From the perspective of the development of world-class universities,internationalization is an essential strategic choice and external feature,and also an inevitable choice to improve the discourse power and competiti...From the perspective of the development of world-class universities,internationalization is an essential strategic choice and external feature,and also an inevitable choice to improve the discourse power and competitiveness of international higher education.In line with the national“double first-class”international development strategy of higher education,based on the cultivation of students’overall quality,the improvement of teachers’professional ability,and the development of school’s improvement of quality and efficiency,we School of Software,Northwestern Polytechnical University,explore new ideas and new measures for the cultivation of international software engineering talents,build a set of international teaching resources construction system,to form a reference standard and scheme for the cultivation of international software engineering talents.At present,we have achieved excellent results.展开更多
The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect predicti...The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.展开更多
Cross-Project Defect Prediction(CPDP)is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project.However,existing CPDP methods only consi...Cross-Project Defect Prediction(CPDP)is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project.However,existing CPDP methods only consider linear correlations between features(indicators)of the source and target projects.These models are not capable of evaluating non-linear correlations between features when they exist,for example,when there are differences in data distributions between the source and target projects.As a result,the performance of such CPDP models is compromised.In this paper,this paper proposes a novel CPDP method based on Synthetic Minority Oversampling Technique(SMOTE)and Deep Canonical Correlation Analysis(DCCA),referred to as S-DCCA.Canonical Correlation Analysis(CCA)is employed to address the issue of non-linear correlations between features of the source and target projects.S-DCCA extends CCA by incorporating the MlpNet model for feature extraction from the dataset.The redundant features are then eliminated by maximizing the correlated feature subset using the CCA loss function.Finally,cross-project defect prediction is achieved through the application of the SMOTE data sampling technique.Area Under Curve(AUC)and F1 scores(F1)are used as evaluation metrics.This paper conducted experiments on 27 projects from four public datasets to validate the proposed method.The results demonstrate that,on average,our method outperforms all baseline approaches by at least 1.2%in AUC and 5.5%in F1 score.This indicates that the proposed method exhibits favorable performance characteristics.展开更多
Powered by advanced information industry and intelligent technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).And human factors have become crucial in the ...Powered by advanced information industry and intelligent technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).And human factors have become crucial in the operations of complex social systems.Traditional mechanical analysis and social simulations alone are powerless for analyzing complex social systems.Against this backdrop,computational experiments have emerged as a new method for quantitative analysis of complex social systems by combining social simulation(e.g.,ABM),complexity science,and domain knowledge.However,in the process of applying computational experiments,the construction of experiment system not only considers a large number of artificial society models,but also involves a large amount of data and knowledge.As a result,how to integrate various data,model and knowledge to achieve a running experiment system has become a key challenge.This paper proposes an integrated design framework of computational experiment system,which is composed of four parts:generation of digital subject,generation of digital object,design of operation engine,and construction of experiment system.Finally,this paper outlines a typical case study of coal mine emergency management to verify the validity of the proposed framework.展开更多
Despite the advances in automated vulnerability detection approaches,security vulnerabilities caused by design flaws in software systems are continuously appearing in real-world systems.Such security design flaws can ...Despite the advances in automated vulnerability detection approaches,security vulnerabilities caused by design flaws in software systems are continuously appearing in real-world systems.Such security design flaws can bring unrestricted and misimplemented behaviors of a system and can lead to fatal vulnerabilities such as remote code execution or sensitive data leakage.Therefore,it is an essential task to discover unrestricted and misimplemented behaviors of a system.However,it is a daunting task for security experts to discover such vulnerabilities in advance because it is timeconsuming and error-prone to analyze the whole code in detail.Also,most of the existing vulnerability detection approaches still focus on detecting memory corruption bugs because these bugs are the dominant root cause of software vulnerabilities.This paper proposes SMINER,a novel approach that discovers vulnerabilities caused by unrestricted and misimplemented behaviors.SMINER first collects unit test cases for the target system from the official repository.Next,preprocess the collected code fragments.SMINER uses pre-processed data to show the security policies that can occur on the target system and creates a test case for security policy testing.To demonstrate the effectiveness of SMINER,this paper evaluates SMINER against Robot Operating System(ROS),a real-world system used for intelligent robots in Amazon and controlling satellites in National Aeronautics and Space Administration(NASA).From the evaluation,we discovered two real-world vulnerabilities in ROS.展开更多
Cross-project software defect prediction(CPDP)aims to enhance defect prediction in target projects with limited or no historical data by leveraging information from related source projects.The existing CPDP approaches...Cross-project software defect prediction(CPDP)aims to enhance defect prediction in target projects with limited or no historical data by leveraging information from related source projects.The existing CPDP approaches rely on static metrics or dynamic syntactic features,which have shown limited effectiveness in CPDP due to their inability to capture higher-level system properties,such as complex design patterns,relationships between multiple functions,and dependencies in different software projects,that are important for CPDP.This paper introduces a novel approach,a graph-based feature learning model for CPDP(GB-CPDP),that utilizes NetworkX to extract features and learn representations of program entities from control flow graphs(CFGs)and data dependency graphs(DDGs).These graphs capture the structural and data dependencies within the source code.The proposed approach employs Node2Vec to transform CFGs and DDGs into numerical vectors and leverages Long Short-Term Memory(LSTM)networks to learn predictive models.The process involves graph construction,feature learning through graph embedding and LSTM,and defect prediction.Experimental evaluation using nine open-source Java projects from the PROMISE dataset demonstrates that GB-CPDP outperforms state-of-the-art CPDP methods in terms of F1-measure and Area Under the Curve(AUC).The results showcase the effectiveness of GB-CPDP in improving the performance of cross-project defect prediction.展开更多
