As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in pra...As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.展开更多
Blue energy,which includes rainfall,tidal current,wave,and water-flow energy,is a promising renewable resource,although its exploitation is limited by current technologies and thus remains low.This form of energy is m...Blue energy,which includes rainfall,tidal current,wave,and water-flow energy,is a promising renewable resource,although its exploitation is limited by current technologies and thus remains low.This form of energy is mainly harvested by electromagnetic generators(EMGs),which generate electricity via Lorenz force-driven electron flows.Triboelectric nano genera tors(TENGs)and TENG networks exhibit superiority over EMGs in low-frequency and high-entropy energy harvesting as a new approach for blue energy harvesting.A TENG produces electrical outputs by adopting the mechanism of Maxwell’s displacement current.To date,a series of research efforts have been made to optimize the structure and performance of TENGs for effective blue energy harvesting and marine environmental applications.Despite the great progress that has been achieved in the use of TENGs in this context so far,continuous exploration is required in energy conversion,device durability,power management,and environmental applications.This review reports on advances in TENGs for blue energy harvesting and marine environmental monitoring.It introduces the theoretical foundations of TENGs and discusses advanced TENG prototypes for blue energy harvesting,including TENG structures that function in freestanding and contact-separation modes.Performance enhancement strategies for TENGs intended for blue energy harvesting are also summarized.Finally,marine environmental applications of TENGs based on blue energy harvesting are discussed.展开更多
At present,the research on ferroelectric photovoltaic materials mainly focuses on photoelectric detection.In the context of the rapid development of the Internet of Things(IoT),it is particularly important to use smal...At present,the research on ferroelectric photovoltaic materials mainly focuses on photoelectric detection.In the context of the rapid development of the Internet of Things(IoT),it is particularly important to use smaller thin-film devices as sensors.In this work,an indium tin oxide/bismuth ferrite(BFO)/lanthanum nickelate device has been fabricated on an F-doped tin oxide glass substrate using the sol–gel method.The sensor can continuously output photoelectric signals with little environmental impact.Compared to other types of sensors,this photoelectric sensor has an ultra-low response time of 1.25 ms and ultra-high sensitivity.Furthermore,a material recognition system based on a BFO sensor is developed.It can effectively identify eight kinds of materials that are difficult for human eyes to distinguish.This provides new ideas and methods for developing the IoT in material identification.展开更多
Electronic fibers used to fabricate wearable triboelectric nanogenerator(TENG) for harvesting human mechanical energy have been extensively explored. However, little attention is paid to their mutual advantages of env...Electronic fibers used to fabricate wearable triboelectric nanogenerator(TENG) for harvesting human mechanical energy have been extensively explored. However, little attention is paid to their mutual advantages of environmental friendliness, mechanical properties, and stability. Here, we report a super-strong, biodegradable, and washable cellulose-based conductive macrofibers, which is prepared by wet-stretching and wet-twisting bacterial cellulose hydrogel incorporated with carbon nanotubes and polypyrrole. The cellulose-based conductive macrofibers possess high tensile strength of 449 MPa(able to lift 2 kg weights), good electrical conductivity(~ 5.32 S cm^(-1)), and excellent stability(Tensile strength and conductivity only decrease by 6.7% and 8.1% after immersing in water for 1 day). The degradation experiment demonstrates macrofibers can be degraded within 108 h in the cellulase solution. The designed fabric-based TENG from the cellulose-base conductive macrofibers shows a maximum open-circuit voltage of 170 V, short-circuit current of 0.8 μA, and output power at 352 μW, which is capable of powering the commercial electronics by charging the capacitors. More importantly, the fabric-based TENGs can be attached to the human body and work as self-powered sensors to effectively monitor human motions. This study suggests the potential of biodegradable, super-strong, and washable conductive cellulose-based fiber for designing eco-friendly fabric-based TENG for energy harvesting and biomechanical monitoring.展开更多
Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century.Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic per...Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century.Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials.This has led to significant interest in the exploitation of 2D nanomaterials for catalysis.There have been a variety of excellent reviews on 2D nanomaterials for catalysis,but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant.Here,we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials.Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted,which point out the differences and similarities of series issues for photocatalysis and electrocatalysis.In addition,2D nanocatalysts and their catalytic applications are discussed.Finally,opportunities,challenges and development directions for 2D nanocatalysts are described.The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.展开更多
Multiferroic nanomaterials have attracted great interest due to simultaneous two or more properties such as ferroelectricity,ferromagnetism,and ferroelasticity,which can promise a broad application in multifunctional,...Multiferroic nanomaterials have attracted great interest due to simultaneous two or more properties such as ferroelectricity,ferromagnetism,and ferroelasticity,which can promise a broad application in multifunctional,lowpower consumption,environmentally friendly devices.Bismuth ferrite(BiFeO3,BFO)exhibits both(anti)ferromagnetic and ferroelectric properties at room temperature.Thus,it has played an increasingly important role in multiferroic system.In this review,we systematically discussed the developments of BFO nanomaterials including morphology,structures,properties,and potential applications in multiferroic devices with novel functions.Even the opportunities and challenges were all analyzed and summarized.We hope this review can act as an updating and encourage more researchers to push on the development of BFO nanomaterials in the future.展开更多
