NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy leve...NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability.展开更多
Drought stress is a devastating natural disaster driven by the continuing intensification of global warming,which seriously threatens the productivity and quality of several horticultural crops,including pear.Gibberel...Drought stress is a devastating natural disaster driven by the continuing intensification of global warming,which seriously threatens the productivity and quality of several horticultural crops,including pear.Gibberellins(GAs)play crucial roles in plant growth,development,and responses to drought stress.Previous studies have shown significant reductions of GA levels in plants under drought stress;however,our understanding of the intrinsic regulation mechanisms of GA-mediated drought stress in pear remains very limited.Here,we show that drought stress can impair the accumulation of bioactive GAs(BGAs),and subsequently identified PbrGA2ox1 as a chloroplast-localized GA deactivation gene.This gene was significantly induced by drought stress and abscisic acid(ABA)treatment,but was suppressed by GA_(3)treatment.PbrGA2ox1-overexpressing transgenic tobacco plants(Nicotiana benthamiana)exhibited enhanced tolerance to dehydration and drought stresses,whereas knock-down of PbrGA2ox1 in pear(Pyrus betulaefolia)by virus-induced gene silencing led to elevated drought sensitivity.Transgenic plants were hypersensitive to ABA,and had a lower BGAs content,enhanced reactive oxygen species(ROS)scavenging ability,and augmented ABA accumulation and signaling under drought stress compared to wild-type plants.However,the opposite effects were observed with PbrGA2ox1 silencing in pear.Moreover,exogenous GA_(3)treatment aggravated the ROS toxic effect and restrained ABA synthesis and signaling,resulting in the compromised drought tolerance of pear.In summary,our results shed light on the mechanism by which BGAs are eliminated in pear leaves under drought stress,providing further insights into the mechanism regulating the effects of GA on the drought tolerance of plants.展开更多
Objectives:The antitumor effects of pyropheophorbide-αmethyl ester-mediated photodynamic therapy(MPPa-PDT)were observed in several cancers.The objective of this investigation was to examine the antineoplastic efficacy...Objectives:The antitumor effects of pyropheophorbide-αmethyl ester-mediated photodynamic therapy(MPPa-PDT)were observed in several cancers.The objective of this investigation was to examine the antineoplastic efficacy of MPPa-PDT acting on lung carcinoma A549 cells and further elaborate mechanisms.Methods:The viability of A549 cells was examined with cell counting kit-8 after MPPa-PDT disposal.Hoechst 33342 staining,monodansylcadaverine(MDC)staining,and transmission electron microscopy were employed to observe apoptotic bodies and autophagic vesicles.Flow cytometry with Annexin V/propidium iodide(PI)labeling objectively assessed cell death.The expression of associated proteins,including Caspase-3,Beclin-1,LC-3II,and mitogen-activated protein kinase(MAPK)families concluding c-jun NH2-terminal kinase(JNK),p38 MAPK,and extracellular signal-regulated kinase 1/2(ERK)were identified by Western blotting.Results:Prolonged exposure to MPPa-PDT gradually decreased lung cancer A549 cell viability.Apoptosis and autophagy activity were higher in the MPPa-PDT cohort in comparison to the control group.Meanwhile,autophagy inhibition enhanced cell-killing efficacy apparently.Besides,the JNK and p38 MAPK pathways were implicated in MPPa-PDT-triggered apoptosis and autophagy.Conclusions:This study demonstrated that JNK and p38 MAPK were engaged in MPPa-PDT-mediated apoptosis and autophagy in lung carcinoma A549 cells.展开更多
Tight oil reservoirs in the south Ordos Basin are characterized by fractured,heterogeneous oil-bearing strata(an oil saturation of less than 55%on average),normal pressure(0.8±)and extra-low permeability(less tha...Tight oil reservoirs in the south Ordos Basin are characterized by fractured,heterogeneous oil-bearing strata(an oil saturation of less than 55%on average),normal pressure(0.8±)and extra-low permeability(less than 0.3 mD).In the Chang 8 tight sandstone reservoir in Honghe oilfield,micro-and nanopores,especially those with a pore-throat radius of less than 1 mm,account for more than 90%.Fluid flow in the matrix is non-linear and crude oil flow rates are very low under normal pressure gradients.An improved understanding of oil mobility in a tight matrix is key to further development of normalpressure tight-oil resources in the continental basin.In this study,constant-velocity and high-pressure mercury injection experiments were conducted using samples of typical tight sandstone cores obtained from the south of Ordos Basin.A new method for reconstructing the full-scale pore-throat distribution characteristics of tight sandstone reservoirs was established successfully,based on which multistage centrifugal tests,tests of low-pressure differential displacement of oil by water,and nuclear magnetic resonance tests were conducted in order to obtain the distribution characteristics of moveable fluid in different pores.The moveable oil saturation(MOS)and degree of oil recovery(i.e.ratio of accumulative oil production to producing geologic reserves)of the core samples under different differential pressures for displacement were determined.As for the tight oil reservoirs in the south Ordos Basin,the moveable fluids are mainly stored in sub-micron(0.10-0.5 mm)pores.For Type I reservoirs(k>0.1 mD),the volume percentage of moveable fluid in pores with a radius larger than 0.5 mm is relatively high(greater than 40%).The degree of oil recovery of water flooding serves as the basis for forecasting recoverable reserves for tight oil reservoirs.Recoverable reserves under water flooding,mainly occur in pores with a radius greater than 0.5 mm.The contribution of Type I reserves to oil production is observed to be greater than 60%,and the degree of oil recovery reaches up to 17.1%.These results help improve our understanding on the evaluation and classification of Chang 8 tight sandstone reservoirs in Honghe oilfield and serve as theoretical basis for pilot tests to explore effective injection media and development methods to improve the matrix-driven pressure differences and displacement efficiency for oil.展开更多