With the rapid evolution of technology and the increasing complexity of software systems,there is a growing demand for effective educational approaches that empower learners to acquire and apply software engineering s...With the rapid evolution of technology and the increasing complexity of software systems,there is a growing demand for effective educational approaches that empower learners to acquire and apply software engineering skills in practical contexts.This paper presents an intelligent and interactive learning(Meta-SEE)framework for software engineering education that combines the immersive capabilities of the metaverse with the cognitive processes of metacognition,to create an interactive and engaging learning environment.In the Meta-SEE framework,learners are immersed in a virtual world where they can collaboratively engage with concepts and practices of software engineering.Through the integration of metacognitive strategies,learners are empowered to monitor,regulate,and adapt their learning processes.By incorporating metacognition within the metaverse,learners gain a deeper understanding of their own thinking processes and become self-directed learners.In addition,MetaSEE has the potential to revolutionize software engineering education by offering a dynamic,immersive,and personalized learning experience.It allows learners to engage in realistic software development scenarios,explore complex systems,and collaborate with peers and instructors in virtual spaces.展开更多
As a highly advanced conversational AI chatbot trained on extensive datasets,ChatGPT has garnered significant attention across various domains,including academia,industry,and education.In the field of education,existi...As a highly advanced conversational AI chatbot trained on extensive datasets,ChatGPT has garnered significant attention across various domains,including academia,industry,and education.In the field of education,existing studies primarily focus on 2 areas:Assessing the potential utility of ChatGPT in education by examining its capabilities and limitations;exploring the educational scenarios that could benefit from the integration of ChatGPT.In contrast to these studies,we conduct a user survey targeting undergraduate students specializing in Software Engineering,aiming to gain insights into their perceptions,challenges,and expectations regarding the utilization of ChatGPT.Based on the results of the survey,we provide valuable guidance on the effective incorporation of ChatGPT in the realm of software engineering education.展开更多
Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,t...Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,the network topology of each control domain of SDN will affect the performance of the multidomain network,so performance evaluation is required before the deployment of the multi-domain SDN.Besides,there is a high cost to build real multi-domain SDN networks with different topologies,so it is necessary to use simulation testing methods to evaluate the topological performance of the multi-domain SDN network.As there is a lack of existing methods to construct a multi-domain SDN simulation network for the tool to evaluate the topological performance automatically,this paper proposes an automated multi-domain SDN topology performance evaluation framework,which supports multiple types of SDN network topologies in cooperating to construct a multi-domain SDN network.The framework integrates existing single-domain SDN simulation tools with network performance testing tools to realize automated performance evaluation of multidomain SDN network topologies.We designed and implemented a Mininet-based simulation tool that can connect multiple controllers and run user-specified topologies in multiple SDN control domains to build and test multi-domain SDN networks faster.Then,we used the tool to perform performance tests on various data center network topologies in single-domain and multi-domain SDN simulation environments.Test results show that Space Shuffle has the most stable performance in a single-domain environment,and Fat-tree has the best performance in a multi-domain environment.Also,this tool has the characteristics of simplicity and stability,which can meet the needs of multi-domain SDN topology performance evaluation.展开更多
Software testing courses are characterized by strong practicality,comprehensiveness,and diversity.Due to the differences among students and the needs to design personalized solutions for their specific requirements,th...Software testing courses are characterized by strong practicality,comprehensiveness,and diversity.Due to the differences among students and the needs to design personalized solutions for their specific requirements,the design of the existing software testing courses fails to meet the demands for personalized learning.Knowledge graphs,with their rich semantics and good visualization effects,have a wide range of applications in the field of education.In response to the current problem of software testing courses which fails to meet the needs for personalized learning,this paper offers a learning path recommendation based on knowledge graphs to provide personalized learning paths for students.展开更多
With the increasing number of switches in Software-Defined Network-ing(SDN),there are more and more faults rising in the data plane.However,due to the existence of link redundancy and multi-path forwarding mechanisms,t...With the increasing number of switches in Software-Defined Network-ing(SDN),there are more and more faults rising in the data plane.However,due to the existence of link redundancy and multi-path forwarding mechanisms,these problems cannot be detected in time.The current faulty path detection mechan-isms have problems such as the large scale of detection and low efficiency,which is difficult to meet the requirements of efficient faulty path detection in large-scale SDN.Concerning this issue,we propose an efficient network path fault testing model ProbD based on probability detection.This model achieves a high prob-ability of detecting arbitrary path fault in the form of small-scale random sam-pling.Under a certain path fault rate,ProbD obtains the curve of sample size and probability of detecting arbitrary path fault by randomly sampling network paths several times.After a small number of experiments,the ProbD model can cor-rectly estimate the path fault rate of the network and calculate the total number of paths that need to be detected according to the different probability of detecting arbitrary path fault and the path fault rate of the network.Thefinal experimental results show that,compared with the full path coverage test,the ProbD model based on probability detection can achieve efficient network testing with less overhead.Besides,the larger the network scale is,the more overhead will be saved.展开更多
