were considerably increased from the pre-anthropogenic activity period(Pre-AAP)to the post-anthropogenic activity period(Post-AAP)excepting the tidal amplification/damping rate in outer Lingdingyang Bay,and the variations in outer Lingdingyang Bay was larger than those in inner Lingdingyang Bay.The alterations in these two parameters were more significant in flood season than in dry season in both inner and outer Lingdingyang Bay.The seasonal variability of M2 and K1 tidal amplitudes were further quantified using a regression model accounting for the 18.61-year lunar nodal modulation,where this study observes a considerable alteration in M2 constituent owing to human interventions.During the Post-AAP,the M2 amplitudes at the downstream station were larger than those that would have occurred in the absence of strong human interventions,whereas the opposite was true for the upstream station,leading to a substantial decrease in tidal amplification in outer Lingdingyang Bay.However,it is opposite in inner Lingdingyang Bay.The underlying mechanism can be primarily attributed to channel deepening and narrowing caused by human interventions,that resulted in substantial enlargement of the bay volume and reduced the effective bottom friction,leading to faster wave celerity and stronger amplified waves.展开更多
A cooperative navigation algorithm for a group of autonomous underwater vehicles is proposed on the basis of motion radius vector estimation.Combined the dead reckoning data with the mutual range data through an acous...A cooperative navigation algorithm for a group of autonomous underwater vehicles is proposed on the basis of motion radius vector estimation.Combined the dead reckoning data with the mutual range data through an acoustic communication network among the group members, the relative positioning problem can be solved. A novel approach for solving the relative positioning is presented by using a recursive trigonometry technique and extended Kalman filter(EKF). Simulation results verify the correctness and effectiveness of this navigation method.展开更多
This paper applies the narrow band Internet of things communication technology to develop a wireless network equipment and communication system, which can quickly set up a network with a radius of 100 km on water surf...This paper applies the narrow band Internet of things communication technology to develop a wireless network equipment and communication system, which can quickly set up a network with a radius of 100 km on water surface. A disposable micro buoy based on narrow-band Internet of things and Beidou positioning function is also developed and used to collect surface hydrodynamic data online. In addition, a web-based public service platform is designed for the analysis and visualization of the data collected by buoys. Combined with the satellite remote sensing data, the study carries a series of marine experiments and studies such as sediment deposition tracking and garbage floating tracking.展开更多
Common structures in engineering such as slopes,roadbeds,ballasts,etc.,are closely related to granular materials.They are usually subjected to long-term cyclic loads.This study mainly focused on the mechanical behavio...Common structures in engineering such as slopes,roadbeds,ballasts,etc.,are closely related to granular materials.They are usually subjected to long-term cyclic loads.This study mainly focused on the mechanical behaviors of randomly arranged granular materials before they reach a stable state under different cyclic loads.The variation of the maximum axial strain and the influence of CSR(cyclic stress ratio)were analyzed.The energy consumed in each cycle under constant confining stress loading condition is significantly greater than that of the fixed wall loading condition.The internal deformation evolution of granular materials is studied in detail.The deformation mode of granular material under cyclic loading at different positions inside the material is different according to the strain variation.In addition,the strain,force chain structure and contact force magnitude are combined to explore their effects on local deformation of granular materials under cyclic loading.From the perspective of the deformation form,the material sample can be divided into several regions,and the ability to adjust particle positions determines the deformation mode of different regions.The changes of local strain with the cyclic loading also reflect the contribution of particle displacements to the evolution ofmicrostructure.This research will provide insights into the understanding of granular materials behaviors under cyclic loading.展开更多
Numerical wave tanks are widely-acknowledged tools in studying waves and wave-structure interactions. They can generate waves under realistic scales and offers more information on the fluid field. However, most numeri...Numerical wave tanks are widely-acknowledged tools in studying waves and wave-structure interactions. They can generate waves under realistic scales and offers more information on the fluid field. However, most numerical wave tanks suffer from issues known as the numerical dissipation and numerical dispersion. The former causes wave energy to be slowly dissipated and the latter shifts wave frequencies during wave propagation. This paper proposes a simple method of depressing numerical dissipation effects on the basis of solving Euler equations using the finite difference method(FDM). The wave propagation solutions are solved analytically taking into account the influence of the damping terms. The main idea of the method is to append a source term to the momentum equation, whose strength is determined by how strong the numerical damping effect is. The method is verified by successfully depressing numerical effects during the simulation of regular linear waves, Stokes waves and irregular waves. By applying the method, wave energy is able to be close to its initial value after long distance of travel.展开更多
