We investigate the anisotropic band structure and its evolution under tensile strains along different crystallographic directions in bulk black phosphorus(BP)using angle-resolved photoemission spectroscopy and density...We investigate the anisotropic band structure and its evolution under tensile strains along different crystallographic directions in bulk black phosphorus(BP)using angle-resolved photoemission spectroscopy and density functional theory.The results show that there are band crossings in the Z-L(armchair)direction.展开更多
SiO_(2)is the major mineral substance in the upper mantle of the earth.Therefore,studies of the silica-coated materials under high-pressure are essential to explore the physical and chemical properties of the upper ma...SiO_(2)is the major mineral substance in the upper mantle of the earth.Therefore,studies of the silica-coated materials under high-pressure are essential to explore the physical and chemical properties of the upper mantle.The silica-confined CsPbBr_(3)nanocrystals(NCs)have recently attracted much attention because of the improved photoluminescence(PL)quantum yield,owing to the protection of silica shell.However,it remains considerable interest to further explore the relationship between optical properties and the structure of CsPbBr_(3)@SiO_(2)NCs.We systemically studied the structural and optical properties of the CsPbBr_(3)@SiO_(2)NCs under high pressure by using diamond anvil cell(DAC).The discontinuous changes of PL and absorption spectra occurred at~1.40 GPa.Synchrotron X-ray diffraction(XRD)studies of CsPbBr_(3)@SiO_(2)NCs under high pressure indicated an isostructural phase transformation at about 1.36 GPa,owing to the pressure-induced tilting of the Pb-Br octahedra.The isothermal bulk moduli for two phases are estimated about 60.0 GPa and 19.2 GPa by fitting the equation of state.Besides,the transition pressure point of CsPbBr_(3)@SiO_(2)NCs is slightly higher than that of pristine CsPbBr_(3)NCs,which attributed to the buffer effect of coating silica shell.The results indicate that silica shell is able to enhance the stabilization without changing the relationship between optical properties and structure of CsPbBr_(3)NCs.Our results were fascinated to model the rock metasomatism in the upper mantle and provided a new‘lithoprobe’for detecting the upper mantle.展开更多
Using first-principles calculations, we study the tailoring of the electronic and magnetic properties of gallium sulfide nanoribbons(Ga2S2NRs) by mechanical strain. Hydrogen-passivated armchair-and zigzag-edged NRs...Using first-principles calculations, we study the tailoring of the electronic and magnetic properties of gallium sulfide nanoribbons(Ga2S2NRs) by mechanical strain. Hydrogen-passivated armchair-and zigzag-edged NRs(ANRs and ZNRs)with different widths are investigated. Significant effects in band gap and magnetic properties are found and analyzed. First,the band gaps and their nature of ANRs can be largely tailored by a strain. The band gaps can be markedly reduced, and show an indirect-direct(I-D) transition under a tensile strain. While under an increasing compressive strain, they undergo a series transitions of I-D-I-D. Five strain zones with distinct band structures and their boundaries are identified. In addition,the carrier effective masses of ANRs are also tunable by the strain, showing jumps at the boundaries. Second, the magnetic moments of(ferromagnetic) ZNRs show jumps under an increasing compressive strain due to spin density redistribution,but are unresponsive to tensile strains. The rich tunable properties by stain suggest potential applications of Ga2S2 NRs in nanoelectronics and optoelectronics.展开更多
The controllable growth of three different morphologies of AlN nanostructures (nanorod, nanotip and nanocrater) arrays are successfully realized by using chemical vapour deposition (CVD) technology. All three nano...The controllable growth of three different morphologies of AlN nanostructures (nanorod, nanotip and nanocrater) arrays are successfully realized by using chemical vapour deposition (CVD) technology. All three nanostructures are of single crystal h-AlN with a growth orientation of [001]. Their growth is attributed to the vapour-liquid-solid (VLS) mechanism. To investigate the factors affecting field emission (FE) properties of AlN nanostructures, we compare their FE behaviours in several aspects. Experimental results show that AIN nanocrater arrays possess the best FE properties, such as a threshold field of 7.2 V/μm and an emission current fluctuation lower than 4%. Moreover, the three AlN nanostructures all have good field emission properties compared with a number of other excellent cathode nanomaterials, which suggests that they are future promising FE nanomaterials.展开更多
We have performed the first-principles calculation to investigate the origins of ferroelectricities and different po- larization behaviours of superlattices BaTiO3/SrTiO3 and PbTiO3/SrTiO3. The density of state (DOS...We have performed the first-principles calculation to investigate the origins of ferroelectricities and different po- larization behaviours of superlattices BaTiO3/SrTiO3 and PbTiO3/SrTiO3. The density of state (DOS) and electronic charge profiles show that there are strong hybridizations between atoms Ti and O and between atoms Pb and O which play very important roles in producing the ferroelectricities of superlattices BaTiO3/SrTiO3 and PbTiO3/SrTiO3. Ow- ing to the decline of internal electric field in SrTiO3 (ST) layer, the tetragonality and polarizations of superlattices decrease with increasing the fraction of SrTiO3 in the superlattices. We find that the polarization of PbTiO3/SrTiO3 is largerthan that of BaTiO3/SrTiO3 at the same ratio of components, because the polarization mismatch between PbTiO3 and SrTiO3 is larger than that between BaTiO3 and SrTiO3. The polarization and tetragonality are en- hanced with respect to those of bulk tetragonal BaTiO3 in the superlattices BaTiO3/SrTiO3, while the polarization and tetragonality are reduced with respect to those of bulk tetragonal PbTiO3 in superlattices PbTiO3/SrTiO3.展开更多