This paper focuses on the problems,opportunities,and challenges faced by software engineering education in the new era.We have studied the core ideas of the new model and reform,the specific measures implemented,and t...This paper focuses on the problems,opportunities,and challenges faced by software engineering education in the new era.We have studied the core ideas of the new model and reform,the specific measures implemented,and the challenges and solutions faced.The new model and reform must focus on cultivating practical abilities,introducing interdisciplinary knowledge,and strengthening innovation awareness and entrepreneurial spirit.The process of reform and innovation is carried out from the aspects of teaching methods,teaching means,and course performance evaluation in the teaching practice of software engineering courses.We adopt a method of“question guiding,simple and easy to understand,flexible and diverse,and emphasizing practical results”,optimizing the curriculum design,providing diverse learning opportunities,and establishing a platform for the industry-university-research cooperation.Our teaching philosophy is to adhere to the viewpoint of innovative teaching ideas,optimizing teaching methods and teaching means,and comprehensively improving the teaching quality and level of software engineering education.展开更多
Antivirus vendors and the research community employ Machine Learning(ML)or Deep Learning(DL)-based static analysis techniques for efficient identification of new threats,given the continual emergence of novel malware ...Antivirus vendors and the research community employ Machine Learning(ML)or Deep Learning(DL)-based static analysis techniques for efficient identification of new threats,given the continual emergence of novel malware variants.On the other hand,numerous researchers have reported that Adversarial Examples(AEs),generated by manipulating previously detected malware,can successfully evade ML/DL-based classifiers.Commercial antivirus systems,in particular,have been identified as vulnerable to such AEs.This paper firstly focuses on conducting black-box attacks to circumvent ML/DL-based malware classifiers.Our attack method utilizes seven different perturbations,including Overlay Append,Section Append,and Break Checksum,capitalizing on the ambiguities present in the PE format,as previously employed in evasion attack research.By directly applying the perturbation techniques to PE binaries,our attack method eliminates the need to grapple with the problem-feature space dilemma,a persistent challenge in many evasion attack studies.Being a black-box attack,our method can generate AEs that successfully evade both DL-based and ML-based classifiers.Also,AEs generated by the attack method retain their executability and malicious behavior,eliminating the need for functionality verification.Through thorogh evaluations,we confirmed that the attack method achieves an evasion rate of 65.6%against well-known ML-based malware detectors and can reach a remarkable 99%evasion rate against well-known DL-based malware detectors.Furthermore,our AEs demonstrated the capability to bypass detection by 17%of vendors out of the 64 on VirusTotal(VT).In addition,we propose a defensive approach that utilizes Trend Locality Sensitive Hashing(TLSH)to construct a similarity-based defense model.Through several experiments on the approach,we verified that our defense model can effectively counter AEs generated by the perturbation techniques.In conclusion,our defense model alleviates the limitation of the most promising defense method,adversarial training,which is only effective against the AEs that are included in the training classifiers.展开更多
In the realm of public goods game,punishment,as a potent tool,stands out for fostering cooperation.While it effectively addresses the first-order free-rider problem,the associated costs can be substantial.Punishers in...In the realm of public goods game,punishment,as a potent tool,stands out for fostering cooperation.While it effectively addresses the first-order free-rider problem,the associated costs can be substantial.Punishers incur expenses in imposing sanctions,while defectors face fines.Unfortunately,these monetary elements seemingly vanish into thin air,representing a loss to the system itself.However,by virtue of the redistribution of fines to cooperators and punishers,not only can we mitigate this loss,but the rewards for these cooperative individuals can be enhanced.Based upon this premise,this paper introduces a fine distribution mechanism to the traditional pool punishment model.Under identical parameter settings,by conducting a comparative experiment with the conventional punishment model,the paper aims to investigate the impact of fine distribution on the evolution of cooperation in spatial public goods game.The experimental results clearly demonstrate that,in instances where the punishment cost is prohibitively high,the cooperative strategies of the traditional pool punishment model may completely collapse.However,the model enriched with fine distribution manages to sustain a considerable number of cooperative strategies,thus highlighting its effectiveness in promoting and preserving cooperation,even in the face of substantial punishment cost.展开更多
In this paper, the test suite construction for GUI (Graphical User Interface) software may be executed centered on grey-box approach with the prior test design of window access controls for unit testing, including fro...In this paper, the test suite construction for GUI (Graphical User Interface) software may be executed centered on grey-box approach with the prior test design of window access controls for unit testing, including front-end method of white box and follow-up black box method for integration testing. Moreover, two key opinions are proposed for the test suite construction for GUI software, the first one is that the “Triple-step method” should be used for unit testing with the prior disposing of data boundary value testing of input controls, and another one is that the “Grey-box approach” should be applied in integration testing for GUI software with necessary testing preparation in the precondition. At the same time, the testing of baseline version and the incremental testing should be considered for the test case construction to coordinate with the whole evolution of software product today. Additionally, all our opinion and thought are verified and tested with a typical case of GUI software—PQMS (Product Quality Monitoring Software/System), and results indicate that these methods and specific disposing are practical and effective.展开更多
Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep lear...Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep learning has largely contributed to the elevation of the prediction performance.Currently,the most up-to-date review of advanced machine learning techniques for financial time series prediction is still lacking,making it challenging for finance domain experts and relevant practitioners to determine which model potentially performs better,what techniques and components are involved,and how themodel can be designed and implemented.This review article provides an overview of techniques,components and frameworks for financial time series prediction,with an emphasis on state-of-the-art deep learning models in the literature from2015 to 2023,including standalonemodels like convolutional neural networks(CNN)that are capable of extracting spatial dependencies within data,and long short-term memory(LSTM)that is designed for handling temporal dependencies;and hybrid models integrating CNN,LSTM,attention mechanism(AM)and other techniques.For illustration and comparison purposes,models proposed in recent studies are mapped to relevant elements of a generalized framework comprised of input,output,feature extraction,prediction,and related processes.Among the state-of-the-artmodels,hybrid models like CNNLSTMand CNN-LSTM-AM in general have been reported superior in performance to stand-alone models like the CNN-only model.Some remaining challenges have been discussed,including non-friendliness for finance domain experts,delayed prediction,domain knowledge negligence,lack of standards,and inability of real-time and highfrequency predictions.The principal contributions of this paper are to provide a one-stop guide for both academia and industry to review,compare and summarize technologies and recent advances in this area,to facilitate smooth and informed implementation,and to highlight future research directions.展开更多
Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulati...Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies.Traditional power load forecasting often has poor feature extraction performance for long time series.In this paper,a new deep learning framework Residual Stacked Temporal Long Short-Term Memory(RST-LSTM)is proposed,which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences.The network framework of RST-LSTM consists of two parts:one is a stacked time convolutional memory unit module for global and local feature extraction,and the other is a residual combination optimization module to reduce model redundancy.Finally,this paper demonstrates through various experimental indicators that RST-LSTM achieves significant performance improvements in both overall and local prediction accuracy compared to some state-of-the-art baseline methods.展开更多
The study of sedimentary mélanges holds pivotal importance in understanding orogenic processes and unveiling geodynamic mechanisms.In this study,we present findings on zircon U-Pb isotopes and whole-rock elementa...The study of sedimentary mélanges holds pivotal importance in understanding orogenic processes and unveiling geodynamic mechanisms.In this study,we present findings on zircon U-Pb isotopes and whole-rock elemental data concerning the recently uncovered Zongzhuo Formation sedimentary mélanges within the Dingri area.Field observations reveal the predominant composition of the Zongzhuo Formation,characterized by a matrix of sandstone-mudstone mixed with sand-conglomerates within native blocks exhibiting soft sediment deformation.Moreover,exotic blocks originating from littoral-neritic seas display evidence of landslide deformation.Our study identifies the depositional environment of the Zongzhuo Formation in Dingri as a slope turbidite fan,with its provenance traced back to the passive continental margin.Notably,this contrasts with the Zongzhuo Formation found in the Jiangzi-Langkazi area.Based on existing data,we conclude that the Zongzhuo Formation in the Dingri area was influenced by the Dingri-Gamba fault and emerged within a fault basin of the passive continental margin due to Neo-Tethys oceanic subduction during the Late Cretaceous period.Its provenance can be attributed to the littoral-neritic sea of the northern Tethys Himalaya region.This study holds significant implications for understanding the tectonic evolution of Tethys Himalaya and for reevaluating the activity of the Dingri-Gamba fault,as it controls the active deposition of the Zongzhuo Formation.展开更多
In this paper, by means of effective testing practices, main strategies of integration testing for GUI software, including differentiating strategy for distinguished system, strategy of personnel organization, increme...In this paper, by means of effective testing practices, main strategies of integration testing for GUI software, including differentiating strategy for distinguished system, strategy of personnel organization, incremental testing strategy based on baseline version, testing strategy of circulating loop through the whole life, and the strategy of test suite construction, were briefly investigated. Moreover, for the code analysis, the FTA (Fault Tree analysis) is proposed to deal with the software change in regression testing. For test suite constructing, the constructing methods for baseline version and the incremental change are deeply discussed, in which main points focus on the testing strategy based on “Sheet/Form”, the “Grey-box approach” for integration testing process, and the application of the improved STD (State Transform Diagram) in state testing. At the same time, the suite construction of integration testing for two types, including small scale program and large scale software, is analyzed and discussed in detail. For testing execution, the specific method based on “Cross-testing” is investigated. Concurrently, by a lot of examples, all results of testing activity indicate that these strategies and methods are useful and fitted to integration testing for GUI software.展开更多
Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficul...Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficulty in selecting parameters,and the low computational efficiency.Inspired by deep learning,we suggest a deep learning-based workflow for seismic time-frequency analysis.The sparse S transform network(SSTNet)is first built to map the relationship between synthetic traces and sparse S transform spectra,which can be easily pre-trained by using synthetic traces and training labels.Next,we introduce knowledge distillation(KD)based transfer learning to re-train SSTNet by using a field data set without training labels,which is named the sparse S transform network with knowledge distillation(KD-SSTNet).In this way,we can effectively calculate the sparse time-frequency spectra of field data and avoid the use of field training labels.To test the availability of the suggested KD-SSTNet,we apply it to field data to estimate seismic attenuation for reservoir characterization and make detailed comparisons with the traditional time-frequency analysis methods.展开更多
文摘From the perspective of the development of world-class universities,internationalization is an essential strategic choice and external feature,and also an inevitable choice to improve the discourse power and competitiveness of international higher education.In line with the national“double first-class”international development strategy of higher education,based on the cultivation of students’overall quality,the improvement of teachers’professional ability,and the development of school’s improvement of quality and efficiency,we School of Software,Northwestern Polytechnical University,explore new ideas and new measures for the cultivation of international software engineering talents,build a set of international teaching resources construction system,to form a reference standard and scheme for the cultivation of international software engineering talents.At present,we have achieved excellent results.