The main objective of this paper is to examine the influences of both the principal wave direction and the directional spreading parameter of the wave energy on the wave height evolution of multidirectional irregular ...The main objective of this paper is to examine the influences of both the principal wave direction and the directional spreading parameter of the wave energy on the wave height evolution of multidirectional irregular waves over an impermeable sloping bottom and to propose an improved wave height distribution model based on an existing classical formula.The numerical model FUNWAVE 2.0,based on a fully nonlinear Boussinesq equation,is employed to simulate the propagation of multidirectional irregular waves over the sloping bottom.Comparisons of wave heights derived from wave trains with various principal wave directions and different directional spreading parameters are conducted.Results show that both the principal wave direction and the wave directional spread have significant influences on the wave height evolution on a varying coastal topography.The shoaling effect for the wave height is obviously weakened with the increase of the principal wave direction and with the decrease of the directional spreading parameter.With the simulated data,the classical Klopman wave height distribution model is improved by considering the influences of both factors.It is found that the improved model performs better in describing the wave height distribution for the multidirectional irregular waves in shallow water.展开更多
For a ship in service,seawater corrosion is unavoidable. In order to ensure navigation safety and master the steel plate thickness in service ship,thickness of the ship steel plate must be tested periodically by a sci...For a ship in service,seawater corrosion is unavoidable. In order to ensure navigation safety and master the steel plate thickness in service ship,thickness of the ship steel plate must be tested periodically by a scientific method. After consideration of an actual situation of thickness measurement,the bearing mechanism of ultrasonic thickness meter probe has been designed on the basis of wall-climbing robot,and preliminary experiments have been carried out. The device is mainly used for thickness measurement of a large area of ship hull plate when the docking ship has been sandblasted. Efficiency and safety can be improved to finish thickness measurement by using the device.展开更多
The water entry of an inclined cylinder is firstly studied experimentally for low Froude number. The cylinder is 50 mm in diameter and 200 mm in length, with a moderate length to diameter ratio. As it is submerged bel...The water entry of an inclined cylinder is firstly studied experimentally for low Froude number. The cylinder is 50 mm in diameter and 200 mm in length, with a moderate length to diameter ratio. As it is submerged below the water surface, the cavity is fully three-dimensional. Due to the rotation of the cylinder caused by the initial inclined impact, the cavity evolution is quite complicated and a new phenomenon is revealed. The cylinder moves along a curved trajectory in water, which greatly affects the evolution of the cavities. The cavity breaks up into two sub-cavities, and finally collapses because of hydrostatic pressure.展开更多
文摘Aimed at the hydrodynamic response for marine structures slamming into water, based on the mechanism analysis to the slamming process, and by combining 3D N-S equation and k-ε turbulent kinetic equation with structure fully 6DOF motion equation, a mathematical model for the wind-fluid-solid interaction is established in 3D marine structure slamming wave at free poses and wind-wave-flow complex environments. Compared with the results of physical model test, the numerical results from the slamming wave well correspond with the experimental results. Through the mathematical model, the wave-making issue of 3D marine structure at initial pose falls into water in different complex wind, wave and flow environments is investigated. The research results show that various kinds of natural factors and structure initial poses have different influence on the slamming wave, and there is an obvious rule in this process.
基金the National Natural Science Foundation of China(51939001,52171292,51979020,61976033)Dalian Outstanding Young Talents Program(2022RJ05)+1 种基金the Topnotch Young Talents Program of China(36261402)the Liaoning Revitalization Talents Program(XLYC20-07188)。
文摘This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.
基金supported by Research on the Influence of Nozzle Structure on the Scouring Effect of Submerged Water Jet(2023R411045)Design and Control Strategy Research of PEM Fuel Cell Hybrid Propulsion System for Ships(2024R411015)+1 种基金Zhejiang Ocean University Outstanding Master’s Thesis Cultivation Project(ZJOUYJS20230018)General Program of Education Department of Zhejiang Province(Y202250817)which was gained by Chen.
文摘Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium conditions were investigated accordingly.The results indicate that the optimal scouring effects occur when the jet angle is in the ranges between 15°and 20°.Moreover,the dimensionless profiles of the scour hole exhibit a high degree of similarity at different jet angles.Numerical simulations conducted using the Flow-3D software to investigate the bed shear stress along the jet impingement surface have shown that this stress is influenced by both the resultant force and the jet impingement surface area.It reaches its maximum value when the jet is vertical,decreases rapidly as the jet starts to tilt,then increases slightly,and decreases again significantly when the angle exceeds 20°.