Gold films deposited by direct current magnetron sputtering are used for synchrotron radiation optics. In this study, the microstructure and surface roughness of gold films were investigated for the purpose of develop...Gold films deposited by direct current magnetron sputtering are used for synchrotron radiation optics. In this study, the microstructure and surface roughness of gold films were investigated for the purpose of developing high-reflectivity mirrors. The deposition process was first optimized. Films were fabricated at different sputtering powers (15, 40, 80, and 120 W) and characterized using grazing incidence X-ray reflectometry, X-ray diffraction, and atomic force microscopy. The results showed that all the films were highly textured, having a dominant Au (111) orientation, and the film deposited at 80 W had the lowest surface roughness. Subsequently, post-deposition annealing from 100 to 200℃ in a vacuum was performed on the films deposited at 80 W to investigate the effect of annealing on the microstructure and surface roughness of the films. The grain size, surface roughness, and their relationship were investigated as a function of annealing temperature. AFM and XRD results revealed that at annealing temperatures of 175 ℃ and below, microstructural change of the films was mainly manifested by the elimination of voids. At annealing temperatures higher than 175℃, grain coalescence occurred in addition to the void elimination, causing the surface roughness to increase.展开更多
Atom lithography with chromium can be utilized to fabricate a pitch standard, which is chrectly traceable to me wavelength of the laser standing waves. The result of a calibrated commercial AFM measurement demonstrate...Atom lithography with chromium can be utilized to fabricate a pitch standard, which is chrectly traceable to me wavelength of the laser standing waves. The result of a calibrated commercial AFM measurement demonstrates that the pitch standard is (212.8±0.1) nm with a peak-to-valley-height (PTVH) better than 20 nm. The measurement results show the high period accuracy of traceability with the standing laser wavelength (λ/2 = 212.78 nm). The Cr nano-grating covers a 1000μm×500 μm area, with a PTVH better than 10 nm. The feature width broadening of the Cr nanostructure has been experimentally observed along the direction of the standing waves. The PTVH along the Gaussian laser direction is similar to a Gaussian distribution. Highly uniform periodic nanostructures with a big area at the millimeter scale, and the surface growth uniformity of the Cr nano-grating, show its great potential in the application of a traceable pitch standard at trans-scales.展开更多
The refining and modification effect of Ti (from GRAI), B, Sr and RE (cerium-riched mixtures of rare earth) on the mechanical properties of A356 aluminum alloys under T5 and T6 treatment condition were studied by OM, ...The refining and modification effect of Ti (from GRAI), B, Sr and RE (cerium-riched mixtures of rare earth) on the mechanical properties of A356 aluminum alloys under T5 and T6 treatment condition were studied by OM, SEM, EDAX, etc. It is found that the addition of RE to A356 alloys containing Ti and/or B and Sr makes strength and elongation increase in T6 treatment, but make elongation decrease in T5 treatment, at the same time, the long axis ofα(Al) grain structure decreases and the mean diameters of silicon particles increase with RE additions increasing. Grain refining with 0.01%Ti plus 0.03% B makes the dendriteα(Al) grain structure transform into equiaxed structure, resulting in obvious increase of elongation percentage. The mean diameters of silicon particles in T5 treatment are smaller than that in T6 treatment. Roundness of silicon particles in T5 treatment is higher than that in T6 treatment. A356 alloys modified and refined with Ti, B and Sr obtain the best mechanical properties in T5 treatment, however, the alloys with Ti, B, RE and Sr additions obtain the best mechanical properties in T6 treatment.展开更多
As one of the most attractive non-radiative power transfer mechanisms without cables,efficient magnetic resonance wireless power transfer(WPT)in the near field has been extensively developed in recent years,and promot...As one of the most attractive non-radiative power transfer mechanisms without cables,efficient magnetic resonance wireless power transfer(WPT)in the near field has been extensively developed in recent years,and promoted a variety of practical applications,such as mobile phones,medical implant devices and electric vehicles.However,the physical mechanism behind some key limitations of the resonance WPT,such as frequency splitting and size-dependent efficiency,is not very clear under the widely used circuit model.Here,we review the recently developed efficient and stable resonance WPT based on non-Hermitian physics,which starts from a completely different avenue(utilizing loss and gain)to introduce novel functionalities to the resonance WPT.From the perspective of non-Hermitian photonics,the coherent and incoherent effects compete and coexist in the WPT system,and the weak stable of energy transfer mainly comes from the broken phase associated with the phase transition of parity-time symmetry.Based on this basic physical framework,some optimization schemes are proposed,including using nonlinear effect,using bound states in the continuum,or resorting to the system with high-order parity-time symmetry.Moreover,the combination of non-Hermitian physics and topological photonics in multi-coil system also provides a versatile platform for long-range robust WPT with topological protection.Therefore,the non-Hermitian physics can not only exactly predict the main results of current WPT systems,but also provide new ways to solve the difficulties of previous designs.展开更多