Coupled nanogenerators have been a research hotspot due to their ability to harvest a variety of forms of energy such as light,mechanical and thermal energy and achieve a stable direct current output.Ferroelectric fil...Coupled nanogenerators have been a research hotspot due to their ability to harvest a variety of forms of energy such as light,mechanical and thermal energy and achieve a stable direct current output.Ferroelectric films are frequently investigated for photovoltaic applications due to their unique photovoltaic properties and bandgap-independent photovoltage,while the flexoelectric effect is an electromechanical property commonly found in solid dielectrics.Here,we effectively construct a new form of coupled nanogenerator based on a flexible BiFeO_(3) ferroelectric film that combines both flexoelectric and photovoltaic effects to successfully harvest both light and vibration energies.This device converts an alternating current into a direct current and achieves a 6.2% charge enhancement and a 19.3%energy enhancement to achieve a multi-dimensional"1+1>2"coupling enhancement in terms of current,charge and energy.This work proposes a new approach to the coupling of multiple energy harvesting mechanisms in ferroelectric nanogenerators and provides a new strategy to enhance the transduction efficiency of flexible functional devices.展开更多
Tribotronics is an emerging research field that focuses on the coupling of triboelectricity and semiconductors.In this review,we summarise and explore three branches of tribotronics.Firstly,we introduce the tribovolta...Tribotronics is an emerging research field that focuses on the coupling of triboelectricity and semiconductors.In this review,we summarise and explore three branches of tribotronics.Firstly,we introduce the tribovoltaic effect,which involves direct-current power generation through mechanical friction on semiconductor interfaces.This effect offers significant advantages in terms of high power density compared to traditional insulator-based triboelectric nanogenerators.Secondly,we elaborate on triboelectric modulation,which utilises the triboelectric potential on field-effect transistors.This approach enables active mechanosensation and nanoscale tactile perception.Additionally,we present triboelectric management,which aims to improve energy supply efficiency using semiconductor device technology.This strategy provides an effective microenergy solution for sensors and microsystems.For the interactions between triboelectricity and semiconductors,the research of tribotronics has exhibited the electronics of interfacial friction systems,and the triboelectric technology by electronics.This review demonstrates the promising prospects of tribotronics in the development of new functional devices and self-powered microsystems for intelligent manufacturing,robotic sensing,and the industrial Internet of Things.展开更多
In the era of 5G and the Internet of things(IoTs),vari-ous human-computer interaction systems based on the integration of triboelectric nanogenerators(TENGs)and IoTs technologies dem-onstrate the feasibility of sustai...In the era of 5G and the Internet of things(IoTs),vari-ous human-computer interaction systems based on the integration of triboelectric nanogenerators(TENGs)and IoTs technologies dem-onstrate the feasibility of sustainable and self-powered functional systems.The rapid development of intelligent applications of IoTs based on TENGs mainly relies on supplying the harvested mechanical energy from surroundings and implementing active sensing,which have greatly changed the way of human production and daily life.This review mainly introduced the TENG applications in multidisci-pline scenarios of IoTs,including smart agriculture,smart industry,smart city,emergency monitoring,and machine learning-assisted artificial intelligence applications.The challenges and future research directions of TENG toward IoTs have also been proposed.The exten-sive developments and applications of TENG will push forward the IoTs into an energy autonomy fashion.展开更多
Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq...Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.展开更多
Hydrogenation of lignin-derived phenol to KA oil(the mixture of cyclohexanone(K)and cyclohexanol(A))is attractive yet challenging in the sustainable upgrading of biomass derivatives under mild conditions.Traditional s...Hydrogenation of lignin-derived phenol to KA oil(the mixture of cyclohexanone(K)and cyclohexanol(A))is attractive yet challenging in the sustainable upgrading of biomass derivatives under mild conditions.Traditional supported metal catalysts have been widely studied but the active components on supports often exhibit low recyclability due to their instability under experimental conditions.Here we show fabricating ultrasmall Pt/NiO in the pores of chromium terephthalate MIL-101 as catalysts for hydrogenation of phenol.Impressively,Pt/NiO@MIL-101 achieves catalytic phenol hydrogenation to KA oils of tunable K/A ratios and good reusability under room temperature and atmospheric hydrogen pressure,superior to contrast Pt@MIL-101 and Pt/NiO samples.Such excellent performance mainly originates from the effective adsorption and activation of phenol by coordinatively unsaturated Cr sites and H2 activation on ultrasmall Pt/NiO as well as its effective spillover to the adsorbed phenol over Cr sites for hydrogenation reaction.Substantially,such catalyst also displays the excellent performances for hydrogenation of phenol’s derivatives under mild conditions.展开更多
Triboelectric materials with high charge density are the building-block for the commercial application of triboelectric nanogenerators(TENGs).Unstable dynamic processes influence the change of the charge density on th...Triboelectric materials with high charge density are the building-block for the commercial application of triboelectric nanogenerators(TENGs).Unstable dynamic processes influence the change of the charge density on the surface and inside of triboelectric materials.The charge density of triboelectric materials depends on the surface and the internal charge transfer processes.The focus of this review is on recent advances in high charge density triboelectric materials and advances in the fabrication of TENGs.We summarize the existing strategies for achieving high charge density in triboelectric materials as well as their fundamental properties.We then review current optimization methods for regulating dynamic charge transfer processes to increase the output charge density:first,increasing charge injection and limiting charge dissipation to achieve a high average surface charge density,and second,regulating the internal charge transfer process and storing charge in triboelectric materials to increase the output charge density.Finally,we present the challenges and prospects in developing high-performance triboelectric materials.展开更多