基金supported by the Research on the Prediction Mechanism of Corrosion for High Strength Steel in Deep Sea Service Driven by Multi-Scale,High-Dimension and Small-Sample Data(C2301002635)Research on the Influence of Nozzle Structure on the Scouring Effect of Submerged Water Jet(2023R411045)+1 种基金the Zhejiang Ocean University Outstanding Master’s Thesis Cultivation Project(ZJOUYJS20230018)the Scientific Research Project of Zhejiang Graduate Education Society in 2022(2022-021)which was gained by Chen.
文摘Water jet technology is widely used in submerged buried pipes as a non-traditional trenching process,often invol-ving a complex sediment response.An important adjustable and influential engineering variable in this technol-ogy is represented by the impinging distance.In this study,the FLOW-3D software was used to simulate the jet scouring of sand beds in a submerged environment.In particular,four sets of experimental conditions were con-sidered to discern the relationship between the maximum scour depth and mass and the impinging distance.As shown by the results,a critical impinging distance h0 exists by which the static scour depth can be maximized;the scour mass ratio between dynamic and static conditions decreases as the impinging distance increases.Moreover,the profile contours are similar when the erosion parameter Ec is in the range 0.35<Ec<2.Empirical equations applicable for predicting the jet trenching contour under both dynamic and static scour modes are also provided in this study.
基金supported in part by the National Natural Science Foundation of China (51939001,52301408)the National Science and Technology Major Project (2022ZD0119 902)+2 种基金the Key Basic Research of Dalian (2023JJ11CG008)the Dalian Science and Technology Innovation Fund (2022JJ12GX034)the Dalian Outstanding Young Scientific and Technological Talents Project (2022RY07)。
文摘Dear Editor,This letter addresses long duration coverage problem of multiple robotic surface vehicles(RSVs) subject to battery energy constraints,in addition to uncertainties and disturbances. An anti-disturbance energy-aware control method is proposed for performing coverage task of RSVs. Firstly, a centroidal Voronoi tessellation(CVT) is used to optimize the partition of the given coverage area.
文摘High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate torsional vibration. This paper presents the construction of a highly compact HSLDS torsional vibration isolator by connecting positive and negative stiffness components in paral lel. Based on mechanical model analysis, the restoring torque of negative stiffness components is de rived from their springs and connecting rods, while that of positive stiffness components is obtained through their circular section flexible rods. The quasizero stiffness characteristics of the HSLDS iso lator are achieved through a combination of static structural simulation and experimental test. The tor sional vibration isolation performance is assessed by means of numerical simulation and theory analy sis. Finally, the frequency-sweep vibration test is conducted. The test results indicate that the HSLDS torsional vibration isolator exhibits superior low-frequency isolation performance compared to its linear counterpart, rendering it a promising solution for mitigating low-frequency torsional vi bration in ship shafting.
基金financially supported by the National Natural Science Foundation of China(No.51779103)the Natural Science Foundation of Fujian Province,China(No.2021J011209)+1 种基金the Open Fund of Fujian Provincial Key Laboratory of Functional Materials and Applications(Xiamen University of Technology,fma2018007 and fma2020003)Fujian Provincial Key Laboratory of Naval Architecture and Ocean Engineering(Jimei University),China。
文摘LaF_(3) was doped to the Mg(Al)solid solution alloy for enhancing the hydrogen absorption and desorption by ball milling.XRD was used to analyze the phases of the samples and the phase transition induced by hydrogenation and dehydrogenation.The microstructure and phase distribution were investigated by SEM and STEM.The hydrogen storage properties were measured by Sieverts method.For Mg_(0.93)Al_(0.07)−5wt.%LaF_(3) nanocomposite,the hydrogen storage kinetic properties were significantly improved by reducing the hydriding and dehydriding activation energies to 65 and 78 kJ/mol,respectively,and the dehydriding enthalpy was calculated to be 69.7 kJ/mol.The improved hydrogen storage properties were mainly attributed to the catalytic effects of the in situ formed nanostructure Al_(11)La_(3) and MgF_(2) together with the dissolving of Al in Mg lattice.