High quality 0.02 mol%,0.05 mol%,and 0.08 mol%Fe:β-Ga2O3 single crystals were grown by the floating zone method.The crystal structure,optical,electrical,and thermal properties were measured and discussed.Fe:β-Ga2O3 ...High quality 0.02 mol%,0.05 mol%,and 0.08 mol%Fe:β-Ga2O3 single crystals were grown by the floating zone method.The crystal structure,optical,electrical,and thermal properties were measured and discussed.Fe:β-Ga2O3 single crystals showed transmittance of higher than 80%in the near infrared region.With the increase of the Fe doping concentration,the optical bandgaps reduced and room temperature resistivity increased.The resistivity of 0.08 mol%Fe:β-Ga2O3 crystal reached to 3.63×1011Ω·cm.The high resistivity Fe:β-Ga2O3 single crystals could be applied as the substrate for the high-power field effect transistors(FETs).展开更多
Visible converted emissions produced at an excitation of 286 nm in Zn Nb2O6 ceramics doped with rare-earth ions(RE= Eu3+, Tm3+, Er3+or a combination of these ions) were investigated with the aim of increasing the phot...Visible converted emissions produced at an excitation of 286 nm in Zn Nb2O6 ceramics doped with rare-earth ions(RE= Eu3+, Tm3+, Er3+or a combination of these ions) were investigated with the aim of increasing the photovoltaic efficiency of solar cells. The structure of RE:Zn Nb2O6 ceramics was confirmed by x-ray diffraction patterns. The undoped Zn Nb2O6 could emit a blue emission under 286-nm excitation, which is attributed to the self-trapped excitons’ recombination of the efficient luminescence centers of edge-shared Nb O6 groups. Upon 286-nm excitation, Eu:Zn Nb2O6, Tm:Zn Nb2O6, and Er:Zn Nb2O6 ceramics showed blue, green, and red emissions, which correspond to the transitions of5D0→7FJ(J = 1–4)(Eu3+),1G4→3H6(Tm3+), and2H11/2/4S3/2→4I15/2(Er3+), respectively. The calculated CIE chromaticity coordinates of Eu:Zn Nb2O6, Tm:Zn Nb2O6, and Er:Zn Nb2O6are(0.50, 0.31),(0.14, 0.19), and(0.29, 0.56), respectively. RE ionco-doped Zn Nb2O6 showed a combination of characteristic emissions. The chromaticity coordinates of Eu/Tm:Zn Nb2O6,Eu/Er:Zn Nb2O6, and Tm/Er:ZnNb2O6 were calculated to be(0.29, 0.24),(0.45, 0.37), and(0.17, 0.25).展开更多
Improving the cycling stability of metal sulfide-based anode materials at high rate is of great significance for advanced sodium ion batteries.However,the sluggish reaction kinetics is a big obstacle for the developme...Improving the cycling stability of metal sulfide-based anode materials at high rate is of great significance for advanced sodium ion batteries.However,the sluggish reaction kinetics is a big obstacle for the development of high-performance sodium storage electrodes.Herein,we have rationally engineered the heterointerface by designing the Fe1?xS/MoS2 heterostructure with abundant“ion reservoir”to endow the electrode with excellent cycling stability and rate capability,which is proved by a series of in and ex situ electrochemical investigations.Density functional theory calculations further reveal that the heterointerface greatly decreases sodium ion diffusion barrier and facilitates charge-transfer kinetics.Our present findings not only provide a deep analysis on the correlation between the structure and performance,but also draw inspiration for rational heterointerface engineering toward the next-generation high-performance energy storage devices.展开更多
We study the negative thermal expansion(NTE) properties and effect of Na insertion on the NTE of the framework material GaFe(CN)_6 by first-principles calculations based on density functional theory within the quasi-h...We study the negative thermal expansion(NTE) properties and effect of Na insertion on the NTE of the framework material GaFe(CN)_6 by first-principles calculations based on density functional theory within the quasi-harmonic approximation. The calculated results show that the material exhibits NTE due to the low transverse vibrational modes of the CN groups. The modes demonstrate larger negative values of the mode Grüneisen parameters. Once Na is introduced in the framework of the material, it prefers to locate at the center of the quadrates of the framework material and binds to the four N anions nearby. As a consequence, the transverse vibrational mode of the CN group is clearly hindered and the NTE of the material is weakened. Our theoretical calculations have clarified the mechanisms of NTE and the effect of the guest Na on the NTE of the framework material.展开更多
The motor’s configuration is designed and the dynamic analysis equations based on its simplified model are deduced. A testing system utilizing grating is set up to test this new motor, and the theoretical movement pr...The motor’s configuration is designed and the dynamic analysis equations based on its simplified model are deduced. A testing system utilizing grating is set up to test this new motor, and the theoretical movement principle for the motor is proved by experiments. The pulse waveforms are applied to drive the motor to move in steps. The motor has a displacement resolution of 10 nm and a maximum velocity of 0.6 mm/s. It can drive a 200 g slider whose range is 20 mm. A one-dimensional precision positioning platform is fabricated by using the new hybrid piezoelectric motor. The prototype is made up of two servomotors and two piezoelectric motors, which are controlled automatically by a computer. The positioning range of the platform is 10 cm.展开更多
By using a microscopic quantum model, we study theoretically different roles of nanocavity plasmons in scanning tunneling microscope(STM) induced light emission upon selective initial excitation of molecules or plasmo...By using a microscopic quantum model, we study theoretically different roles of nanocavity plasmons in scanning tunneling microscope(STM) induced light emission upon selective initial excitation of molecules or plasmons. The time evolution and spectroscopic properties of the emission from the coupled plasmon-molecule system in each case are studied using time-dependent quantum mater equations. When the STM tip is placed on the molecule to ensure direct carrier injection induced molecular excitation, the major role of the plasmons is to enhance the molecular emission via increasing its radiative decay rate, resulting in sharp molecule-specific emission peaks. On the other hand, when the STM tip is located in close proximity to the edge of the molecule but without direct carrier injection into the molecule, the role of the plasmon-molecule coupling is to cause destructive interferences between the two quantum objects, leading to the occurrence of Fano dips around the energy of the molecular exciton in the plasmonic emission spectra.展开更多