Rapid technological development and population growth are responsible for a series of imminent environmental problems and an ineluctable energy crisis.The application of semiconductor nanomaterials in photocatalysis o...Rapid technological development and population growth are responsible for a series of imminent environmental problems and an ineluctable energy crisis.The application of semiconductor nanomaterials in photocatalysis or photoelectrocatalysis(PEC)for either the degradation of contaminants in the environment or the generation of hydrogen as clean fuel is an effective approach to alleviate these problems.However,the efficiency of such processes remains suboptimal for real applications.Reasonable construction of a built-in electric field is considered to efficiently enhance carrier separation and reduce carrier recombination to improve catalytic performance.In the past decade,as a new method to enhance the built-in electric field,the piezoelectric effect from piezoelectric materials has been extensively studied.In this review,we provide an overview of the properties of piezoelectric materials and the mechanisms of piezoelectricity and ferroelectricity for a built-in electric field.Then,piezoelectric and ferroelectric polarization regulated built-in electric fields that mediate catalysis are discussed.Furthermore,the applications of piezoelectric semiconductor materials are also highlighted,including degradation of pollutants,bacteria disinfection,water splitting for H2 generation,and organic synthesis.We conclude by discussing the challenges in the field and the exciting opportunities to further improve piezo-catalytic efficiency.展开更多
The ability to control surface wettability and liquid spreading on textured surfaces is of interest for extensive applications.Soft materials have prominent advantages for producing the smart coatings with multiple fu...The ability to control surface wettability and liquid spreading on textured surfaces is of interest for extensive applications.Soft materials have prominent advantages for producing the smart coatings with multiple functions for strain sensing.Here,we report a simple method to prepare flexible hydrophobic smart coatings using graphene-polymer films.Arrays of individual patterns in the films were created by laser engraving and controlled the contact angle of small drops by pinning the contact lines in a horizontal tensile range of 0-200%.By means of experiments and model,we demonstrate that the ductility of drops is relied on the height-to-spacing ratio of the individual pattern and the intrinsic contact angle.Moreover,the change of drop size was utilized to measure the applied strain and liquid viscosity,enabling a strain sensitivity as high as 1068μm2/%.The proposed laser-etched stretchable graphene-polymer composite has potential applications in DNA microarrays,biological assays,soft robots,and so on.展开更多
In the current shift from conventional fossil-fuel-based materials to renewable energy,ecofriendly materials have attracted extensive research interest due to their sustainability and biodegradable properties.The inte...In the current shift from conventional fossil-fuel-based materials to renewable energy,ecofriendly materials have attracted extensive research interest due to their sustainability and biodegradable properties.The integration of sustainable materials in electronics provides industrial benefits from wasted bio-origin resources and preserves the environment.This review covers the use of sustainable materials as components in organic electronics,such as substrates,insulators,semiconductors,and conductors.We hope this review will stimulate interest in the potential and practical applications of sustainable materials for green and sustainable industry.展开更多
Covalent organic frameworks(COFs)as a type of porous and crystalline covalent organic polymer are built up from covalently linked and periodically arranged organic molecules.Their precise assembly,welldefined coordina...Covalent organic frameworks(COFs)as a type of porous and crystalline covalent organic polymer are built up from covalently linked and periodically arranged organic molecules.Their precise assembly,welldefined coordination network,and tunable porosity endow COFs with diverse characteristics such as low density,high crystallinity,porous structure,and large specific-surface area,as well as versatile functions and active sites that can be tuned at molecular and atomic level.These unique properties make them excellent candidate materials for biomedical applications,such as drug delivery,diagnostic imaging,and disease therapy.To realize these functions,the components,dimensions,and guest molecule loading into COFs have a great influence on their performance in various applications.In this review,we first introduce the influence of dimensions,building blocks,and synthetic conditions on the chemical stability,pore structure,and chemical interaction with guest molecules of COFs.Next,the applications of COFs in cancer diagnosis and therapy are summarized.Finally,some challenges for COFs in cancer therapy are noted and the problems to be solved in the future are proposed.展开更多
Dental pulp is composed of nerves,blood vessels,and various types of cells and surrounded by a thick and hard enamel-dentin matrix.Due to its importance in the maintenance of tooth vitality,there have been intensive e...Dental pulp is composed of nerves,blood vessels,and various types of cells and surrounded by a thick and hard enamel-dentin matrix.Due to its importance in the maintenance of tooth vitality,there have been intensive efforts to analyze the complex cellularlevel organization of the dental pulp in teeth.Although conventional histologic analysis has provided microscopic images of the dental pulp,3-dimensional (3D) cellular-level visualization of the whole dental pulp in an intact tooth has remained a technically challenging task.This is mainly due to the inevitable disruption and loss of microscopic structural features during the process of mechanical sectioning required for the preparation of the tooth sample for histological observation.To accomplish 3D microscopic observation of thick intact tissue,various optical clearing techniques have been developed mostly for soft tissue,and their application for hard tissues such as bone and teeth has only recently started to be investigated.In this work,we established a simple and rapid optical clearing technique for intact mouse teeth without the time-consuming process of decalcification.We achieved 3D cellular-level visualization of the microvasculature and various immune cell distributions in the whole dental pulp of mouse teeth under normal and pathologic conditions.This technique could be used to enable diverse research methods on tooth development and regeneration by providing 3D visualization of various pulpal cells in intact mouse teeth.展开更多