The study carried out on the waters of the Méné River led to an overall assessment of its water quality during the dry season and the rainy season. The analysis focused on eight (8) water samples taken from ...The study carried out on the waters of the Méné River led to an overall assessment of its water quality during the dry season and the rainy season. The analysis focused on eight (8) water samples taken from the river during a period of dry season (January-February) and a period of rainy season (June and September). The various physicochemical parameters were measured according to Afnor standardized methods. The readings of temperature, turbidity, pH and conductivity made it possible to account for the disturbances occurring in water quality. A temporal variation correlated with the seasons (dry or rainy) is noted. Turbidity depends on the concentration of suspended solids (SS) in the water and drained particles and therefore on the seasons. Just like the temperature, the conductivity changes with the season. The waters of the Méné River are generally acidic. The results obtained show that there is a low level of pollution by chlorides, phosphates, nitrites and nitrates. A slight pollution of the waters of Méné in organic matter (chemical oxygen demand values are less than 25 mg∙L−1 during dry season and 32.33 ± 4.73 mg∙L−1 during rainy season) was observed. The concentrations of metallic trace elements such as iron, manganese and aluminum indicate significant pollution of these waters by these elements. Overall, the waters of the Méné River are of satisfactory quality because all the physicochemical parameters analyzed have values below standards during the dry season as well as during the rainy season with the exception of COD and a few metallic trace elements.展开更多
The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflect...The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.展开更多
Corchorus olitorius (Jew’s mallow), is one of the African indigenous leafy vegetables increasingly getting attention as a possible contributor of both micronutrients and bioactive compounds including proteins, lipids...Corchorus olitorius (Jew’s mallow), is one of the African indigenous leafy vegetables increasingly getting attention as a possible contributor of both micronutrients and bioactive compounds including proteins, lipids, fiber and vitamin C to human nutrition. Leaves of Corchorus olitorius have been found to have high level of phytochemicals: flavonoids, polyphenols, tannins, and saponins that possess strong radical scavenging activity and antioxidant power. In the arid and semi-arid areas of the world, drought is the main limiting factor affecting plant productivity and influences almost all aspects of plant biology. Water stress deficit is known to cause oxidative stress condition that has generally been reported to elevate phenolic antioxidants in various crops including Jew’s mallow. On the other hand, fertilization is crucial for crop management and high yield, it also affects nutritional value of the food plants. Nitrogen (N) fertilization affects health and nutritional value, including mineral content, fatty acid profile, anti-oxidative capacity and polyphenol levels and composition. The possible effects of fertilization should be considered when deciding on fertilization regime, to optimize both plant physiology, productivity and food-related effects. Nitrogen is an important element for Jew’s mallow production since it responds well to it. However, appropriate amounts of nutrients need to be provided to crops at the right time to favor both crop growth, yield and quality. Different reports confirmed that addition or increase of N, negatively affects the total phenolics and total flavonoids, and reduces accumulation of defense-related secondary metabolites resulting in lower oxidative capacity. Increased secondary metabolite production during water deficit and low nitrogen in the soil has been reported as a stress mechanism by most plants. However, further research is required to explore the biochemical response of Jew’s mallow to water deficit and nitrogen fertilization.展开更多
Ethiopia is one of the countries in the world endowed with rich biological resources. However, due to human impacts, the forest cover in Ethiopia has been decreasing rapidly. The study was carried out with the purpose...Ethiopia is one of the countries in the world endowed with rich biological resources. However, due to human impacts, the forest cover in Ethiopia has been decreasing rapidly. The study was carried out with the purpose of finding out the Regeneration Status, Population Structure and Floristic composition of Woody Plant Species in Sheleko Medihanialem Natural Forest in Gondar, North West Ethiopia, from October 2019 to September 2020. The systematic vegetation sampling method was used to collect data from Fifty plots of 20 m × 20 m (400 m2) along five line transects. In addition, five, 5 m × 5 m subplots were laid within the main plot to sample seedlings and saplings. The floristic composition and population structure of woody individuals of trees and shrubs with a diameter at breast height (DBH) ≥ 2.5 cm and height ≥ 2 m were measured. DBH ≤ 2.5 cm and less than 1 m height were considered as seedlings and DBH ≥ 2.5 cm and height of 1 - 2 m as saplings. Vegetation data of density, frequency, basal area, and importance value index were computed. A total of 65 woody plant species in 54 genera and 34 plant families were recorded. Fabaceae, Moraceae and Euphorbiaceae were the dominant families in terms of species richness. Woody species densities for mature individuals were 2202.5 stems∙ha−1, seedling 2419.2 stems∙ha−1 and sapling 1737.6 stems∙ha−1. The forest was dominated by small-sized/young trees and shrubs, indicating the status of secondary growth and/or regeneration.展开更多