基金supported by the NationalNatural Science Foundation of China(Grant No.61867004)the Youth Fund of the National Natural Science Foundation of China(Grant No.41801288).
文摘The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.
基金NationalNatural Science Foundation of China,Grant/AwardNumber:61867004National Natural Science Foundation of China Youth Fund,Grant/Award Number:41801288.
文摘Cross-Project Defect Prediction(CPDP)is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project.However,existing CPDP methods only consider linear correlations between features(indicators)of the source and target projects.These models are not capable of evaluating non-linear correlations between features when they exist,for example,when there are differences in data distributions between the source and target projects.As a result,the performance of such CPDP models is compromised.In this paper,this paper proposes a novel CPDP method based on Synthetic Minority Oversampling Technique(SMOTE)and Deep Canonical Correlation Analysis(DCCA),referred to as S-DCCA.Canonical Correlation Analysis(CCA)is employed to address the issue of non-linear correlations between features of the source and target projects.S-DCCA extends CCA by incorporating the MlpNet model for feature extraction from the dataset.The redundant features are then eliminated by maximizing the correlated feature subset using the CCA loss function.Finally,cross-project defect prediction is achieved through the application of the SMOTE data sampling technique.Area Under Curve(AUC)and F1 scores(F1)are used as evaluation metrics.This paper conducted experiments on 27 projects from four public datasets to validate the proposed method.The results demonstrate that,on average,our method outperforms all baseline approaches by at least 1.2%in AUC and 5.5%in F1 score.This indicates that the proposed method exhibits favorable performance characteristics.
基金supported in part by the National Key Research and Development Program of China(2021YFF0900800)the National Natural Science Foundation of China(61972276,62206116,62032016)+3 种基金Open Research Fund of The State Key Laboratory for Management and Control of Complex Systems(20210101)New Liberal Arts Reform and Practice Project of National Ministry of Education(2021170002)Tianjin University Talent InnovationReward Program for Literature&Science Graduate Student(C1-2022-010)。
文摘Powered by advanced information industry and intelligent technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).And human factors have become crucial in the operations of complex social systems.Traditional mechanical analysis and social simulations alone are powerless for analyzing complex social systems.Against this backdrop,computational experiments have emerged as a new method for quantitative analysis of complex social systems by combining social simulation(e.g.,ABM),complexity science,and domain knowledge.However,in the process of applying computational experiments,the construction of experiment system not only considers a large number of artificial society models,but also involves a large amount of data and knowledge.As a result,how to integrate various data,model and knowledge to achieve a running experiment system has become a key challenge.This paper proposes an integrated design framework of computational experiment system,which is composed of four parts:generation of digital subject,generation of digital object,design of operation engine,and construction of experiment system.Finally,this paper outlines a typical case study of coal mine emergency management to verify the validity of the proposed framework.
基金This work was supported in part by the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(MSIT)Future Planning under Grant NRF-2020R1A2C2014336 and Grant NRF-2021R1A4A1029650.
文摘Despite the advances in automated vulnerability detection approaches,security vulnerabilities caused by design flaws in software systems are continuously appearing in real-world systems.Such security design flaws can bring unrestricted and misimplemented behaviors of a system and can lead to fatal vulnerabilities such as remote code execution or sensitive data leakage.Therefore,it is an essential task to discover unrestricted and misimplemented behaviors of a system.However,it is a daunting task for security experts to discover such vulnerabilities in advance because it is timeconsuming and error-prone to analyze the whole code in detail.Also,most of the existing vulnerability detection approaches still focus on detecting memory corruption bugs because these bugs are the dominant root cause of software vulnerabilities.This paper proposes SMINER,a novel approach that discovers vulnerabilities caused by unrestricted and misimplemented behaviors.SMINER first collects unit test cases for the target system from the official repository.Next,preprocess the collected code fragments.SMINER uses pre-processed data to show the security policies that can occur on the target system and creates a test case for security policy testing.To demonstrate the effectiveness of SMINER,this paper evaluates SMINER against Robot Operating System(ROS),a real-world system used for intelligent robots in Amazon and controlling satellites in National Aeronautics and Space Administration(NASA).From the evaluation,we discovered two real-world vulnerabilities in ROS.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS-2022-00155885).
文摘Cross-project software defect prediction(CPDP)aims to enhance defect prediction in target projects with limited or no historical data by leveraging information from related source projects.The existing CPDP approaches rely on static metrics or dynamic syntactic features,which have shown limited effectiveness in CPDP due to their inability to capture higher-level system properties,such as complex design patterns,relationships between multiple functions,and dependencies in different software projects,that are important for CPDP.This paper introduces a novel approach,a graph-based feature learning model for CPDP(GB-CPDP),that utilizes NetworkX to extract features and learn representations of program entities from control flow graphs(CFGs)and data dependency graphs(DDGs).These graphs capture the structural and data dependencies within the source code.The proposed approach employs Node2Vec to transform CFGs and DDGs into numerical vectors and leverages Long Short-Term Memory(LSTM)networks to learn predictive models.The process involves graph construction,feature learning through graph embedding and LSTM,and defect prediction.Experimental evaluation using nine open-source Java projects from the PROMISE dataset demonstrates that GB-CPDP outperforms state-of-the-art CPDP methods in terms of F1-measure and Area Under the Curve(AUC).The results showcase the effectiveness of GB-CPDP in improving the performance of cross-project defect prediction.