Among all-solid-state batteries, rechargeable Al-ion batteries have attracted most attention because they involve threeelectron-redox reactions with high theoretic specific capacity. However, the solid Al-ion conducto...Among all-solid-state batteries, rechargeable Al-ion batteries have attracted most attention because they involve threeelectron-redox reactions with high theoretic specific capacity. However, the solid Al-ion conductor electrolytes are less studied. Here, the microscopic path of Al3+-ion conduction of NASICON-type(Al0.2Zr0.8)20/19Nb(PO4)3oxide is identified by temperature-dependent neutron powder diffraction and aberration-corrected scanning transmission electron microscopy experiments.(Al0.2Zr0.8)20/19Nb(PO4)3shows a rhombohedral structure consisting of a framework of(Zr,Nb)O6octahedra sharing corners with(PO4) tetrahedra; the Al occupy trigonal antiprisms exhibiting extremely large displacement factors. This suggests a strong displacement of Al ions along the c axis of the unit cell as they diffuse across the structure by a vacancy mechanism. Negative thermal expansion behavior is also identified along a and b axes, due to folding of the framework as temperature increases.展开更多
The transition metal dichalcogenides(TMD)monolayers have shown strong second-harmonic generation(SHG)ow-ing to their lack of inversion symmetry.These ultrathin layers then serve as the frequency converters that can be...The transition metal dichalcogenides(TMD)monolayers have shown strong second-harmonic generation(SHG)ow-ing to their lack of inversion symmetry.These ultrathin layers then serve as the frequency converters that can be intergraded on a chip.Here,taking MoSSe as an example,we report the first detailed experimental study of the SHG of Janus TMD monolayer,in which the transition metal layer is sandwiched by the two distinct chalcogen layers.It is shown that the SHG effectively arises from an in-plane second-harmonic polarization under paraxial focusing and detection.Based on this,the orientation-resolved SHG spectroscopy is realized to readily determine the zigzag and armchair axes of the Janus crystal with an accuracy better than±0.6°.Moreover,the SHG intensity is wavelength-dependent and can be greatly enhanced(~60 times)when the two-photon transition is resonant with the C-exciton state.Our findings uncover the SHG properties of Janus MoSSe monolayer,therefore lay the basis for its integrated frequency-doubling applications.展开更多
Textile-based electronic devices have attracted increasing interest in recent years due to their wearability,breathability,comfort.Among them,textile-based triboelectric nanogenerators(T-TENGs)exhibit remarkable advan...Textile-based electronic devices have attracted increasing interest in recent years due to their wearability,breathability,comfort.Among them,textile-based triboelectric nanogenerators(T-TENGs)exhibit remarkable advantages in mechanical energy harvesting and self-powered sensing.However,there are still some key challenges to the development and application of triboelectric fibers(the basic unit of T-TENG).Scalable production and large-scale integration are still significant factors hindering its application.At the same time,there are some difficulties to overcome in the manufacturing process,such as achieving good stretchability and a quick production,overcoming incompatibility between conductive and triboelectric materials.In this study,triboelectric fibers are produced continuously by one-step coaxial wet spinning.They are only 0.18 mm in diameter and consist of liquid metal(LM)core and polyurethane(PU)sheath.Due to the good mechanical properties between them,there is no interface incompatibility of the triboelectric fibers.In addition,triboelectric fibers can be made into large areas of T-TENG by means of digital embroidery and plain weave.The T-TENGs can be used for energy harvesting and self-powered sensing.When they are fixed on the forearm can monitor various strokes in badminton.This work provides a promising strategy for the large-scale fabrication and large-area integration of triboelectric fibers,promotes the development of wearable T-TENGs.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51922023,61874011)Fundamental Research Funds for the Central Universities(E1EG6804)
文摘As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.
基金the National Key Research and Development Project from the Minister of Science and Technology(2021YFA1201601 and 2021YFA1201604)the Innovation Project of Ocean Science and Technology(22-3-3-hygg-18-hy)+2 种基金the project supported by the Fundamental Research Funds for the Central Universities(E2E46805)the China National Postdoctoral Program for Innovative Talents(BX20220292)the China Postdoctoral Science Foundation(2022M723100)。
文摘Blue energy,which includes rainfall,tidal current,wave,and water-flow energy,is a promising renewable resource,although its exploitation is limited by current technologies and thus remains low.This form of energy is mainly harvested by electromagnetic generators(EMGs),which generate electricity via Lorenz force-driven electron flows.Triboelectric nano genera tors(TENGs)and TENG networks exhibit superiority over EMGs in low-frequency and high-entropy energy harvesting as a new approach for blue energy harvesting.A TENG produces electrical outputs by adopting the mechanism of Maxwell’s displacement current.To date,a series of research efforts have been made to optimize the structure and performance of TENGs for effective blue energy harvesting and marine environmental applications.Despite the great progress that has been achieved in the use of TENGs in this context so far,continuous exploration is required in energy conversion,device durability,power management,and environmental applications.This review reports on advances in TENGs for blue energy harvesting and marine environmental monitoring.It introduces the theoretical foundations of TENGs and discusses advanced TENG prototypes for blue energy harvesting,including TENG structures that function in freestanding and contact-separation modes.Performance enhancement strategies for TENGs intended for blue energy harvesting are also summarized.Finally,marine environmental applications of TENGs based on blue energy harvesting are discussed.