“Pinhão”, the seed of Araucaria angustifolia, is an important food, being part of the eating habits of Indigenous communities. In this study, we evaluated the oligosaccharide content, resistant starch and the g...“Pinhão”, the seed of Araucaria angustifolia, is an important food, being part of the eating habits of Indigenous communities. In this study, we evaluated the oligosaccharide content, resistant starch and the growth of probiotic bacteria. GF4 (1-fructofuranosylnystose) was the main fructo-oligosaccharides found, in higher contents compared to other food sources. Maltooligosaccharides (MOS) represented the main part of the oligosaccharides profile of Brazilian pine seeds. In descending order of importance was maltoheptaose (G7), maltohexose (G6) and maltotriose (G3). The starches from the variety Sanct josephi presented the highest amount of resistant starch that could stimulate probiotic strains, mainly B. breve and L. plantarum, and may have a prebiotic effect, potentially promoting health benefits. This study advances the understanding of the chemical composition of the main portion of the “pinhão” enhancing awareness of its potential as a healthy food source, contributing to different uses and indirectly with the species preservation.展开更多
The landscape of cybersecurity is rapidly evolving due to the advancement and integration of Artificial Intelligence (AI) and Machine Learning (ML). This paper explores the crucial role of AI and ML in enhancing cyber...The landscape of cybersecurity is rapidly evolving due to the advancement and integration of Artificial Intelligence (AI) and Machine Learning (ML). This paper explores the crucial role of AI and ML in enhancing cybersecurity defenses against increasingly sophisticated cyber threats, while also highlighting the new vulnerabilities introduced by these technologies. Through a comprehensive analysis that includes historical trends, technological evaluations, and predictive modeling, the dual-edged nature of AI and ML in cybersecurity is examined. Significant challenges such as data privacy, continuous training of AI models, manipulation risks, and ethical concerns are addressed. The paper emphasizes a balanced approach that leverages technological innovation alongside rigorous ethical standards and robust cybersecurity practices. This approach facilitates collaboration among various stakeholders to develop guidelines that ensure responsible and effective use of AI in cybersecurity, aiming to enhance system integrity and privacy without compromising security.展开更多
China Forex:What has the Science and Technology Department done in 2023to facilitatethe reform and development of foreign exchange administration and promote the supporting and leading role of scientific innovation?
Due to the increasing number of cyber-attacks,the necessity to develop efficient intrusion detection systems(IDS)is more imperative than ever.In IDS research,the most effectively used methodology is based on supervise...Due to the increasing number of cyber-attacks,the necessity to develop efficient intrusion detection systems(IDS)is more imperative than ever.In IDS research,the most effectively used methodology is based on supervised Neural Networks(NN)and unsupervised clustering,but there are few works dedicated to their hybridization with metaheuristic algorithms.As intrusion detection data usually contains several features,it is essential to select the best ones appropriately.Linear Discriminant Analysis(LDA)and t-statistic are considered as efficient conventional techniques to select the best features,but they have been little exploited in IDS design.Thus,the research proposed in this paper can be summarized as follows.a)The proposed approach aims to use hybridized unsupervised and hybridized supervised detection processes of all the attack categories in the CICIDS2017 Dataset.Nevertheless,owing to the large size of the CICIDS2017 Dataset,only 25%of the data was used.b)As a feature selection method,the LDAperformancemeasure is chosen and combinedwith the t-statistic.c)For intrusion detection,unsupervised Fuzzy C-means(FCM)clustering and supervised Back-propagation NN are adopted.d)In addition and in order to enhance the suggested classifiers,FCM and NN are hybridized with the seven most known metaheuristic algorithms,including Genetic Algorithm(GA),Particle Swarm Optimization(PSO),Differential Evolution(DE),Cultural Algorithm(CA),Harmony Search(HS),Ant-Lion Optimizer(ALO)and Black Hole(BH)Algorithm.Performance metrics extracted from confusion matrices,such as accuracy,precision,sensitivity and F1-score are exploited.The experimental result for the proposed intrusion detection,based on training and test CICIDS2017 datasets,indicated that PSO,GA and ALO-based NNs can achieve promising results.PSO-NN produces a tested accuracy,global sensitivity and F1-score of 99.97%,99.95%and 99.96%,respectively,outperforming performance concluded in several related works.Furthermore,the best-proposed approaches are valued in the most recent intrusion detection datasets:CSE-CICIDS2018 and LUFlow2020.The evaluation fallouts consolidate the previous results and confirm their correctness.展开更多
The advancement of the fourth industrial revolution has shaped the integration and interaction of different information, communication and technologies (ICTs) in the merging cyber, physical, and social infrastructures...The advancement of the fourth industrial revolution has shaped the integration and interaction of different information, communication and technologies (ICTs) in the merging cyber, physical, and social infrastructures. The impact of ICT has accelerated the progress of the United Nation’s Sustainable Development Goals (UN SDGs) and influenced the evolution of smart, sustainable, stable society development. Making the trustworthy information and communication technologies infrastructure widely available will promote the community innovation needed to stimulate domestic economics, provide decent work, and reduce inequalities. This article attempts to outline a big picture about the International Telecommunication Union (ITU)’s trust provisioning framework, including its motivation, current status, and application for achieving the UN SDGs by 2030. This article first describes the purpose of the UN SDGs and the evolution of the industrial revolution, then demonstrates the challenges of global risks affecting the fourth industrial revolution and the need for trustworthy ICT infrastructures. Subsequently, the article evaluates the ITU trust provisioning framework and assesses its applications in the future knowledge society, trust provisioning ecosystem, and cyber, physical, and social infrastructure toward achieving UN SDGs. Use cases are also presented in this article to show the effectiveness of the ITU trust provisioning framework on achieving UN SDGs.展开更多