Boron carbide(B4C)coatings have high reflectivity and are widely used as mirrors for free-electron lasers in the x-ray range.However,B4C coatings fabricated by direct-current magnetron sputtering show a strong compres...Boron carbide(B4C)coatings have high reflectivity and are widely used as mirrors for free-electron lasers in the x-ray range.However,B4C coatings fabricated by direct-current magnetron sputtering show a strong compressive stress of about-3 GPa.By changing the argon gas pressure and nitrogen-argon gas mixing ratio,we are able to reduce the intrinsic stress to less than-1 GPa for a 50-nm-thick B4C coating.It is found that the stress in a coating deposited at 10 m Torr is-0.69 GPa,the rms roughness of the coating surface is 0.53 nm,and the coating reflectivity is 88%,which is lower than those of coatings produced at lower working pressures.When the working gas contains 8%nitrogen and 92%argon,the B4 C coating shows not only-1.19 GPa stress but also a low rms roughness of 0.16 nm,and the measured reflectivity is 93%at the wavelength of 0.154 nm.展开更多
Direct current(DC) and radio frequency(RF) performances of InP-based high electron mobility transistors(HEMTs)are investigated by Sentaurus TCAD. The physical models including hydrodynamic transport model, Shock...Direct current(DC) and radio frequency(RF) performances of InP-based high electron mobility transistors(HEMTs)are investigated by Sentaurus TCAD. The physical models including hydrodynamic transport model, Shockley–Read–Hall recombination, Auger recombination, radiative recombination, density gradient model and high field-dependent mobility are used to characterize the devices. The simulated results and measured results about DC and RF performances are compared, showing that they are well matched. However, the slight differences in channel current and pinch-off voltage may be accounted for by the surface defects resulting from oxidized InAlAs material in the gate-recess region. Moreover,the simulated frequency characteristics can be extrapolated beyond the test equipment limitation of 40 GHz, which gives a more accurate maximum oscillation frequency( f;) of 385 GHz.展开更多
Sr3.96Al14025:Eu2+,Dy3+ long persistent materials with different weights of H3BO3 prepared by the high temper- ature solid-state reaction method were characterized by X-ray powder diffraction (XRD), scanning elec...Sr3.96Al14025:Eu2+,Dy3+ long persistent materials with different weights of H3BO3 prepared by the high temper- ature solid-state reaction method were characterized by X-ray powder diffraction (XRD), scanning electronic microscopy (SEM), photoluminescence spectra (PL), and thermoluminescence (TL). The results of XRD indicate that the 3% addition of H3BO3 favorable for the formation of pure phase Sr4Al14025, and SrAl12O19 was generated when there is a low con- tent or high content of H3BO3. The average grain sizes of samples grow bigger with an increase of H3BO3. PL spectra show that the emission peak does not shift evidently and the emission intensity changes little, indicating that the different amount of H3BO3 has little influence on the crystal field. The decay characteristics and TL measurement show that H3BO3 affects the afterglow properties of Sr3.96Al14025:Eu2+,Dy3+, because the increasing H3BO3 leads to more defects in the Sr4Al14025 matrix.展开更多
Dy:Lu2O3 was grown by the float-zone (Fz) method. According to the absorption spectrum, the Judd-Ofelt (JO) parameters Ω2, Ω4, and Ω6 were calculated to be 4.86 × 10-20 cm2, 2.02 × 10-20 cm2, and 1.7...Dy:Lu2O3 was grown by the float-zone (Fz) method. According to the absorption spectrum, the Judd-Ofelt (JO) parameters Ω2, Ω4, and Ω6 were calculated to be 4.86 × 10-20 cm2, 2.02 × 10-20 cm2, and 1.76 ×10-20 cm2, respectively. The emission cross-section at 574 nm corresponding to the 4F9/2 →6H13/2 transition was calculated to be 0.53 ×10 20 cm2. The yellow (4F9/2 →6H13/2 transition) to blue (4F9/2 →6H15/2 transition) intensity ratio ranges up to 12.9. The fluorescence lifetime of the 4F9/2 energy level was measured to be 112.1 μs. These results reveal that Dy:Lu2O3 is a promising material for use in yellow lasers.展开更多
Migration characterizations of Ga and In adatoms on the dielectric surface in selective metal organic vapor phase epitaxy (MOVPE) were investigated. In the typical MOVPE environment, the selectivity of growth is pre...Migration characterizations of Ga and In adatoms on the dielectric surface in selective metal organic vapor phase epitaxy (MOVPE) were investigated. In the typical MOVPE environment, the selectivity of growth is preserved for GaN, and the growth rate of GaN micro-pyramids is sensitive to the period of the patterned SiO2 mask. A surface migration induced model was adopted to figure out the effective migration length of Ga adatoms on the dielectric surface. Different from the growth of GaN, the selective area growth of InGaN on the patterned template would induce the deposition of InGaN polycrystalline particles on the patterned Si02 mask with a long period. It was demonstrated with a scanning electron microscope and energy dispersive spectroscopy that the In adatoms exhibit a shorter migration length on the dielectric surface.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12104216,12241403,and 61974061)the National Key R&D Program of China(Grant No.2021YFB3601600)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20140054)。
文摘We investigate the anisotropic band structure and its evolution under tensile strains along different crystallographic directions in bulk black phosphorus(BP)using angle-resolved photoemission spectroscopy and density functional theory.The results show that there are band crossings in the Z-L(armchair)direction.
