In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fra...In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.展开更多
In order to develop and improve the fixed point theorems in cone metric spaces, some new fixed point theorems are presented for two mappings in cone metric spaces which satisfy contractive conditions, where the cone i...In order to develop and improve the fixed point theorems in cone metric spaces, some new fixed point theorems are presented for two mappings in cone metric spaces which satisfy contractive conditions, where the cone is not necessarily normal. Our results generalize fixed point theorems of Abbas, Jungck and Stojan Radenovi in cone metric spaces.展开更多
基金Supported by the Research Fund for the Doctoral Program of High Education of China(20094407110001)Supported by the NSF of Guangdong Province(10151063101000003)
文摘In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.
基金Foundation item: Supported by the NNSF of China(10771212) Supported by the Natural Science Foundation of Xuzhou Normal University(09KLB03)
文摘In order to develop and improve the fixed point theorems in cone metric spaces, some new fixed point theorems are presented for two mappings in cone metric spaces which satisfy contractive conditions, where the cone is not necessarily normal. Our results generalize fixed point theorems of Abbas, Jungck and Stojan Radenovi in cone metric spaces.