To understand the self-healing property of an engineered barrier for radioactive waste disposal,the hydraulic conductivity of compacted bentoniteesand mixtures saturated with artificial seawater(SW)before and after ga...To understand the self-healing property of an engineered barrier for radioactive waste disposal,the hydraulic conductivity of compacted bentoniteesand mixtures saturated with artificial seawater(SW)before and after gas migration was examined.Na-and Ca-bentonites were mixed with fine sand at a ratio of 70%bentonite in dry weight.Two aspects were considered during the experiment:the hydraulic conductivity of the specimen that was resaturated after gas migration and the distribution of water content immediately after gas migration to study gas migration pathways.The gas migrated through the entire cross-section of the specimen,and gas breakthrough occurred in the equilibrium swelling pressure range approximately.Subsequently,the gas flow rate reached a sufficient large value when the gas pressure was approximately twice the equilibrium axial pressure(the sum of swelling and confining pressures),which excluded the back pressure.Although the gas migration pathway was not visible when the specimen was observed immediately after gas migration,the water content distribution showed that several parts of the specimen with lower water content were connected in the direction of gas migration.After resaturation,the change in permeability was within a limited rangedtwo to three times larger than that before gas migration for each type of bentonite in SW.This slight change suggests that gas migration creates a pore structure that cannot be sealed via crystalline swelling of montmorillonite in SW,even if highly compacted bentonite is used under a constant-volume condition.展开更多
Because stress has such a powerful impact on human health,we must be able to identify it automatically in our everyday lives.The human activity recognition(HAR)system use data from several kinds of sensors to try to r...Because stress has such a powerful impact on human health,we must be able to identify it automatically in our everyday lives.The human activity recognition(HAR)system use data from several kinds of sensors to try to recognize and evaluate human actions automatically recognize and evaluate human actions.Using the multimodal dataset DEAP(Database for Emotion Analysis using Physiological Signals),this paper presents deep learning(DL)technique for effectively detecting human stress.The combination of vision-based and sensor-based approaches for recognizing human stress will help us achieve the increased efficiency of current stress recognition systems and predict probable actions in advance of when fatal.Based on visual and EEG(Electroencephalogram)data,this research aims to enhance the performance and extract the dominating characteristics of stress detection.For the stress identification test,we utilized the DEAP dataset,which included video and EEG data.We also demonstrate that combining video and EEG characteristics may increase overall performance,with the suggested stochastic features providing the most accurate results.In the first step,CNN(Convolutional Neural Network)extracts feature vectors from video frames and EEG data.Feature Level(FL)fusion that combines the features extracted from video and EEG data.We use XGBoost as our classifier model to predict stress,and we put it into action.The stress recognition accuracy of the proposed method is compared to existing methods of Decision Tree(DT),Random Forest(RF),AdaBoost,Linear Discriminant Analysis(LDA),and KNearest Neighborhood(KNN).When we compared our technique to existing state-of-the-art approaches,we found that the suggested DL methodology combining multimodal and heterogeneous inputs may improve stress identification.展开更多
As an abiotic stress,adverse germination temperatures cause serious disruptions in physiological and biochemical processes involved in seed germination.Using a factorial experiment,we examined the effects of different...As an abiotic stress,adverse germination temperatures cause serious disruptions in physiological and biochemical processes involved in seed germination.Using a factorial experiment,we examined the effects of different seed priming treatments on enzymatic and biochemical performances of rice seed germination under different temperatures.Each of the rice genotypes(Hashemi,Sadry-domsefid,IRON-70-7053-7 and NORIN-22)was primed with hydro-hardening,KCl,CaCl2 and ascorbic acid(AsA)and without a priming agent as a control at low(15℃),optimum(25℃)and high(35℃)germination temperatures.The results showed that the enzymatic and biochemical performances of all the rice genotypes were affected by the seed priming agents,especially under the low germination temperature.At 15℃,seed priming with AsA was found to be the best agent for the activities of amylase,α-amylase,catalase(CAT),peroxidase(POX),ascorbate peroxidase(APOX)and superoxide dismutase(SOD)as well as the content of soluble sugars in the NORIN-22 genotype,and for protease activity and soluble protein content in the IRON-70-7053-7 genotype.SOD at the low germination temperature and CAT,POX and protease at the optimum and high germination temperatures were the most important enzymes in occurrence of germination potential in terms of seedling length,vigor index,normal seedling rate and germination rate.Under the priming agents,the highest changes in normal seedling rate were observed at the low and optimum germination temperatures by AsA priming in the Hashemi and NORIN-22 genotypes,and at the high germination temperature under KCl priming in the Hashemi genotype.展开更多