基金This work was supported in part by the National Natural Science Foundation of China(51979020,51909021,51939001,52071044)the Top-notch Young Talents Program of China(36261402)+3 种基金the Liaoning Revitalization Talents Program(XLYC2007188)the Science and Technology Fund for Distinguished Young Scholars of Dalian(2018RJ08)the Basic Scientific Research in Colleges and Universities of Liaoning Provincial Education Department(LJKQZ2021007)the Funda-mental Research Funds for the Central Universities.
文摘Dear editor,This letter addresses the multi-target tracking of underactuated unmanned surface vehicles(USVs)subject to multiple stationary/moving obstacles.The kinetic model parameters of each USV are totally unknown.A safety-critical model-free control method is proposed for tracking multiple targets with a collision-free containment formation.Specifically,a distributed containment extended state observer(DCESO)is designed to estimate the convex hull spanned by the multiple targets.At the kinematic level,a collision-free kinematic guidance law is presented using a control barrier function(CBF)and an extended state observer for each follower USV.At the kinetic level,a model-free position tracking control law by using an adaptive ESO(AESO)is presented for each follower USV.By the designed safety-critical model-free control method,cooperative tracking of multiple targets under multiple stationary/moving obstacles can be achieved using completely unknown kinetic model parameters.Simulations are provided to illustrate the efficacy of the proposed safety-critical model-free control method for a fleet of USVs.
文摘HAISHEN is a long-ranged and highly maneuverable AUV which has two operating modes: glider mode and flapping-foil propulsion mode. As part of the vehicle development, a three-dimensional mathematical model of the conceptual vehicle was developed on the assumption that HAISHEN has a rigid body with two independently controlled oscillating hydrofoils. A flapping-foil model was developed based on the work done by Georgiades et al. (2009). Effect of controllable hydrofoils on the vehicle stable motion performance was studied theoretically. Finally, a dynamics simulation of the vehicle in both operating modes is created in this paper. The simulation demonstrates that: (1) in the glider mode, owing to the independent control of the pitch angle of each hydrofoil, HAISHEN travels faster and more efficiently and has a smaller turning radius than conventional fix-winged gliders; (2) in the flapping-foil propulsion mode, HAISHEN has a high maneuverability with a turning radius smaller than 15 m and a forward motion velocity about 1.8 m/s; (3) the vehicle is stable under all expected operating conditions.
基金financially supported by the National Natural Science Foundation of China(Nos.5177906251579055)+1 种基金the Fundamental Research Funds for the Central Universities of China(No.HEUCFP201714)Shenzhen Special Fund for the future industries(No.JCYJ20160331163751413)
文摘Energy shortages and environmental pollution are becoming increasingly severe globally. The exploitation and utilization of renewable energy have become an effective way to alleviate these problems. To improve power production capacity, power output quality, and cost effectiveness, comprehensive marine energy utilization has become an inevitable trend in marine energy development. Based on a semi-submersible wind-tidal combined power generation device,a three-dimensional frequency domain potential flow theory is used to study the hydrodynamic performance of such a device. For this study, the RAOs and hydrodynamic coefficients of the floating carrier platform to the regular wave were obtained. The influence of the tidal turbine on the platform in terms of frequency domain was considered as added mass and damping. The direct load of the tidal turbine was obtained by CFX.FORTRAN software was used for the second development of adaptive query workload aware software, which can include the external force. The motion response of the platform to the irregular wave and the tension of the mooring line were calculated under the limiting condition(one mooring line breakage). The results showed that the motion response of the carrier to the surge and sway direction is more intense, but the swing amplitude is within the acceptable range. Even in the worst case scenario, the balance position of the platform was still in the positioning range, which met the requirements of the working sea area. The safety factor of the mooring line tension also complied with the requirements of the design specification. Therefore, it was found that the hydrodynamic performance and motion responses of a semi-submersible wind-tidal combined power generation device can meet the power generation requirements under all design conditions, and the device presents a reliable power generation system.