基金partially funded by the 2023 Teaching Quality Engineering Construction Project of Sun Yat-sen University(No.76250-12230036)the 2023 Project of Computer Education Research Association of Chinese Universities(No.CERACU2023R02)。
文摘With the rapid evolution of technology and the increasing complexity of software systems,there is a growing demand for effective educational approaches that empower learners to acquire and apply software engineering skills in practical contexts.This paper presents an intelligent and interactive learning(Meta-SEE)framework for software engineering education that combines the immersive capabilities of the metaverse with the cognitive processes of metacognition,to create an interactive and engaging learning environment.In the Meta-SEE framework,learners are immersed in a virtual world where they can collaboratively engage with concepts and practices of software engineering.Through the integration of metacognitive strategies,learners are empowered to monitor,regulate,and adapt their learning processes.By incorporating metacognition within the metaverse,learners gain a deeper understanding of their own thinking processes and become self-directed learners.In addition,MetaSEE has the potential to revolutionize software engineering education by offering a dynamic,immersive,and personalized learning experience.It allows learners to engage in realistic software development scenarios,explore complex systems,and collaborate with peers and instructors in virtual spaces.
基金supported in part by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012292)the 2023 Teaching Quality Engineering Construction Project of Sun Yat-sen University(Grant No.76250-12230036)the 2023 Project of Computer Education Research Association ofChinese Universities(Grant No.CERACU2023R02)。
文摘As a highly advanced conversational AI chatbot trained on extensive datasets,ChatGPT has garnered significant attention across various domains,including academia,industry,and education.In the field of education,existing studies primarily focus on 2 areas:Assessing the potential utility of ChatGPT in education by examining its capabilities and limitations;exploring the educational scenarios that could benefit from the integration of ChatGPT.In contrast to these studies,we conduct a user survey targeting undergraduate students specializing in Software Engineering,aiming to gain insights into their perceptions,challenges,and expectations regarding the utilization of ChatGPT.Based on the results of the survey,we provide valuable guidance on the effective incorporation of ChatGPT in the realm of software engineering education.
基金This work was supported by the Fundamental Research Funds for the Central Universities(2021RC239)the Postdoctoral Science Foundation of China(2021 M690338)+3 种基金the Hainan Provincial Natural Science Foundation of China(620RC562,2019RC096,620RC560)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(61802092,62162021).
文摘Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,the network topology of each control domain of SDN will affect the performance of the multidomain network,so performance evaluation is required before the deployment of the multi-domain SDN.Besides,there is a high cost to build real multi-domain SDN networks with different topologies,so it is necessary to use simulation testing methods to evaluate the topological performance of the multi-domain SDN network.As there is a lack of existing methods to construct a multi-domain SDN simulation network for the tool to evaluate the topological performance automatically,this paper proposes an automated multi-domain SDN topology performance evaluation framework,which supports multiple types of SDN network topologies in cooperating to construct a multi-domain SDN network.The framework integrates existing single-domain SDN simulation tools with network performance testing tools to realize automated performance evaluation of multidomain SDN network topologies.We designed and implemented a Mininet-based simulation tool that can connect multiple controllers and run user-specified topologies in multiple SDN control domains to build and test multi-domain SDN networks faster.Then,we used the tool to perform performance tests on various data center network topologies in single-domain and multi-domain SDN simulation environments.Test results show that Space Shuffle has the most stable performance in a single-domain environment,and Fat-tree has the best performance in a multi-domain environment.Also,this tool has the characteristics of simplicity and stability,which can meet the needs of multi-domain SDN topology performance evaluation.
基金supported by the Special Funds for Basic Research of Central Universities(D5000220240)the Special Funds for Education and Teaching Reform in 2023(06410-23GZ230102)。
文摘Software testing courses are characterized by strong practicality,comprehensiveness,and diversity.Due to the differences among students and the needs to design personalized solutions for their specific requirements,the design of the existing software testing courses fails to meet the demands for personalized learning.Knowledge graphs,with their rich semantics and good visualization effects,have a wide range of applications in the field of education.In response to the current problem of software testing courses which fails to meet the needs for personalized learning,this paper offers a learning path recommendation based on knowledge graphs to provide personalized learning paths for students.
基金supported by the Fundamental Research Funds for the Central Universities(2021RC239)the Postdoctoral Science Foundation of China(2021 M690338)+3 种基金the Hainan Provincial Natural Science Foundation of China(620RC562,2019RC096,620RC560)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(61802092,62162021).
文摘With the increasing number of switches in Software-Defined Network-ing(SDN),there are more and more faults rising in the data plane.However,due to the existence of link redundancy and multi-path forwarding mechanisms,these problems cannot be detected in time.The current faulty path detection mechan-isms have problems such as the large scale of detection and low efficiency,which is difficult to meet the requirements of efficient faulty path detection in large-scale SDN.Concerning this issue,we propose an efficient network path fault testing model ProbD based on probability detection.This model achieves a high prob-ability of detecting arbitrary path fault in the form of small-scale random sam-pling.Under a certain path fault rate,ProbD obtains the curve of sample size and probability of detecting arbitrary path fault by randomly sampling network paths several times.After a small number of experiments,the ProbD model can cor-rectly estimate the path fault rate of the network and calculate the total number of paths that need to be detected according to the different probability of detecting arbitrary path fault and the path fault rate of the network.Thefinal experimental results show that,compared with the full path coverage test,the ProbD model based on probability detection can achieve efficient network testing with less overhead.Besides,the larger the network scale is,the more overhead will be saved.