Glioblastoma Multiforme (GBM) represents one of the most aggressive and metastatic brain tumors, with a dismal success rate of less than three percent after five years, particularly in tumors with active immune checkp...Glioblastoma Multiforme (GBM) represents one of the most aggressive and metastatic brain tumors, with a dismal success rate of less than three percent after five years, particularly in tumors with active immune checkpoints. This necessitates the development of targeted endogenous agents for precise GBM treatment. Previous experiments utilizing Chemovar Specific Cannabis Extractions (CSCEs), fractionated with polar solvents and quantified using Liquid and Gas Column Chromatography combined with Mass Spectrometry (LC/GCMS), have shown reduced viability and motility in human GBM cell lines. However, the complexity of the botanical substance has hindered the personalization of standard cannabis medicines for GBM due to unknown synergistic effects of multiple compounds. To address this limitation, our study focuses on exposing AM251 cells to chemovar fractions extracted using a non-polar solvent, thereby isolating a broader spectrum of constituents. By employing LC/GCMS in conjunction with Nuclear Magnetic Resonance (NMR), we have identified and quantified nine* compounds present in the non-polar CSCE that exhibit significant efficacy (0.1 μM) in inducing cytotoxicity* in GBM tumor cells. Conversely, the polar fraction in our experiment did not demonstrate efficacy against UM251 cells. The quantification of individual compounds within a cannabis extraction that selectively induces cell death in brain tumors holds promise for guiding future research and facilitating the development of a standardized CSCE for GBM therapy.展开更多
Diabetes is a metabolic disease characterized by abnormally elevated blood glucose levels.Persistent hyperglycemia leads to diabetic nephropathy,diabetic retinopathy,diabetes with periodontal disease and other diabeti...Diabetes is a metabolic disease characterized by abnormally elevated blood glucose levels.Persistent hyperglycemia leads to diabetic nephropathy,diabetic retinopathy,diabetes with periodontal disease and other diabetic complications.These diseases have become the main causes of disability and death in diabetic patients.Artesunate is well known as an antimalarial drug for controlling malaria symptoms.Current studies have shown that artesunate improves diabetes and its complications by protecting islet cells,improving glucose and lipid metabolism,anti-inflammatory and immune regulation.Based on the research status in recent years,this paper focuses on the mechanism of artesunate in diabetes and its complications,to provide a theoretical basis for future diabetes research.展开更多
In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on ...In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on coal reservoir permeability and production capacity are significant for CBM development.This study investigated the CBM development zone in the Zhengzhuang area of the Qinshui Basin.According to the low mechanical strength of coal reservoirs,this study derived a calculation model of the in-situ stress of coal reservoirs based on the multi-loop hydraulic fracturing method and analyzed the impacts of initial fractures on the calculated results.Moreover,by combining the data such as the in-situ stress,permeability,and drainage and recovery data of CBM wells,this study revealed the spatial distribution patterns of the current in-situ stress of the coal reservoirs and discussed the impacts of the insitu stress on the permeability and production capacity.The results are as follows.(1)Under given fracturing pressure,longer initial fractures are associated with higher calculated maximum horizontal principal stress values.Therefore,ignoring the effects of the initial fractures will cause the calculated values of the in-situ stress to be less than the actual values.(2)As the burial depth increases,the fracturing pressure,closure pressure,and the maximum and minimum horizontal principal stress of the coal reservoirs in the Zhengzhuang area constantly increase.The average gradients of the maximum and minimum horizontal principal stress are 3.17 MPa/100 m and 2.05 MPa/100 m,respectively.(3)Coal reservoir permeability is significantly controlled by the magnitude and state of the current in-situ stress.The coal reservoir permeability decreases exponentially with an increase in the effective principal stress.Moreover,a low lateral pressure coefficient(less than 1)is associated with minor horizontal compressive effects and high coal reservoir permeability.(4)Under similar conditions,such as resource endowments,CBM well capacity is higher in primary structural coal regions with moderate paleotectonic stress modification,low current in-situ stress,and lateral pressure coefficient of less than 1.展开更多
文摘NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability.
基金supported by grants from the China Agriculture Research System(CARS-28-14)the Technical System of Fruit Industry in Anhui Province,China(AHCYTX-10)the Scientific Research Projects for Postgraduates of Anhui Universities,China(YJS20210207).
文摘Drought stress is a devastating natural disaster driven by the continuing intensification of global warming,which seriously threatens the productivity and quality of several horticultural crops,including pear.Gibberellins(GAs)play crucial roles in plant growth,development,and responses to drought stress.Previous studies have shown significant reductions of GA levels in plants under drought stress;however,our understanding of the intrinsic regulation mechanisms of GA-mediated drought stress in pear remains very limited.Here,we show that drought stress can impair the accumulation of bioactive GAs(BGAs),and subsequently identified PbrGA2ox1 as a chloroplast-localized GA deactivation gene.This gene was significantly induced by drought stress and abscisic acid(ABA)treatment,but was suppressed by GA_(3)treatment.PbrGA2ox1-overexpressing transgenic tobacco plants(Nicotiana benthamiana)exhibited enhanced tolerance to dehydration and drought stresses,whereas knock-down of PbrGA2ox1 in pear(Pyrus betulaefolia)by virus-induced gene silencing led to elevated drought sensitivity.Transgenic plants were hypersensitive to ABA,and had a lower BGAs content,enhanced reactive oxygen species(ROS)scavenging ability,and augmented ABA accumulation and signaling under drought stress compared to wild-type plants.However,the opposite effects were observed with PbrGA2ox1 silencing in pear.Moreover,exogenous GA_(3)treatment aggravated the ROS toxic effect and restrained ABA synthesis and signaling,resulting in the compromised drought tolerance of pear.In summary,our results shed light on the mechanism by which BGAs are eliminated in pear leaves under drought stress,providing further insights into the mechanism regulating the effects of GA on the drought tolerance of plants.
基金supported by XiaoganCity Natural Science Foundation of China (Grant/AwardNo. XGKJ2022010004).