基金Supported by National Natural Science Foundation of China (61273137, 51209026, 61074017), the Scientific Research Fund of Liaoning Provincial Education Department (L2013202), and the Fundamental Research Funds for the Central Universities (3132013037, 3132014047, 3132014321)
基金Sponsored by the National Natural Science Foundation of China(Grant No.50979093)
文摘According to the disadvantages of traditional mechanical gyro inertial measurement unit('IMU') for steering system not being available for missile attitude control, a concept based on laser gyro IMU is proposed to realize navigation & positioning and attitude control. The concept will save three single-axis rate gyros compared with traditional missile attitude control system, and is available both for strapdown and platform inertial navigation systems. Firstly, this article analyzes the selection requirements of sensitive device for missile attitude control system, and then analyzes the feasibility of missile attitude control based on laser gyro theoretically, on this basis, from four aspects of error characteristics, anti-vibration characteristics, temperature characteristics and dynamic characteristics, validate the feasibility of the concept practically. Secondly according to the strict requirements of dynamic characteristics on attitude control system, a special design is made for gyro signal filtering used for attitude control. By changing the traditional high order FIR filter to adaptive filter and low order FIR filter, laser gyro's signal phase delay is reduced. The delay time of theoretical design is 1.5 ms. Lastly, this design is validated through an angle vibration test, and test curve indicates that the dynamic characteristics of laser gyro completely meets the requirements of the attitude control system, and the maximum delay time is 1.6144 ms, which satisfies with the attitude update rate of 2 ms per frame. This concept can simplify the missile guidance system design, at the same time, it does not reduce missile guidance accuracy, and also provides reference for the broadening of the application of laser gyro.
基金The National Key R&D Program of China under contract No.2016YFC0402600the National Natural Science Foundation of China under contract No.51979296the Guangzhou Science and Technology Program of China under contract No.202002030452。
文摘Natural and human-induced changes may exert considerable impacts on the seasonal and nodal dynamics of M2 and K1 tidal constituents.Therefore,quantifying the influences of these factors on tidal regime changes is essential for sustainable water resources management in coastal environments.In this study,the enhanced harmonic analysis was applied to extract the seasonal variability of the M2 and K1 tidal amplitudes and phases at three gauging stations along Lingdingyang Bay of the Zhujiang River Delta.The seasonal dynamics in terms of tidal wave celerity and amplification/damping rate were used to quantify the impacts of human-induced estuarine morphological alterations on M2 and K1 tidal hydrodynamics in inner and outer Lingdingyang Bay.The results show that both tidal amplification/damping rate and wave celerity were considerably increased from the pre-anthropogenic activity period(Pre-AAP)to the post-anthropogenic activity period(Post-AAP)excepting the tidal amplification/damping rate in outer Lingdingyang Bay,and the variations in outer Lingdingyang Bay was larger than those in inner Lingdingyang Bay.The alterations in these two parameters were more significant in flood season than in dry season in both inner and outer Lingdingyang Bay.The seasonal variability of M2 and K1 tidal amplitudes were further quantified using a regression model accounting for the 18.61-year lunar nodal modulation,where this study observes a considerable alteration in M2 constituent owing to human interventions.During the Post-AAP,the M2 amplitudes at the downstream station were larger than those that would have occurred in the absence of strong human interventions,whereas the opposite was true for the upstream station,leading to a substantial decrease in tidal amplification in outer Lingdingyang Bay.However,it is opposite in inner Lingdingyang Bay.The underlying mechanism can be primarily attributed to channel deepening and narrowing caused by human interventions,that resulted in substantial enlargement of the bay volume and reduced the effective bottom friction,leading to faster wave celerity and stronger amplified waves.
基金Sponsored by National Natural Foundation (50979093)the High Technology Research and Development Program of China (863 Program)( 2007AA809502C)Program for New Century Excellent Talents in University (NCET-06-0877)
文摘A cooperative navigation algorithm for a group of autonomous underwater vehicles is proposed on the basis of motion radius vector estimation.Combined the dead reckoning data with the mutual range data through an acoustic communication network among the group members, the relative positioning problem can be solved. A novel approach for solving the relative positioning is presented by using a recursive trigonometry technique and extended Kalman filter(EKF). Simulation results verify the correctness and effectiveness of this navigation method.
基金The National Natural Science Foundation of China under contract No. 41606004。
文摘This paper applies the narrow band Internet of things communication technology to develop a wireless network equipment and communication system, which can quickly set up a network with a radius of 100 km on water surface. A disposable micro buoy based on narrow-band Internet of things and Beidou positioning function is also developed and used to collect surface hydrodynamic data online. In addition, a web-based public service platform is designed for the analysis and visualization of the data collected by buoys. Combined with the satellite remote sensing data, the study carries a series of marine experiments and studies such as sediment deposition tracking and garbage floating tracking.
基金the National Natural Science Foundation of China(Nos.11902228,11772237)the Fundamental Research Funds for Central Universities(No.2682021CX083).