基金supported in part by the postgraduate demonstration course of Guangdong Province Department of Education Programmed Trading(No.2023SFKC_022)the Computer Architecture First Class Course Project,South China Normal University-Baidu Pineapple Talent Training Practice Basethe 2023 Project of Computer Education Research Association of Chinese Universities(No.CERACU2023R02)。
文摘This paper focuses on the problems,opportunities,and challenges faced by software engineering education in the new era.We have studied the core ideas of the new model and reform,the specific measures implemented,and the challenges and solutions faced.The new model and reform must focus on cultivating practical abilities,introducing interdisciplinary knowledge,and strengthening innovation awareness and entrepreneurial spirit.The process of reform and innovation is carried out from the aspects of teaching methods,teaching means,and course performance evaluation in the teaching practice of software engineering courses.We adopt a method of“question guiding,simple and easy to understand,flexible and diverse,and emphasizing practical results”,optimizing the curriculum design,providing diverse learning opportunities,and establishing a platform for the industry-university-research cooperation.Our teaching philosophy is to adhere to the viewpoint of innovative teaching ideas,optimizing teaching methods and teaching means,and comprehensively improving the teaching quality and level of software engineering education.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)Grant funded by the Korea government,Ministry of Science and ICT(MSIT)(No.2017-0-00168,Automatic Deep Malware Analysis Technology for Cyber Threat Intelligence).
文摘Antivirus vendors and the research community employ Machine Learning(ML)or Deep Learning(DL)-based static analysis techniques for efficient identification of new threats,given the continual emergence of novel malware variants.On the other hand,numerous researchers have reported that Adversarial Examples(AEs),generated by manipulating previously detected malware,can successfully evade ML/DL-based classifiers.Commercial antivirus systems,in particular,have been identified as vulnerable to such AEs.This paper firstly focuses on conducting black-box attacks to circumvent ML/DL-based malware classifiers.Our attack method utilizes seven different perturbations,including Overlay Append,Section Append,and Break Checksum,capitalizing on the ambiguities present in the PE format,as previously employed in evasion attack research.By directly applying the perturbation techniques to PE binaries,our attack method eliminates the need to grapple with the problem-feature space dilemma,a persistent challenge in many evasion attack studies.Being a black-box attack,our method can generate AEs that successfully evade both DL-based and ML-based classifiers.Also,AEs generated by the attack method retain their executability and malicious behavior,eliminating the need for functionality verification.Through thorogh evaluations,we confirmed that the attack method achieves an evasion rate of 65.6%against well-known ML-based malware detectors and can reach a remarkable 99%evasion rate against well-known DL-based malware detectors.Furthermore,our AEs demonstrated the capability to bypass detection by 17%of vendors out of the 64 on VirusTotal(VT).In addition,we propose a defensive approach that utilizes Trend Locality Sensitive Hashing(TLSH)to construct a similarity-based defense model.Through several experiments on the approach,we verified that our defense model can effectively counter AEs generated by the perturbation techniques.In conclusion,our defense model alleviates the limitation of the most promising defense method,adversarial training,which is only effective against the AEs that are included in the training classifiers.
基金the Open Foundation of Key Lab-oratory of Software Engineering of Yunnan Province(Grant Nos.2020SE308 and 2020SE309).
文摘In the realm of public goods game,punishment,as a potent tool,stands out for fostering cooperation.While it effectively addresses the first-order free-rider problem,the associated costs can be substantial.Punishers incur expenses in imposing sanctions,while defectors face fines.Unfortunately,these monetary elements seemingly vanish into thin air,representing a loss to the system itself.However,by virtue of the redistribution of fines to cooperators and punishers,not only can we mitigate this loss,but the rewards for these cooperative individuals can be enhanced.Based upon this premise,this paper introduces a fine distribution mechanism to the traditional pool punishment model.Under identical parameter settings,by conducting a comparative experiment with the conventional punishment model,the paper aims to investigate the impact of fine distribution on the evolution of cooperation in spatial public goods game.The experimental results clearly demonstrate that,in instances where the punishment cost is prohibitively high,the cooperative strategies of the traditional pool punishment model may completely collapse.However,the model enriched with fine distribution manages to sustain a considerable number of cooperative strategies,thus highlighting its effectiveness in promoting and preserving cooperation,even in the face of substantial punishment cost.
文摘In this paper, the test suite construction for GUI (Graphical User Interface) software may be executed centered on grey-box approach with the prior test design of window access controls for unit testing, including front-end method of white box and follow-up black box method for integration testing. Moreover, two key opinions are proposed for the test suite construction for GUI software, the first one is that the “Triple-step method” should be used for unit testing with the prior disposing of data boundary value testing of input controls, and another one is that the “Grey-box approach” should be applied in integration testing for GUI software with necessary testing preparation in the precondition. At the same time, the testing of baseline version and the incremental testing should be considered for the test case construction to coordinate with the whole evolution of software product today. Additionally, all our opinion and thought are verified and tested with a typical case of GUI software—PQMS (Product Quality Monitoring Software/System), and results indicate that these methods and specific disposing are practical and effective.
基金funded by the Natural Science Foundation of Fujian Province,China (Grant No.2022J05291)Xiamen Scientific Research Funding for Overseas Chinese Scholars.