文摘Objectives:The antitumor effects of pyropheophorbide-αmethyl ester-mediated photodynamic therapy(MPPa-PDT)were observed in several cancers.The objective of this investigation was to examine the antineoplastic efficacy of MPPa-PDT acting on lung carcinoma A549 cells and further elaborate mechanisms.Methods:The viability of A549 cells was examined with cell counting kit-8 after MPPa-PDT disposal.Hoechst 33342 staining,monodansylcadaverine(MDC)staining,and transmission electron microscopy were employed to observe apoptotic bodies and autophagic vesicles.Flow cytometry with Annexin V/propidium iodide(PI)labeling objectively assessed cell death.The expression of associated proteins,including Caspase-3,Beclin-1,LC-3II,and mitogen-activated protein kinase(MAPK)families concluding c-jun NH2-terminal kinase(JNK),p38 MAPK,and extracellular signal-regulated kinase 1/2(ERK)were identified by Western blotting.Results:Prolonged exposure to MPPa-PDT gradually decreased lung cancer A549 cell viability.Apoptosis and autophagy activity were higher in the MPPa-PDT cohort in comparison to the control group.Meanwhile,autophagy inhibition enhanced cell-killing efficacy apparently.Besides,the JNK and p38 MAPK pathways were implicated in MPPa-PDT-triggered apoptosis and autophagy.Conclusions:This study demonstrated that JNK and p38 MAPK were engaged in MPPa-PDT-mediated apoptosis and autophagy in lung carcinoma A549 cells.
文摘Tight oil reservoirs in the south Ordos Basin are characterized by fractured,heterogeneous oil-bearing strata(an oil saturation of less than 55%on average),normal pressure(0.8±)and extra-low permeability(less than 0.3 mD).In the Chang 8 tight sandstone reservoir in Honghe oilfield,micro-and nanopores,especially those with a pore-throat radius of less than 1 mm,account for more than 90%.Fluid flow in the matrix is non-linear and crude oil flow rates are very low under normal pressure gradients.An improved understanding of oil mobility in a tight matrix is key to further development of normalpressure tight-oil resources in the continental basin.In this study,constant-velocity and high-pressure mercury injection experiments were conducted using samples of typical tight sandstone cores obtained from the south of Ordos Basin.A new method for reconstructing the full-scale pore-throat distribution characteristics of tight sandstone reservoirs was established successfully,based on which multistage centrifugal tests,tests of low-pressure differential displacement of oil by water,and nuclear magnetic resonance tests were conducted in order to obtain the distribution characteristics of moveable fluid in different pores.The moveable oil saturation(MOS)and degree of oil recovery(i.e.ratio of accumulative oil production to producing geologic reserves)of the core samples under different differential pressures for displacement were determined.As for the tight oil reservoirs in the south Ordos Basin,the moveable fluids are mainly stored in sub-micron(0.10-0.5 mm)pores.For Type I reservoirs(k>0.1 mD),the volume percentage of moveable fluid in pores with a radius larger than 0.5 mm is relatively high(greater than 40%).The degree of oil recovery of water flooding serves as the basis for forecasting recoverable reserves for tight oil reservoirs.Recoverable reserves under water flooding,mainly occur in pores with a radius greater than 0.5 mm.The contribution of Type I reserves to oil production is observed to be greater than 60%,and the degree of oil recovery reaches up to 17.1%.These results help improve our understanding on the evaluation and classification of Chang 8 tight sandstone reservoirs in Honghe oilfield and serve as theoretical basis for pilot tests to explore effective injection media and development methods to improve the matrix-driven pressure differences and displacement efficiency for oil.
文摘The study carried out on the waters of the Méné River led to an overall assessment of its water quality during the dry season and the rainy season. The analysis focused on eight (8) water samples taken from the river during a period of dry season (January-February) and a period of rainy season (June and September). The various physicochemical parameters were measured according to Afnor standardized methods. The readings of temperature, turbidity, pH and conductivity made it possible to account for the disturbances occurring in water quality. A temporal variation correlated with the seasons (dry or rainy) is noted. Turbidity depends on the concentration of suspended solids (SS) in the water and drained particles and therefore on the seasons. Just like the temperature, the conductivity changes with the season. The waters of the Méné River are generally acidic. The results obtained show that there is a low level of pollution by chlorides, phosphates, nitrites and nitrates. A slight pollution of the waters of Méné in organic matter (chemical oxygen demand values are less than 25 mg∙L−1 during dry season and 32.33 ± 4.73 mg∙L−1 during rainy season) was observed. The concentrations of metallic trace elements such as iron, manganese and aluminum indicate significant pollution of these waters by these elements. Overall, the waters of the Méné River are of satisfactory quality because all the physicochemical parameters analyzed have values below standards during the dry season as well as during the rainy season with the exception of COD and a few metallic trace elements.
基金supported by National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(RS-2024-00335216,RS-2024-00407084 and RS-2023-00207836)Korea Environment Industry&Technology Institute(KEITI)through the R&D Project of Recycling Development for Future Waste Resources Program,funded by the Korea Ministry of Environment(MOE)(2022003500003).
文摘The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.
文摘Corchorus olitorius (Jew’s mallow), is one of the African indigenous leafy vegetables increasingly getting attention as a possible contributor of both micronutrients and bioactive compounds including proteins, lipids, fiber and vitamin C to human nutrition. Leaves of Corchorus olitorius have been found to have high level of phytochemicals: flavonoids, polyphenols, tannins, and saponins that possess strong radical scavenging activity and antioxidant power. In the arid and semi-arid areas of the world, drought is the main limiting factor affecting plant productivity and influences almost all aspects of plant biology. Water stress deficit is known to cause oxidative stress condition that has generally been reported to elevate phenolic antioxidants in various crops including Jew’s mallow. On the other hand, fertilization is crucial for crop management and high yield, it also affects nutritional value of the food plants. Nitrogen (N) fertilization affects health and nutritional value, including mineral content, fatty acid profile, anti-oxidative capacity and polyphenol levels and composition. The possible effects of fertilization should be considered when deciding on fertilization regime, to optimize both plant physiology, productivity and food-related effects. Nitrogen is an important element for Jew’s mallow production since it responds well to it. However, appropriate amounts of nutrients need to be provided to crops at the right time to favor both crop growth, yield and quality. Different reports confirmed that addition or increase of N, negatively affects the total phenolics and total flavonoids, and reduces accumulation of defense-related secondary metabolites resulting in lower oxidative capacity. Increased secondary metabolite production during water deficit and low nitrogen in the soil has been reported as a stress mechanism by most plants. However, further research is required to explore the biochemical response of Jew’s mallow to water deficit and nitrogen fertilization.