基金supported by the National Natural Science Foundation of China(Grant No.52072041)the Beijing Natural Science Foundation(Grant No.JQ21007)the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2).
文摘At present,the research on ferroelectric photovoltaic materials mainly focuses on photoelectric detection.In the context of the rapid development of the Internet of Things(IoT),it is particularly important to use smaller thin-film devices as sensors.In this work,an indium tin oxide/bismuth ferrite(BFO)/lanthanum nickelate device has been fabricated on an F-doped tin oxide glass substrate using the sol–gel method.The sensor can continuously output photoelectric signals with little environmental impact.Compared to other types of sensors,this photoelectric sensor has an ultra-low response time of 1.25 ms and ultra-high sensitivity.Furthermore,a material recognition system based on a BFO sensor is developed.It can effectively identify eight kinds of materials that are difficult for human eyes to distinguish.This provides new ideas and methods for developing the IoT in material identification.
基金financially supported by BRICS STI Framework Programme 3rd call 2019the National Key Research and Development Program of China(Grant No.2018YFE0123700)+3 种基金the National Natural Science Foundation of China(Grant Nos.51973076 and 52073031)State Key Laboratory of New Textile Materials and Advanced Processing Technologies(Grant No.FZ2021005)the Fundamental Research Funds for the Central Universities(Grant Nos.2020kfyXJJS035,WUT2018IVB006,and Z191100001119047)。
文摘Electronic fibers used to fabricate wearable triboelectric nanogenerator(TENG) for harvesting human mechanical energy have been extensively explored. However, little attention is paid to their mutual advantages of environmental friendliness, mechanical properties, and stability. Here, we report a super-strong, biodegradable, and washable cellulose-based conductive macrofibers, which is prepared by wet-stretching and wet-twisting bacterial cellulose hydrogel incorporated with carbon nanotubes and polypyrrole. The cellulose-based conductive macrofibers possess high tensile strength of 449 MPa(able to lift 2 kg weights), good electrical conductivity(~ 5.32 S cm^(-1)), and excellent stability(Tensile strength and conductivity only decrease by 6.7% and 8.1% after immersing in water for 1 day). The degradation experiment demonstrates macrofibers can be degraded within 108 h in the cellulase solution. The designed fabric-based TENG from the cellulose-base conductive macrofibers shows a maximum open-circuit voltage of 170 V, short-circuit current of 0.8 μA, and output power at 352 μW, which is capable of powering the commercial electronics by charging the capacitors. More importantly, the fabric-based TENGs can be attached to the human body and work as self-powered sensors to effectively monitor human motions. This study suggests the potential of biodegradable, super-strong, and washable conductive cellulose-based fiber for designing eco-friendly fabric-based TENG for energy harvesting and biomechanical monitoring.
基金supported by the National Key R&D Project from Minister of Science and Technology in China(No.2016YFA0202701,No.2018YFB2200500)the National Natural Science Foundation of China(No.52072041,No.61604012,No.61974170)the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2)。
文摘Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century.Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials.This has led to significant interest in the exploitation of 2D nanomaterials for catalysis.There have been a variety of excellent reviews on 2D nanomaterials for catalysis,but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant.Here,we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials.Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted,which point out the differences and similarities of series issues for photocatalysis and electrocatalysis.In addition,2D nanocatalysts and their catalytic applications are discussed.Finally,opportunities,challenges and development directions for 2D nanocatalysts are described.The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.
基金the National Key R&D Program of China(Grant No.2016YFA0202701)the National Natural Science Foundation of China(Grant Nos.51472055,51504133)+5 种基金External Cooperation Program of BIC,Chinese Academy of Sciences(Grant No.121411KYS820150028)the 2015 Annual Beijing Talents Fund(Grant No.2015000021223ZK32)Qingdao National Laboratory for Marine Science and Technology(No.2017ASKJ01)the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2)2019 Project of Liaoning Education Department(2019LNJC20)the“thousands talents”program for the pioneer researcher and his innovation team,China.
文摘Multiferroic nanomaterials have attracted great interest due to simultaneous two or more properties such as ferroelectricity,ferromagnetism,and ferroelasticity,which can promise a broad application in multifunctional,lowpower consumption,environmentally friendly devices.Bismuth ferrite(BiFeO3,BFO)exhibits both(anti)ferromagnetic and ferroelectric properties at room temperature.Thus,it has played an increasingly important role in multiferroic system.In this review,we systematically discussed the developments of BFO nanomaterials including morphology,structures,properties,and potential applications in multiferroic devices with novel functions.Even the opportunities and challenges were all analyzed and summarized.We hope this review can act as an updating and encourage more researchers to push on the development of BFO nanomaterials in the future.