基金the National Science Foundation of China(Grant Nos.21725304,11774125,and 21673100)the Chang Jiang Scholars Program of China(Grant No.T2016051)+3 种基金Changbai Mountain Scholars Program(Grant No.2013007)National Defense Science and Technology Key Laboratory Fund(Grant No.6142A0306010917)Jilin Provincial Science&Technology Development Program(Grant No.20190103044JH)Scientific Research Planning Project of the Education Department of Jilin Province(Grant No.JJKH20180118KJ)。
文摘SiO_(2)is the major mineral substance in the upper mantle of the earth.Therefore,studies of the silica-coated materials under high-pressure are essential to explore the physical and chemical properties of the upper mantle.The silica-confined CsPbBr_(3)nanocrystals(NCs)have recently attracted much attention because of the improved photoluminescence(PL)quantum yield,owing to the protection of silica shell.However,it remains considerable interest to further explore the relationship between optical properties and the structure of CsPbBr_(3)@SiO_(2)NCs.We systemically studied the structural and optical properties of the CsPbBr_(3)@SiO_(2)NCs under high pressure by using diamond anvil cell(DAC).The discontinuous changes of PL and absorption spectra occurred at~1.40 GPa.Synchrotron X-ray diffraction(XRD)studies of CsPbBr_(3)@SiO_(2)NCs under high pressure indicated an isostructural phase transformation at about 1.36 GPa,owing to the pressure-induced tilting of the Pb-Br octahedra.The isothermal bulk moduli for two phases are estimated about 60.0 GPa and 19.2 GPa by fitting the equation of state.Besides,the transition pressure point of CsPbBr_(3)@SiO_(2)NCs is slightly higher than that of pristine CsPbBr_(3)NCs,which attributed to the buffer effect of coating silica shell.The results indicate that silica shell is able to enhance the stabilization without changing the relationship between optical properties and structure of CsPbBr_(3)NCs.Our results were fascinated to model the rock metasomatism in the upper mantle and provided a new‘lithoprobe’for detecting the upper mantle.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174220 and 11374226)the Key Scientific Research Project of the Henan Institutions of Higher Learning,China(Grant No.16A140009)+2 种基金the Program for Innovative Research Team of Henan Polytechnic University,China(Grant Nos.T2015-3 and T2016-2)the Doctoral Foundation of Henan Polytechnic University,China(Grant No.B2015-46)the High-performance Grid Computing Platform of Henan Polytechnic University,China
文摘Using first-principles calculations, we study the tailoring of the electronic and magnetic properties of gallium sulfide nanoribbons(Ga2S2NRs) by mechanical strain. Hydrogen-passivated armchair-and zigzag-edged NRs(ANRs and ZNRs)with different widths are investigated. Significant effects in band gap and magnetic properties are found and analyzed. First,the band gaps and their nature of ANRs can be largely tailored by a strain. The band gaps can be markedly reduced, and show an indirect-direct(I-D) transition under a tensile strain. While under an increasing compressive strain, they undergo a series transitions of I-D-I-D. Five strain zones with distinct band structures and their boundaries are identified. In addition,the carrier effective masses of ANRs are also tunable by the strain, showing jumps at the boundaries. Second, the magnetic moments of(ferromagnetic) ZNRs show jumps under an increasing compressive strain due to spin density redistribution,but are unresponsive to tensile strains. The rich tunable properties by stain suggest potential applications of Ga2S2 NRs in nanoelectronics and optoelectronics.
基金supported by the National Basic Research Program of China(Grant No 2007CB935500)the National High Technology Research and Development Program of China(Grant No 2007AA03Z305)+5 种基金the National Science Foundation for Young Scientists of China(Grant No 50802117)the National Joint Science Fund with Guangdong Province(Grant Nos U0634002 and U0734003)the Specialized Research fund for the Doctoral Program of High Education of China(Grant No 20070558063)the Science and Technology Department of Guangdong Provincethe Education Department of Guangdong Provincethe Science and Technology Department of Guangzhou City,China
文摘The controllable growth of three different morphologies of AlN nanostructures (nanorod, nanotip and nanocrater) arrays are successfully realized by using chemical vapour deposition (CVD) technology. All three nanostructures are of single crystal h-AlN with a growth orientation of [001]. Their growth is attributed to the vapour-liquid-solid (VLS) mechanism. To investigate the factors affecting field emission (FE) properties of AlN nanostructures, we compare their FE behaviours in several aspects. Experimental results show that AIN nanocrater arrays possess the best FE properties, such as a threshold field of 7.2 V/μm and an emission current fluctuation lower than 4%. Moreover, the three AlN nanostructures all have good field emission properties compared with a number of other excellent cathode nanomaterials, which suggests that they are future promising FE nanomaterials.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572155, 10172030 and 50232030).
文摘We have performed the first-principles calculation to investigate the origins of ferroelectricities and different po- larization behaviours of superlattices BaTiO3/SrTiO3 and PbTiO3/SrTiO3. The density of state (DOS) and electronic charge profiles show that there are strong hybridizations between atoms Ti and O and between atoms Pb and O which play very important roles in producing the ferroelectricities of superlattices BaTiO3/SrTiO3 and PbTiO3/SrTiO3. Ow- ing to the decline of internal electric field in SrTiO3 (ST) layer, the tetragonality and polarizations of superlattices decrease with increasing the fraction of SrTiO3 in the superlattices. We find that the polarization of PbTiO3/SrTiO3 is largerthan that of BaTiO3/SrTiO3 at the same ratio of components, because the polarization mismatch between PbTiO3 and SrTiO3 is larger than that between BaTiO3 and SrTiO3. The polarization and tetragonality are en- hanced with respect to those of bulk tetragonal BaTiO3 in the superlattices BaTiO3/SrTiO3, while the polarization and tetragonality are reduced with respect to those of bulk tetragonal PbTiO3 in superlattices PbTiO3/SrTiO3.
