Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process...Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process.In this study,the leaching kinetics of REEs from PG in nitric acid at different temperatures were explored in depth.The experiments show that the maximum leaching recovery for ΣREE was 58.5%,75.9%and 83.4%at 30,60 and 80℃,respectively.Additionally,among La,Ce,Y and Nd,Y had the highest leaching rate.A new shrinking core model(SCM)based on the dissolution reaction of a cylindrical solid particle with interfacial transfer and diffusion across the product layer as the rate-controlling step was deduced and could well fit the leaching process of REEs from PG.The activation energies for the leaching of La,Ce,Y and Nd were determined on the basis of the new cylindrical SCM.In summary,the cylindrical SCM was a more suitable fitting model than the spherical SCM,and the interfacial transfer and diffusion across the product layer were the rate-controlling step for REE leaching from the PG sample.展开更多
In order to establish the kinetics of oxidation of artificial magnetite pellets, we comprehensively studied kinetics of the oxidation of artificial magnetite pellets from low temperature to high temperature using chem...In order to establish the kinetics of oxidation of artificial magnetite pellets, we comprehensively studied kinetics of the oxidation of artificial magnetite pellets from low temperature to high temperature using chemical analysis. The results show that when the oxidation temperature is below 1 073 K(800 ℃), the reaction is controlled by the step of internal diffusion, and the model function is 23 G(a) =1-3(1-x) ^(2/3)+2(1-x)(α, reaction degree). When the temperature is above 1 073 K(800 ℃), the reaction mechanism was chemical reaction, and the model function is 13 G(a) =1-(1-x)^(1/3). The apparent activation energy for the oxidation of artificial magnetite pellets was also determined, which was 8.90 kJ/mol for the low temperature and 67.79 kJ/mol for the high temperature. Based on the derived kinetic equation for the oxidation of artificial magnetite pellets, the calculated value is consistent with the experimental data. Compared with that of nature magnetite pellets, the apparent activation energy is decreased obviously, which indicates that the artificial magnetite pellets are oxidized more easily than nature magnetite pellets.展开更多
Mineral liberation analyser(MLA) was applied to quantitatively analyze the rare earth ore from Weishan in Shandong. Mineralogy parameters, such as mineral composition, occurrence states of rare earth elements(REEs) an...Mineral liberation analyser(MLA) was applied to quantitatively analyze the rare earth ore from Weishan in Shandong. Mineralogy parameters, such as mineral composition, occurrence states of rare earth elements(REEs) and valuable elements, mineral embedded grain size distribution, mineral association and liberation, are obtained. Results show that the contents of REEs and other valuable elements mainly contained in the ore were La 1.02 wt%, Ce 4.29 wt%, Pr 0.34 wt%, Nd 0.84 wt%, Sr 3.4 wt%and Ba 26.53 wt%, respectively. The REEs mainly occur in bastnaesite and carbocernaite in the form of independent mineral and the contents of bastnaesite and carbocernaite in the ore were 5.96 wt% and12.30 wt%, respectively. 67.34% of strontium occurs in carbocernaite and the rest occurs in celestobarite and strontianite mineral. 92.71% of barium occurs in barite. Liberation of main rare-earth minerals such as bastnaesite and carbocernaite is more than 80% when the grinding fineness is78.42% passing 74 μm. The research results could be employed to provide detailed basic theoretical data for further improvement of the beneficiation process flow and the processing index of rare earth ore, the recycling of other valuable minerals and the comprehensive utilization of tailings.展开更多
基金Project(51904104) supported by the National Natural Science Foundation of ChinaProject(2020JJ5174) supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2019M662780) supported by China Postdoctoral Science FoundationProject(19C0746) supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(2021-2843) supported by College Student Innovation and Entrepreneurship Training Program of Hunan Province,China。
文摘Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process.In this study,the leaching kinetics of REEs from PG in nitric acid at different temperatures were explored in depth.The experiments show that the maximum leaching recovery for ΣREE was 58.5%,75.9%and 83.4%at 30,60 and 80℃,respectively.Additionally,among La,Ce,Y and Nd,Y had the highest leaching rate.A new shrinking core model(SCM)based on the dissolution reaction of a cylindrical solid particle with interfacial transfer and diffusion across the product layer as the rate-controlling step was deduced and could well fit the leaching process of REEs from PG.The activation energies for the leaching of La,Ce,Y and Nd were determined on the basis of the new cylindrical SCM.In summary,the cylindrical SCM was a more suitable fitting model than the spherical SCM,and the interfacial transfer and diffusion across the product layer were the rate-controlling step for REE leaching from the PG sample.
基金Funded by the National Natural Science Foundation of China(51474161)
文摘In order to establish the kinetics of oxidation of artificial magnetite pellets, we comprehensively studied kinetics of the oxidation of artificial magnetite pellets from low temperature to high temperature using chemical analysis. The results show that when the oxidation temperature is below 1 073 K(800 ℃), the reaction is controlled by the step of internal diffusion, and the model function is 23 G(a) =1-3(1-x) ^(2/3)+2(1-x)(α, reaction degree). When the temperature is above 1 073 K(800 ℃), the reaction mechanism was chemical reaction, and the model function is 13 G(a) =1-(1-x)^(1/3). The apparent activation energy for the oxidation of artificial magnetite pellets was also determined, which was 8.90 kJ/mol for the low temperature and 67.79 kJ/mol for the high temperature. Based on the derived kinetic equation for the oxidation of artificial magnetite pellets, the calculated value is consistent with the experimental data. Compared with that of nature magnetite pellets, the apparent activation energy is decreased obviously, which indicates that the artificial magnetite pellets are oxidized more easily than nature magnetite pellets.
基金Project supported by the National Natural Sciences Foundation of China(51734001,41472071)
文摘Mineral liberation analyser(MLA) was applied to quantitatively analyze the rare earth ore from Weishan in Shandong. Mineralogy parameters, such as mineral composition, occurrence states of rare earth elements(REEs) and valuable elements, mineral embedded grain size distribution, mineral association and liberation, are obtained. Results show that the contents of REEs and other valuable elements mainly contained in the ore were La 1.02 wt%, Ce 4.29 wt%, Pr 0.34 wt%, Nd 0.84 wt%, Sr 3.4 wt%and Ba 26.53 wt%, respectively. The REEs mainly occur in bastnaesite and carbocernaite in the form of independent mineral and the contents of bastnaesite and carbocernaite in the ore were 5.96 wt% and12.30 wt%, respectively. 67.34% of strontium occurs in carbocernaite and the rest occurs in celestobarite and strontianite mineral. 92.71% of barium occurs in barite. Liberation of main rare-earth minerals such as bastnaesite and carbocernaite is more than 80% when the grinding fineness is78.42% passing 74 μm. The research results could be employed to provide detailed basic theoretical data for further improvement of the beneficiation process flow and the processing index of rare earth ore, the recycling of other valuable minerals and the comprehensive utilization of tailings.