基金This work was supported by the National Natural Science Foundation of China(No.52072041)the Beijing Natural Science Foundation(No.JQ21007)the University of Chinese Academy of Sciences(No.Y8540XX2D2).
文摘Coupled nanogenerators have been a research hotspot due to their ability to harvest a variety of forms of energy such as light,mechanical and thermal energy and achieve a stable direct current output.Ferroelectric films are frequently investigated for photovoltaic applications due to their unique photovoltaic properties and bandgap-independent photovoltage,while the flexoelectric effect is an electromechanical property commonly found in solid dielectrics.Here,we effectively construct a new form of coupled nanogenerator based on a flexible BiFeO_(3) ferroelectric film that combines both flexoelectric and photovoltaic effects to successfully harvest both light and vibration energies.This device converts an alternating current into a direct current and achieves a 6.2% charge enhancement and a 19.3%energy enhancement to achieve a multi-dimensional"1+1>2"coupling enhancement in terms of current,charge and energy.This work proposes a new approach to the coupling of multiple energy harvesting mechanisms in ferroelectric nanogenerators and provides a new strategy to enhance the transduction efficiency of flexible functional devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.52250112,51922023,52203308,62104020)the China Postdoctoral Science Foundation(Grant No.2021M703159)Fundamental Research Funds for the Central Universities(Grant No.E1EG6804).
文摘Tribotronics is an emerging research field that focuses on the coupling of triboelectricity and semiconductors.In this review,we summarise and explore three branches of tribotronics.Firstly,we introduce the tribovoltaic effect,which involves direct-current power generation through mechanical friction on semiconductor interfaces.This effect offers significant advantages in terms of high power density compared to traditional insulator-based triboelectric nanogenerators.Secondly,we elaborate on triboelectric modulation,which utilises the triboelectric potential on field-effect transistors.This approach enables active mechanosensation and nanoscale tactile perception.Additionally,we present triboelectric management,which aims to improve energy supply efficiency using semiconductor device technology.This strategy provides an effective microenergy solution for sensors and microsystems.For the interactions between triboelectricity and semiconductors,the research of tribotronics has exhibited the electronics of interfacial friction systems,and the triboelectric technology by electronics.This review demonstrates the promising prospects of tribotronics in the development of new functional devices and self-powered microsystems for intelligent manufacturing,robotic sensing,and the industrial Internet of Things.
基金supported by the National Key Research and Development Program of China(2021YFB3200304)the National Natural Science Foundation of China(52073031)+2 种基金Beijing Nova Program(Z191100001119047,Z211100002121148)Fundamental Research Funds for the Central Universities(E0EG6801X2)the“Hundred Talents Program”of the Chinese Academy of Sciences.
文摘In the era of 5G and the Internet of things(IoTs),vari-ous human-computer interaction systems based on the integration of triboelectric nanogenerators(TENGs)and IoTs technologies dem-onstrate the feasibility of sustainable and self-powered functional systems.The rapid development of intelligent applications of IoTs based on TENGs mainly relies on supplying the harvested mechanical energy from surroundings and implementing active sensing,which have greatly changed the way of human production and daily life.This review mainly introduced the TENG applications in multidisci-pline scenarios of IoTs,including smart agriculture,smart industry,smart city,emergency monitoring,and machine learning-assisted artificial intelligence applications.The challenges and future research directions of TENG toward IoTs have also been proposed.The exten-sive developments and applications of TENG will push forward the IoTs into an energy autonomy fashion.
基金the National Natural Science Foundation of China(Grant No.52072041)the Beijing Natural Science Foundation(Grant No.JQ21007)+2 种基金the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2)the Robotics Rhino-Bird Focused Research Project(No.2020-01-002)the Tencent Robotics X Laboratory.
文摘Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.
基金the National Key Research and Development Program of China(No.2021YFA1500403)Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000)+1 种基金the National Natural Science Foundation of China(Nos.52372079,22173024,and 21722102)Youth Innovation Promotion Association CAS(G.D.L.).
文摘Hydrogenation of lignin-derived phenol to KA oil(the mixture of cyclohexanone(K)and cyclohexanol(A))is attractive yet challenging in the sustainable upgrading of biomass derivatives under mild conditions.Traditional supported metal catalysts have been widely studied but the active components on supports often exhibit low recyclability due to their instability under experimental conditions.Here we show fabricating ultrasmall Pt/NiO in the pores of chromium terephthalate MIL-101 as catalysts for hydrogenation of phenol.Impressively,Pt/NiO@MIL-101 achieves catalytic phenol hydrogenation to KA oils of tunable K/A ratios and good reusability under room temperature and atmospheric hydrogen pressure,superior to contrast Pt@MIL-101 and Pt/NiO samples.Such excellent performance mainly originates from the effective adsorption and activation of phenol by coordinatively unsaturated Cr sites and H2 activation on ultrasmall Pt/NiO as well as its effective spillover to the adsorbed phenol over Cr sites for hydrogenation reaction.Substantially,such catalyst also displays the excellent performances for hydrogenation of phenol’s derivatives under mild conditions.