基金supported by the National Key R&D Program of China(Nos.2016YFA0401304 and 2017YFA0403302)the National Natural Science Foundation of China(NSFC)(Nos.61621001,11505129,and U1732268)
文摘Gold films deposited by direct current magnetron sputtering are used for synchrotron radiation optics. In this study, the microstructure and surface roughness of gold films were investigated for the purpose of developing high-reflectivity mirrors. The deposition process was first optimized. Films were fabricated at different sputtering powers (15, 40, 80, and 120 W) and characterized using grazing incidence X-ray reflectometry, X-ray diffraction, and atomic force microscopy. The results showed that all the films were highly textured, having a dominant Au (111) orientation, and the film deposited at 80 W had the lowest surface roughness. Subsequently, post-deposition annealing from 100 to 200℃ in a vacuum was performed on the films deposited at 80 W to investigate the effect of annealing on the microstructure and surface roughness of the films. The grain size, surface roughness, and their relationship were investigated as a function of annealing temperature. AFM and XRD results revealed that at annealing temperatures of 175 ℃ and below, microstructural change of the films was mainly manifested by the elimination of voids. At annealing temperatures higher than 175℃, grain coalescence occurred in addition to the void elimination, causing the surface roughness to increase.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.91123022)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.10804084)
文摘Atom lithography with chromium can be utilized to fabricate a pitch standard, which is chrectly traceable to me wavelength of the laser standing waves. The result of a calibrated commercial AFM measurement demonstrates that the pitch standard is (212.8±0.1) nm with a peak-to-valley-height (PTVH) better than 20 nm. The measurement results show the high period accuracy of traceability with the standing laser wavelength (λ/2 = 212.78 nm). The Cr nano-grating covers a 1000μm×500 μm area, with a PTVH better than 10 nm. The feature width broadening of the Cr nanostructure has been experimentally observed along the direction of the standing waves. The PTVH along the Gaussian laser direction is similar to a Gaussian distribution. Highly uniform periodic nanostructures with a big area at the millimeter scale, and the surface growth uniformity of the Cr nano-grating, show its great potential in the application of a traceable pitch standard at trans-scales.
文摘The refining and modification effect of Ti (from GRAI), B, Sr and RE (cerium-riched mixtures of rare earth) on the mechanical properties of A356 aluminum alloys under T5 and T6 treatment condition were studied by OM, SEM, EDAX, etc. It is found that the addition of RE to A356 alloys containing Ti and/or B and Sr makes strength and elongation increase in T6 treatment, but make elongation decrease in T5 treatment, at the same time, the long axis ofα(Al) grain structure decreases and the mean diameters of silicon particles increase with RE additions increasing. Grain refining with 0.01%Ti plus 0.03% B makes the dendriteα(Al) grain structure transform into equiaxed structure, resulting in obvious increase of elongation percentage. The mean diameters of silicon particles in T5 treatment are smaller than that in T6 treatment. Roundness of silicon particles in T5 treatment is higher than that in T6 treatment. A356 alloys modified and refined with Ti, B and Sr obtain the best mechanical properties in T5 treatment, however, the alloys with Ti, B, RE and Sr additions obtain the best mechanical properties in T6 treatment.
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301101)the National Natural Science Foundation of China (Grant Nos. 91850206, 61621001, 2004284, 11674247, and 11974261)+3 种基金Shanghai Science and Technology Committee, China (Grant Nos. 18JC1410900 and 18ZR1442900)the China Postdoctoral Science Foundation (Grant Nos. 2019TQ0232 and 2019M661605)the Shanghai Super Postdoctoral Incentive ProgramFundamental Research Funds for the Central Universities, China
文摘As one of the most attractive non-radiative power transfer mechanisms without cables,efficient magnetic resonance wireless power transfer(WPT)in the near field has been extensively developed in recent years,and promoted a variety of practical applications,such as mobile phones,medical implant devices and electric vehicles.However,the physical mechanism behind some key limitations of the resonance WPT,such as frequency splitting and size-dependent efficiency,is not very clear under the widely used circuit model.Here,we review the recently developed efficient and stable resonance WPT based on non-Hermitian physics,which starts from a completely different avenue(utilizing loss and gain)to introduce novel functionalities to the resonance WPT.From the perspective of non-Hermitian photonics,the coherent and incoherent effects compete and coexist in the WPT system,and the weak stable of energy transfer mainly comes from the broken phase associated with the phase transition of parity-time symmetry.Based on this basic physical framework,some optimization schemes are proposed,including using nonlinear effect,using bound states in the continuum,or resorting to the system with high-order parity-time symmetry.Moreover,the combination of non-Hermitian physics and topological photonics in multi-coil system also provides a versatile platform for long-range robust WPT with topological protection.Therefore,the non-Hermitian physics can not only exactly predict the main results of current WPT systems,but also provide new ways to solve the difficulties of previous designs.
基金the Scientific and Innovative Action Plan of Shanghai,China(Grant No.18511110502)Equipment Pre-research Fund Key Project,China(Grant No.6140922010601).
文摘High quality 0.02 mol%,0.05 mol%,and 0.08 mol%Fe:β-Ga2O3 single crystals were grown by the floating zone method.The crystal structure,optical,electrical,and thermal properties were measured and discussed.Fe:β-Ga2O3 single crystals showed transmittance of higher than 80%in the near infrared region.With the increase of the Fe doping concentration,the optical bandgaps reduced and room temperature resistivity increased.The resistivity of 0.08 mol%Fe:β-Ga2O3 crystal reached to 3.63×1011Ω·cm.The high resistivity Fe:β-Ga2O3 single crystals could be applied as the substrate for the high-power field effect transistors(FETs).