文摘Ethiopia is one of the countries in the world endowed with rich biological resources. However, due to human impacts, the forest cover in Ethiopia has been decreasing rapidly. The study was carried out with the purpose of finding out the Regeneration Status, Population Structure and Floristic composition of Woody Plant Species in Sheleko Medihanialem Natural Forest in Gondar, North West Ethiopia, from October 2019 to September 2020. The systematic vegetation sampling method was used to collect data from Fifty plots of 20 m × 20 m (400 m2) along five line transects. In addition, five, 5 m × 5 m subplots were laid within the main plot to sample seedlings and saplings. The floristic composition and population structure of woody individuals of trees and shrubs with a diameter at breast height (DBH) ≥ 2.5 cm and height ≥ 2 m were measured. DBH ≤ 2.5 cm and less than 1 m height were considered as seedlings and DBH ≥ 2.5 cm and height of 1 - 2 m as saplings. Vegetation data of density, frequency, basal area, and importance value index were computed. A total of 65 woody plant species in 54 genera and 34 plant families were recorded. Fabaceae, Moraceae and Euphorbiaceae were the dominant families in terms of species richness. Woody species densities for mature individuals were 2202.5 stems∙ha−1, seedling 2419.2 stems∙ha−1 and sapling 1737.6 stems∙ha−1. The forest was dominated by small-sized/young trees and shrubs, indicating the status of secondary growth and/or regeneration.
文摘“Pinhão”, the seed of Araucaria angustifolia, is an important food, being part of the eating habits of Indigenous communities. In this study, we evaluated the oligosaccharide content, resistant starch and the growth of probiotic bacteria. GF4 (1-fructofuranosylnystose) was the main fructo-oligosaccharides found, in higher contents compared to other food sources. Maltooligosaccharides (MOS) represented the main part of the oligosaccharides profile of Brazilian pine seeds. In descending order of importance was maltoheptaose (G7), maltohexose (G6) and maltotriose (G3). The starches from the variety Sanct josephi presented the highest amount of resistant starch that could stimulate probiotic strains, mainly B. breve and L. plantarum, and may have a prebiotic effect, potentially promoting health benefits. This study advances the understanding of the chemical composition of the main portion of the “pinhão” enhancing awareness of its potential as a healthy food source, contributing to different uses and indirectly with the species preservation.
文摘The landscape of cybersecurity is rapidly evolving due to the advancement and integration of Artificial Intelligence (AI) and Machine Learning (ML). This paper explores the crucial role of AI and ML in enhancing cybersecurity defenses against increasingly sophisticated cyber threats, while also highlighting the new vulnerabilities introduced by these technologies. Through a comprehensive analysis that includes historical trends, technological evaluations, and predictive modeling, the dual-edged nature of AI and ML in cybersecurity is examined. Significant challenges such as data privacy, continuous training of AI models, manipulation risks, and ethical concerns are addressed. The paper emphasizes a balanced approach that leverages technological innovation alongside rigorous ethical standards and robust cybersecurity practices. This approach facilitates collaboration among various stakeholders to develop guidelines that ensure responsible and effective use of AI in cybersecurity, aiming to enhance system integrity and privacy without compromising security.
文摘China Forex:What has the Science and Technology Department done in 2023to facilitatethe reform and development of foreign exchange administration and promote the supporting and leading role of scientific innovation?
文摘Due to the increasing number of cyber-attacks,the necessity to develop efficient intrusion detection systems(IDS)is more imperative than ever.In IDS research,the most effectively used methodology is based on supervised Neural Networks(NN)and unsupervised clustering,but there are few works dedicated to their hybridization with metaheuristic algorithms.As intrusion detection data usually contains several features,it is essential to select the best ones appropriately.Linear Discriminant Analysis(LDA)and t-statistic are considered as efficient conventional techniques to select the best features,but they have been little exploited in IDS design.Thus,the research proposed in this paper can be summarized as follows.a)The proposed approach aims to use hybridized unsupervised and hybridized supervised detection processes of all the attack categories in the CICIDS2017 Dataset.Nevertheless,owing to the large size of the CICIDS2017 Dataset,only 25%of the data was used.b)As a feature selection method,the LDAperformancemeasure is chosen and combinedwith the t-statistic.c)For intrusion detection,unsupervised Fuzzy C-means(FCM)clustering and supervised Back-propagation NN are adopted.d)In addition and in order to enhance the suggested classifiers,FCM and NN are hybridized with the seven most known metaheuristic algorithms,including Genetic Algorithm(GA),Particle Swarm Optimization(PSO),Differential Evolution(DE),Cultural Algorithm(CA),Harmony Search(HS),Ant-Lion Optimizer(ALO)and Black Hole(BH)Algorithm.Performance metrics extracted from confusion matrices,such as accuracy,precision,sensitivity and F1-score are exploited.The experimental result for the proposed intrusion detection,based on training and test CICIDS2017 datasets,indicated that PSO,GA and ALO-based NNs can achieve promising results.PSO-NN produces a tested accuracy,global sensitivity and F1-score of 99.97%,99.95%and 99.96%,respectively,outperforming performance concluded in several related works.Furthermore,the best-proposed approaches are valued in the most recent intrusion detection datasets:CSE-CICIDS2018 and LUFlow2020.The evaluation fallouts consolidate the previous results and confirm their correctness.