文摘Triboelectric materials with high charge density are the building-block for the commercial application of triboelectric nanogenerators(TENGs).Unstable dynamic processes influence the change of the charge density on the surface and inside of triboelectric materials.The charge density of triboelectric materials depends on the surface and the internal charge transfer processes.The focus of this review is on recent advances in high charge density triboelectric materials and advances in the fabrication of TENGs.We summarize the existing strategies for achieving high charge density in triboelectric materials as well as their fundamental properties.We then review current optimization methods for regulating dynamic charge transfer processes to increase the output charge density:first,increasing charge injection and limiting charge dissipation to achieve a high average surface charge density,and second,regulating the internal charge transfer process and storing charge in triboelectric materials to increase the output charge density.Finally,we present the challenges and prospects in developing high-performance triboelectric materials.
基金supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2015023)National Natural Science Foundation of China(81471784,51802115)+3 种基金Natural Science Foundation of Beijing(2172058)Natural Science Foundation of Shandong Province(ZR2018BEM010,ZR2019YQ21)Major Program of Shandong Province Natural Science Foundation(ZR2018ZC0843)Scientific and Technology Project of University of Jinan(XKY1923)~~
文摘Rapid technological development and population growth are responsible for a series of imminent environmental problems and an ineluctable energy crisis.The application of semiconductor nanomaterials in photocatalysis or photoelectrocatalysis(PEC)for either the degradation of contaminants in the environment or the generation of hydrogen as clean fuel is an effective approach to alleviate these problems.However,the efficiency of such processes remains suboptimal for real applications.Reasonable construction of a built-in electric field is considered to efficiently enhance carrier separation and reduce carrier recombination to improve catalytic performance.In the past decade,as a new method to enhance the built-in electric field,the piezoelectric effect from piezoelectric materials has been extensively studied.In this review,we provide an overview of the properties of piezoelectric materials and the mechanisms of piezoelectricity and ferroelectricity for a built-in electric field.Then,piezoelectric and ferroelectric polarization regulated built-in electric fields that mediate catalysis are discussed.Furthermore,the applications of piezoelectric semiconductor materials are also highlighted,including degradation of pollutants,bacteria disinfection,water splitting for H2 generation,and organic synthesis.We conclude by discussing the challenges in the field and the exciting opportunities to further improve piezo-catalytic efficiency.
基金supported by the National Key R&D Program of China(No.2016YFA0202701)the National Natural Science Foundation of China(Nos.51472055 and 61404034)+3 种基金External Cooperation Program of BIC,Chinese Academy of Sciences(No.121411KYS820150028)the 2015 Annual Beijing Talents Fund(No.2015000021223ZK32)the University of Chinese Academy of Sciences(No.Y8540XX2D2)the“thousands talents”program for the pioneer researcher and his innovation team,China.
文摘The ability to control surface wettability and liquid spreading on textured surfaces is of interest for extensive applications.Soft materials have prominent advantages for producing the smart coatings with multiple functions for strain sensing.Here,we report a simple method to prepare flexible hydrophobic smart coatings using graphene-polymer films.Arrays of individual patterns in the films were created by laser engraving and controlled the contact angle of small drops by pinning the contact lines in a horizontal tensile range of 0-200%.By means of experiments and model,we demonstrate that the ductility of drops is relied on the height-to-spacing ratio of the individual pattern and the intrinsic contact angle.Moreover,the change of drop size was utilized to measure the applied strain and liquid viscosity,enabling a strain sensitivity as high as 1068μm2/%.The proposed laser-etched stretchable graphene-polymer composite has potential applications in DNA microarrays,biological assays,soft robots,and so on.
基金This work was supported by a grant from the National Research Foundation(NRF)funded by the Korean Government(MSIT,2017R1E1A1A01072798 and 2019K1A3A1A14065772).
文摘In the current shift from conventional fossil-fuel-based materials to renewable energy,ecofriendly materials have attracted extensive research interest due to their sustainability and biodegradable properties.The integration of sustainable materials in electronics provides industrial benefits from wasted bio-origin resources and preserves the environment.This review covers the use of sustainable materials as components in organic electronics,such as substrates,insulators,semiconductors,and conductors.We hope this review will stimulate interest in the potential and practical applications of sustainable materials for green and sustainable industry.
基金The work was supported by the National Nature Science Foundation(No.82072065,81471784)the National Key R&D project from Minister of Science and Technology,China(2016YFA0202703)+1 种基金China Postdoctoral Science Foundation(No.BX2021299)the National Youth Talent Support Program.
文摘Covalent organic frameworks(COFs)as a type of porous and crystalline covalent organic polymer are built up from covalently linked and periodically arranged organic molecules.Their precise assembly,welldefined coordination network,and tunable porosity endow COFs with diverse characteristics such as low density,high crystallinity,porous structure,and large specific-surface area,as well as versatile functions and active sites that can be tuned at molecular and atomic level.These unique properties make them excellent candidate materials for biomedical applications,such as drug delivery,diagnostic imaging,and disease therapy.To realize these functions,the components,dimensions,and guest molecule loading into COFs have a great influence on their performance in various applications.In this review,we first introduce the influence of dimensions,building blocks,and synthetic conditions on the chemical stability,pore structure,and chemical interaction with guest molecules of COFs.Next,the applications of COFs in cancer diagnosis and therapy are summarized.Finally,some challenges for COFs in cancer therapy are noted and the problems to be solved in the future are proposed.