文摘Common structures in engineering such as slopes,roadbeds,ballasts,etc.,are closely related to granular materials.They are usually subjected to long-term cyclic loads.This study mainly focused on the mechanical behaviors of randomly arranged granular materials before they reach a stable state under different cyclic loads.The variation of the maximum axial strain and the influence of CSR(cyclic stress ratio)were analyzed.The energy consumed in each cycle under constant confining stress loading condition is significantly greater than that of the fixed wall loading condition.The internal deformation evolution of granular materials is studied in detail.The deformation mode of granular material under cyclic loading at different positions inside the material is different according to the strain variation.In addition,the strain,force chain structure and contact force magnitude are combined to explore their effects on local deformation of granular materials under cyclic loading.From the perspective of the deformation form,the material sample can be divided into several regions,and the ability to adjust particle positions determines the deformation mode of different regions.The changes of local strain with the cyclic loading also reflect the contribution of particle displacements to the evolution ofmicrostructure.This research will provide insights into the understanding of granular materials behaviors under cyclic loading.
基金The National Natural Science Foundation of China under contract No.51609101 and 51909103the Natural Science Foundation of Fujian Province of China under contract Nos 2017J01701,2017J05085 and 2018J05090the Outstanding Young University Scientific Research Talents Cultivation Plan of Fujian Province of China
文摘Numerical wave tanks are widely-acknowledged tools in studying waves and wave-structure interactions. They can generate waves under realistic scales and offers more information on the fluid field. However, most numerical wave tanks suffer from issues known as the numerical dissipation and numerical dispersion. The former causes wave energy to be slowly dissipated and the latter shifts wave frequencies during wave propagation. This paper proposes a simple method of depressing numerical dissipation effects on the basis of solving Euler equations using the finite difference method(FDM). The wave propagation solutions are solved analytically taking into account the influence of the damping terms. The main idea of the method is to append a source term to the momentum equation, whose strength is determined by how strong the numerical damping effect is. The method is verified by successfully depressing numerical effects during the simulation of regular linear waves, Stokes waves and irregular waves. By applying the method, wave energy is able to be close to its initial value after long distance of travel.
基金the National Natural Science Foundation of China(Grant No.51809039)the Natural Science Foundation of Jiangsu Province(Grant No.BK20201455)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.20KJD170005)the Qing Lan Project of Jiangsu Universities.
文摘The main objective of this paper is to examine the influences of both the principal wave direction and the directional spreading parameter of the wave energy on the wave height evolution of multidirectional irregular waves over an impermeable sloping bottom and to propose an improved wave height distribution model based on an existing classical formula.The numerical model FUNWAVE 2.0,based on a fully nonlinear Boussinesq equation,is employed to simulate the propagation of multidirectional irregular waves over the sloping bottom.Comparisons of wave heights derived from wave trains with various principal wave directions and different directional spreading parameters are conducted.Results show that both the principal wave direction and the wave directional spread have significant influences on the wave height evolution on a varying coastal topography.The shoaling effect for the wave height is obviously weakened with the increase of the principal wave direction and with the decrease of the directional spreading parameter.With the simulated data,the classical Klopman wave height distribution model is improved by considering the influences of both factors.It is found that the improved model performs better in describing the wave height distribution for the multidirectional irregular waves in shallow water.
基金Supported by the National Natural Science Foundation of China(No.51309116)
文摘For a ship in service,seawater corrosion is unavoidable. In order to ensure navigation safety and master the steel plate thickness in service ship,thickness of the ship steel plate must be tested periodically by a scientific method. After consideration of an actual situation of thickness measurement,the bearing mechanism of ultrasonic thickness meter probe has been designed on the basis of wall-climbing robot,and preliminary experiments have been carried out. The device is mainly used for thickness measurement of a large area of ship hull plate when the docking ship has been sandblasted. Efficiency and safety can be improved to finish thickness measurement by using the device.
文摘The water entry of an inclined cylinder is firstly studied experimentally for low Froude number. The cylinder is 50 mm in diameter and 200 mm in length, with a moderate length to diameter ratio. As it is submerged below the water surface, the cavity is fully three-dimensional. Due to the rotation of the cylinder caused by the initial inclined impact, the cavity evolution is quite complicated and a new phenomenon is revealed. The cylinder moves along a curved trajectory in water, which greatly affects the evolution of the cavities. The cavity breaks up into two sub-cavities, and finally collapses because of hydrostatic pressure.