基金supported by the National Natural Science Foundation of China(Grant Nos.10572155 and 10732100)the Research Fund for the Doctoral Program of Ministry of Education,China(Grant No.20130171130003)
文摘Visible converted emissions produced at an excitation of 286 nm in Zn Nb2O6 ceramics doped with rare-earth ions(RE= Eu3+, Tm3+, Er3+or a combination of these ions) were investigated with the aim of increasing the photovoltaic efficiency of solar cells. The structure of RE:Zn Nb2O6 ceramics was confirmed by x-ray diffraction patterns. The undoped Zn Nb2O6 could emit a blue emission under 286-nm excitation, which is attributed to the self-trapped excitons’ recombination of the efficient luminescence centers of edge-shared Nb O6 groups. Upon 286-nm excitation, Eu:Zn Nb2O6, Tm:Zn Nb2O6, and Er:Zn Nb2O6 ceramics showed blue, green, and red emissions, which correspond to the transitions of5D0→7FJ(J = 1–4)(Eu3+),1G4→3H6(Tm3+), and2H11/2/4S3/2→4I15/2(Er3+), respectively. The calculated CIE chromaticity coordinates of Eu:Zn Nb2O6, Tm:Zn Nb2O6, and Er:Zn Nb2O6are(0.50, 0.31),(0.14, 0.19), and(0.29, 0.56), respectively. RE ionco-doped Zn Nb2O6 showed a combination of characteristic emissions. The chromaticity coordinates of Eu/Tm:Zn Nb2O6,Eu/Er:Zn Nb2O6, and Tm/Er:ZnNb2O6 were calculated to be(0.29, 0.24),(0.45, 0.37), and(0.17, 0.25).
基金the support from the Thousand Young Talents Program of Chinathe National Natural Science Foundation of China(Nos.51602200,61874074,21603192)+3 种基金Science and Technology Project of Shenzhen(JCYJ20170817101100705,JCYJ20170817100111548,ZDSYS201707271014468)the(Key)Project of Department of Education of Guangdong Province(No.2016KZDXM008)supported by Shenzhen Peacock Plan(No.KQTD2016053112042971)Singapore Ministry of Education Academic Research Fund Tier 2(MOE2018-T2-2-178).
文摘Improving the cycling stability of metal sulfide-based anode materials at high rate is of great significance for advanced sodium ion batteries.However,the sluggish reaction kinetics is a big obstacle for the development of high-performance sodium storage electrodes.Herein,we have rationally engineered the heterointerface by designing the Fe1?xS/MoS2 heterostructure with abundant“ion reservoir”to endow the electrode with excellent cycling stability and rate capability,which is proved by a series of in and ex situ electrochemical investigations.Density functional theory calculations further reveal that the heterointerface greatly decreases sodium ion diffusion barrier and facilitates charge-transfer kinetics.Our present findings not only provide a deep analysis on the correlation between the structure and performance,but also draw inspiration for rational heterointerface engineering toward the next-generation high-performance energy storage devices.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11874328 and 11372283
文摘We study the negative thermal expansion(NTE) properties and effect of Na insertion on the NTE of the framework material GaFe(CN)_6 by first-principles calculations based on density functional theory within the quasi-harmonic approximation. The calculated results show that the material exhibits NTE due to the low transverse vibrational modes of the CN groups. The modes demonstrate larger negative values of the mode Grüneisen parameters. Once Na is introduced in the framework of the material, it prefers to locate at the center of the quadrates of the framework material and binds to the four N anions nearby. As a consequence, the transverse vibrational mode of the CN group is clearly hindered and the NTE of the material is weakened. Our theoretical calculations have clarified the mechanisms of NTE and the effect of the guest Na on the NTE of the framework material.
文摘The motor’s configuration is designed and the dynamic analysis equations based on its simplified model are deduced. A testing system utilizing grating is set up to test this new motor, and the theoretical movement principle for the motor is proved by experiments. The pulse waveforms are applied to drive the motor to move in steps. The motor has a displacement resolution of 10 nm and a maximum velocity of 0.6 mm/s. It can drive a 200 g slider whose range is 20 mm. A one-dimensional precision positioning platform is fabricated by using the new hybrid piezoelectric motor. The prototype is made up of two servomotors and two piezoelectric motors, which are controlled automatically by a computer. The positioning range of the platform is 10 cm.
基金This work was supported by the National Natural Science Foundation of China,the National Basic Re-search Program of China,Chinese Academy of Sci-ences,Anhui Initiative in Quantum Information Tech-nologies,and Basic Research Program of Shenzhen(JCYJ20150401145529035).
文摘By using a microscopic quantum model, we study theoretically different roles of nanocavity plasmons in scanning tunneling microscope(STM) induced light emission upon selective initial excitation of molecules or plasmons. The time evolution and spectroscopic properties of the emission from the coupled plasmon-molecule system in each case are studied using time-dependent quantum mater equations. When the STM tip is placed on the molecule to ensure direct carrier injection induced molecular excitation, the major role of the plasmons is to enhance the molecular emission via increasing its radiative decay rate, resulting in sharp molecule-specific emission peaks. On the other hand, when the STM tip is located in close proximity to the edge of the molecule but without direct carrier injection into the molecule, the role of the plasmon-molecule coupling is to cause destructive interferences between the two quantum objects, leading to the occurrence of Fano dips around the energy of the molecular exciton in the plasmonic emission spectra.