基金supported by the Basic Research Program (NRF-2017R1E1A1A01074190)the Bio & Medical Technology Development Program (NRF-2017M3A9E4047243) of the National Research Foundation of Korea funded by the Ministry of Science and ICT, Republic of Korea
文摘Dental pulp is composed of nerves,blood vessels,and various types of cells and surrounded by a thick and hard enamel-dentin matrix.Due to its importance in the maintenance of tooth vitality,there have been intensive efforts to analyze the complex cellularlevel organization of the dental pulp in teeth.Although conventional histologic analysis has provided microscopic images of the dental pulp,3-dimensional (3D) cellular-level visualization of the whole dental pulp in an intact tooth has remained a technically challenging task.This is mainly due to the inevitable disruption and loss of microscopic structural features during the process of mechanical sectioning required for the preparation of the tooth sample for histological observation.To accomplish 3D microscopic observation of thick intact tissue,various optical clearing techniques have been developed mostly for soft tissue,and their application for hard tissues such as bone and teeth has only recently started to be investigated.In this work,we established a simple and rapid optical clearing technique for intact mouse teeth without the time-consuming process of decalcification.We achieved 3D cellular-level visualization of the microvasculature and various immune cell distributions in the whole dental pulp of mouse teeth under normal and pathologic conditions.This technique could be used to enable diverse research methods on tooth development and regeneration by providing 3D visualization of various pulpal cells in intact mouse teeth.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51672029,51372271,and 51172275)the National Key Research and Development Project from the Ministry of Science and Technology,China(Grant No.2016YFA0202702)
文摘Among all-solid-state batteries, rechargeable Al-ion batteries have attracted most attention because they involve threeelectron-redox reactions with high theoretic specific capacity. However, the solid Al-ion conductor electrolytes are less studied. Here, the microscopic path of Al3+-ion conduction of NASICON-type(Al0.2Zr0.8)20/19Nb(PO4)3oxide is identified by temperature-dependent neutron powder diffraction and aberration-corrected scanning transmission electron microscopy experiments.(Al0.2Zr0.8)20/19Nb(PO4)3shows a rhombohedral structure consisting of a framework of(Zr,Nb)O6octahedra sharing corners with(PO4) tetrahedra; the Al occupy trigonal antiprisms exhibiting extremely large displacement factors. This suggests a strong displacement of Al ions along the c axis of the unit cell as they diffuse across the structure by a vacancy mechanism. Negative thermal expansion behavior is also identified along a and b axes, due to folding of the framework as temperature increases.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61888102,51771224,and 62175253)the National Key R&D Program of China(Grant Nos.2018YFA0305803 and 2019YFA0308501)+4 种基金the Chinese Academy of Sciences(Grant Nos.XDB33030100 and XDB30010000)J.S.and X.L.thank the supports from the National Natural Science Foundation of China(Grant Nos.20173025,22073022,and 11874130)the National Key R&D Program of China(Grant No.2017YFA0205004)the Chinese Academy of Sciences(Grant Nos.XDB3600000 and Y950291)the DNL Cooperation Fund(Grant No.DNL202016).
文摘The transition metal dichalcogenides(TMD)monolayers have shown strong second-harmonic generation(SHG)ow-ing to their lack of inversion symmetry.These ultrathin layers then serve as the frequency converters that can be intergraded on a chip.Here,taking MoSSe as an example,we report the first detailed experimental study of the SHG of Janus TMD monolayer,in which the transition metal layer is sandwiched by the two distinct chalcogen layers.It is shown that the SHG effectively arises from an in-plane second-harmonic polarization under paraxial focusing and detection.Based on this,the orientation-resolved SHG spectroscopy is realized to readily determine the zigzag and armchair axes of the Janus crystal with an accuracy better than±0.6°.Moreover,the SHG intensity is wavelength-dependent and can be greatly enhanced(~60 times)when the two-photon transition is resonant with the C-exciton state.Our findings uncover the SHG properties of Janus MoSSe monolayer,therefore lay the basis for its integrated frequency-doubling applications.
基金the National Natural Science Foundation of China(No.22109012)Natural Science Foundation of the Beijing Municipality(Nos.L222037 and 2212052)the Fundamental Research Funds for the Central Universities(No.E1E46805).
文摘Textile-based electronic devices have attracted increasing interest in recent years due to their wearability,breathability,comfort.Among them,textile-based triboelectric nanogenerators(T-TENGs)exhibit remarkable advantages in mechanical energy harvesting and self-powered sensing.However,there are still some key challenges to the development and application of triboelectric fibers(the basic unit of T-TENG).Scalable production and large-scale integration are still significant factors hindering its application.At the same time,there are some difficulties to overcome in the manufacturing process,such as achieving good stretchability and a quick production,overcoming incompatibility between conductive and triboelectric materials.In this study,triboelectric fibers are produced continuously by one-step coaxial wet spinning.They are only 0.18 mm in diameter and consist of liquid metal(LM)core and polyurethane(PU)sheath.Due to the good mechanical properties between them,there is no interface incompatibility of the triboelectric fibers.In addition,triboelectric fibers can be made into large areas of T-TENG by means of digital embroidery and plain weave.The T-TENGs can be used for energy harvesting and self-powered sensing.When they are fixed on the forearm can monitor various strokes in badminton.This work provides a promising strategy for the large-scale fabrication and large-area integration of triboelectric fibers,promotes the development of wearable T-TENGs.