文摘Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep learning has largely contributed to the elevation of the prediction performance.Currently,the most up-to-date review of advanced machine learning techniques for financial time series prediction is still lacking,making it challenging for finance domain experts and relevant practitioners to determine which model potentially performs better,what techniques and components are involved,and how themodel can be designed and implemented.This review article provides an overview of techniques,components and frameworks for financial time series prediction,with an emphasis on state-of-the-art deep learning models in the literature from2015 to 2023,including standalonemodels like convolutional neural networks(CNN)that are capable of extracting spatial dependencies within data,and long short-term memory(LSTM)that is designed for handling temporal dependencies;and hybrid models integrating CNN,LSTM,attention mechanism(AM)and other techniques.For illustration and comparison purposes,models proposed in recent studies are mapped to relevant elements of a generalized framework comprised of input,output,feature extraction,prediction,and related processes.Among the state-of-the-artmodels,hybrid models like CNNLSTMand CNN-LSTM-AM in general have been reported superior in performance to stand-alone models like the CNN-only model.Some remaining challenges have been discussed,including non-friendliness for finance domain experts,delayed prediction,domain knowledge negligence,lack of standards,and inability of real-time and highfrequency predictions.The principal contributions of this paper are to provide a one-stop guide for both academia and industry to review,compare and summarize technologies and recent advances in this area,to facilitate smooth and informed implementation,and to highlight future research directions.
基金funded by NARI Group’s Independent Project of China(Granted No.524609230125)the foundation of NARI-TECH Nanjing Control System Ltd.of China(Granted No.0914202403120020).
文摘Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies.Traditional power load forecasting often has poor feature extraction performance for long time series.In this paper,a new deep learning framework Residual Stacked Temporal Long Short-Term Memory(RST-LSTM)is proposed,which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences.The network framework of RST-LSTM consists of two parts:one is a stacked time convolutional memory unit module for global and local feature extraction,and the other is a residual combination optimization module to reduce model redundancy.Finally,this paper demonstrates through various experimental indicators that RST-LSTM achieves significant performance improvements in both overall and local prediction accuracy compared to some state-of-the-art baseline methods.
基金supported by the Geological Survey Project of the China Geological Survey(Grant No.DD20211547)the Basic Survey Project of the Command Center of Natural Resources Comprehensive Survey(Grant No.ZD20220508)。
文摘The study of sedimentary mélanges holds pivotal importance in understanding orogenic processes and unveiling geodynamic mechanisms.In this study,we present findings on zircon U-Pb isotopes and whole-rock elemental data concerning the recently uncovered Zongzhuo Formation sedimentary mélanges within the Dingri area.Field observations reveal the predominant composition of the Zongzhuo Formation,characterized by a matrix of sandstone-mudstone mixed with sand-conglomerates within native blocks exhibiting soft sediment deformation.Moreover,exotic blocks originating from littoral-neritic seas display evidence of landslide deformation.Our study identifies the depositional environment of the Zongzhuo Formation in Dingri as a slope turbidite fan,with its provenance traced back to the passive continental margin.Notably,this contrasts with the Zongzhuo Formation found in the Jiangzi-Langkazi area.Based on existing data,we conclude that the Zongzhuo Formation in the Dingri area was influenced by the Dingri-Gamba fault and emerged within a fault basin of the passive continental margin due to Neo-Tethys oceanic subduction during the Late Cretaceous period.Its provenance can be attributed to the littoral-neritic sea of the northern Tethys Himalaya region.This study holds significant implications for understanding the tectonic evolution of Tethys Himalaya and for reevaluating the activity of the Dingri-Gamba fault,as it controls the active deposition of the Zongzhuo Formation.
文摘In this paper, by means of effective testing practices, main strategies of integration testing for GUI software, including differentiating strategy for distinguished system, strategy of personnel organization, incremental testing strategy based on baseline version, testing strategy of circulating loop through the whole life, and the strategy of test suite construction, were briefly investigated. Moreover, for the code analysis, the FTA (Fault Tree analysis) is proposed to deal with the software change in regression testing. For test suite constructing, the constructing methods for baseline version and the incremental change are deeply discussed, in which main points focus on the testing strategy based on “Sheet/Form”, the “Grey-box approach” for integration testing process, and the application of the improved STD (State Transform Diagram) in state testing. At the same time, the suite construction of integration testing for two types, including small scale program and large scale software, is analyzed and discussed in detail. For testing execution, the specific method based on “Cross-testing” is investigated. Concurrently, by a lot of examples, all results of testing activity indicate that these strategies and methods are useful and fitted to integration testing for GUI software.
基金supported by the National Natural Science Foundation of China (42274144,42304122,and 41974155)the Key Research and Development Program of Shaanxi (2023-YBGY-076)+1 种基金the National Key R&D Program of China (2020YFA0713404)the China Uranium Industry and East China University of Technology Joint Innovation Fund (NRE202107)。
文摘Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficulty in selecting parameters,and the low computational efficiency.Inspired by deep learning,we suggest a deep learning-based workflow for seismic time-frequency analysis.The sparse S transform network(SSTNet)is first built to map the relationship between synthetic traces and sparse S transform spectra,which can be easily pre-trained by using synthetic traces and training labels.Next,we introduce knowledge distillation(KD)based transfer learning to re-train SSTNet by using a field data set without training labels,which is named the sparse S transform network with knowledge distillation(KD-SSTNet).In this way,we can effectively calculate the sparse time-frequency spectra of field data and avoid the use of field training labels.To test the availability of the suggested KD-SSTNet,we apply it to field data to estimate seismic attenuation for reservoir characterization and make detailed comparisons with the traditional time-frequency analysis methods.