基金Supported by the National Key R&D Program of China under Grant No 2016YFA0401304the National Natural Science Foundation of China under Grant Nos 61621001,U1732268 and 11875203the Shanghai Municipal Science and Technology Major Project under Grant No 2017SHZDZX02
文摘Boron carbide(B4C)coatings have high reflectivity and are widely used as mirrors for free-electron lasers in the x-ray range.However,B4C coatings fabricated by direct-current magnetron sputtering show a strong compressive stress of about-3 GPa.By changing the argon gas pressure and nitrogen-argon gas mixing ratio,we are able to reduce the intrinsic stress to less than-1 GPa for a 50-nm-thick B4C coating.It is found that the stress in a coating deposited at 10 m Torr is-0.69 GPa,the rms roughness of the coating surface is 0.53 nm,and the coating reflectivity is 88%,which is lower than those of coatings produced at lower working pressures.When the working gas contains 8%nitrogen and 92%argon,the B4 C coating shows not only-1.19 GPa stress but also a low rms roughness of 0.16 nm,and the measured reflectivity is 93%at the wavelength of 0.154 nm.
基金supported by the National Natural Science Foundation of China(Grant Nos.61404115 and 61434006)the Postdoctoral Science Foundation of Henan Province,China(Grant No.2014006)the Development Fund for Outstanding Young Teachers of Zhengzhou University(Grant No.1521317004)
文摘Direct current(DC) and radio frequency(RF) performances of InP-based high electron mobility transistors(HEMTs)are investigated by Sentaurus TCAD. The physical models including hydrodynamic transport model, Shockley–Read–Hall recombination, Auger recombination, radiative recombination, density gradient model and high field-dependent mobility are used to characterize the devices. The simulated results and measured results about DC and RF performances are compared, showing that they are well matched. However, the slight differences in channel current and pinch-off voltage may be accounted for by the surface defects resulting from oxidized InAlAs material in the gate-recess region. Moreover,the simulated frequency characteristics can be extrapolated beyond the test equipment limitation of 40 GHz, which gives a more accurate maximum oscillation frequency( f;) of 385 GHz.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 21271048, 11147152, and 61106124)the Natural Science Fund of Zhanjiang Normal University of China (Grant No. QL1020)
文摘Sr3.96Al14025:Eu2+,Dy3+ long persistent materials with different weights of H3BO3 prepared by the high temper- ature solid-state reaction method were characterized by X-ray powder diffraction (XRD), scanning electronic microscopy (SEM), photoluminescence spectra (PL), and thermoluminescence (TL). The results of XRD indicate that the 3% addition of H3BO3 favorable for the formation of pure phase Sr4Al14025, and SrAl12O19 was generated when there is a low con- tent or high content of H3BO3. The average grain sizes of samples grow bigger with an increase of H3BO3. PL spectra show that the emission peak does not shift evidently and the emission intensity changes little, indicating that the different amount of H3BO3 has little influence on the crystal field. The decay characteristics and TL measurement show that H3BO3 affects the afterglow properties of Sr3.96Al14025:Eu2+,Dy3+, because the increasing H3BO3 leads to more defects in the Sr4Al14025 matrix.
基金Project supported by the Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics,Chinese Academy of Sciences(Grant No.2008DP173016)the National Key Research and Development Program of China(Grant No.2016YFB1102202)the National Key Research and Development Program of China(Grant No.2016YFB0701002)
文摘Dy:Lu2O3 was grown by the float-zone (Fz) method. According to the absorption spectrum, the Judd-Ofelt (JO) parameters Ω2, Ω4, and Ω6 were calculated to be 4.86 × 10-20 cm2, 2.02 × 10-20 cm2, and 1.76 ×10-20 cm2, respectively. The emission cross-section at 574 nm corresponding to the 4F9/2 →6H13/2 transition was calculated to be 0.53 ×10 20 cm2. The yellow (4F9/2 →6H13/2 transition) to blue (4F9/2 →6H15/2 transition) intensity ratio ranges up to 12.9. The fluorescence lifetime of the 4F9/2 energy level was measured to be 112.1 μs. These results reveal that Dy:Lu2O3 is a promising material for use in yellow lasers.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274039 and 51177175)the National Basic Research Program of China(Grant No.2011CB301903)+5 种基金the Ph.D.Programs Foundation of Ministry of Education of China(Grant No.20110171110021)the International Sci.&Tech.Collaboration Program of China(Grant No.2012DFG52260)the International Sci.&Tech.Collaboration Program of Guangdong Province,China(Grant No.2013B051000041)the Science and Technology Plan of Guangdong Province,China(Grant No.2013B010401013)the National High Technology Research and Development Program of China(Grant No.2014AA032606)the Opened Fund of the State Key Laboratory on Integrated Optoelectronics,China(Grant No.IOSKL2014KF17)
文摘Migration characterizations of Ga and In adatoms on the dielectric surface in selective metal organic vapor phase epitaxy (MOVPE) were investigated. In the typical MOVPE environment, the selectivity of growth is preserved for GaN, and the growth rate of GaN micro-pyramids is sensitive to the period of the patterned SiO2 mask. A surface migration induced model was adopted to figure out the effective migration length of Ga adatoms on the dielectric surface. Different from the growth of GaN, the selective area growth of InGaN on the patterned template would induce the deposition of InGaN polycrystalline particles on the patterned Si02 mask with a long period. It was demonstrated with a scanning electron microscope and energy dispersive spectroscopy that the In adatoms exhibit a shorter migration length on the dielectric surface.