文摘The advancement of the fourth industrial revolution has shaped the integration and interaction of different information, communication and technologies (ICTs) in the merging cyber, physical, and social infrastructures. The impact of ICT has accelerated the progress of the United Nation’s Sustainable Development Goals (UN SDGs) and influenced the evolution of smart, sustainable, stable society development. Making the trustworthy information and communication technologies infrastructure widely available will promote the community innovation needed to stimulate domestic economics, provide decent work, and reduce inequalities. This article attempts to outline a big picture about the International Telecommunication Union (ITU)’s trust provisioning framework, including its motivation, current status, and application for achieving the UN SDGs by 2030. This article first describes the purpose of the UN SDGs and the evolution of the industrial revolution, then demonstrates the challenges of global risks affecting the fourth industrial revolution and the need for trustworthy ICT infrastructures. Subsequently, the article evaluates the ITU trust provisioning framework and assesses its applications in the future knowledge society, trust provisioning ecosystem, and cyber, physical, and social infrastructure toward achieving UN SDGs. Use cases are also presented in this article to show the effectiveness of the ITU trust provisioning framework on achieving UN SDGs.
文摘To understand the self-healing property of an engineered barrier for radioactive waste disposal,the hydraulic conductivity of compacted bentoniteesand mixtures saturated with artificial seawater(SW)before and after gas migration was examined.Na-and Ca-bentonites were mixed with fine sand at a ratio of 70%bentonite in dry weight.Two aspects were considered during the experiment:the hydraulic conductivity of the specimen that was resaturated after gas migration and the distribution of water content immediately after gas migration to study gas migration pathways.The gas migrated through the entire cross-section of the specimen,and gas breakthrough occurred in the equilibrium swelling pressure range approximately.Subsequently,the gas flow rate reached a sufficient large value when the gas pressure was approximately twice the equilibrium axial pressure(the sum of swelling and confining pressures),which excluded the back pressure.Although the gas migration pathway was not visible when the specimen was observed immediately after gas migration,the water content distribution showed that several parts of the specimen with lower water content were connected in the direction of gas migration.After resaturation,the change in permeability was within a limited rangedtwo to three times larger than that before gas migration for each type of bentonite in SW.This slight change suggests that gas migration creates a pore structure that cannot be sealed via crystalline swelling of montmorillonite in SW,even if highly compacted bentonite is used under a constant-volume condition.
文摘Because stress has such a powerful impact on human health,we must be able to identify it automatically in our everyday lives.The human activity recognition(HAR)system use data from several kinds of sensors to try to recognize and evaluate human actions automatically recognize and evaluate human actions.Using the multimodal dataset DEAP(Database for Emotion Analysis using Physiological Signals),this paper presents deep learning(DL)technique for effectively detecting human stress.The combination of vision-based and sensor-based approaches for recognizing human stress will help us achieve the increased efficiency of current stress recognition systems and predict probable actions in advance of when fatal.Based on visual and EEG(Electroencephalogram)data,this research aims to enhance the performance and extract the dominating characteristics of stress detection.For the stress identification test,we utilized the DEAP dataset,which included video and EEG data.We also demonstrate that combining video and EEG characteristics may increase overall performance,with the suggested stochastic features providing the most accurate results.In the first step,CNN(Convolutional Neural Network)extracts feature vectors from video frames and EEG data.Feature Level(FL)fusion that combines the features extracted from video and EEG data.We use XGBoost as our classifier model to predict stress,and we put it into action.The stress recognition accuracy of the proposed method is compared to existing methods of Decision Tree(DT),Random Forest(RF),AdaBoost,Linear Discriminant Analysis(LDA),and KNearest Neighborhood(KNN).When we compared our technique to existing state-of-the-art approaches,we found that the suggested DL methodology combining multimodal and heterogeneous inputs may improve stress identification.
基金supported by the Gorgan University of Agricultural Sciences and Natural ResourcesSabz Fanavaran Loozan Shomal Company+1 种基金University of GuilanGuilan Science and Technology Park, Iran
文摘As an abiotic stress,adverse germination temperatures cause serious disruptions in physiological and biochemical processes involved in seed germination.Using a factorial experiment,we examined the effects of different seed priming treatments on enzymatic and biochemical performances of rice seed germination under different temperatures.Each of the rice genotypes(Hashemi,Sadry-domsefid,IRON-70-7053-7 and NORIN-22)was primed with hydro-hardening,KCl,CaCl2 and ascorbic acid(AsA)and without a priming agent as a control at low(15℃),optimum(25℃)and high(35℃)germination temperatures.The results showed that the enzymatic and biochemical performances of all the rice genotypes were affected by the seed priming agents,especially under the low germination temperature.At 15℃,seed priming with AsA was found to be the best agent for the activities of amylase,α-amylase,catalase(CAT),peroxidase(POX),ascorbate peroxidase(APOX)and superoxide dismutase(SOD)as well as the content of soluble sugars in the NORIN-22 genotype,and for protease activity and soluble protein content in the IRON-70-7053-7 genotype.SOD at the low germination temperature and CAT,POX and protease at the optimum and high germination temperatures were the most important enzymes in occurrence of germination potential in terms of seedling length,vigor index,normal seedling rate and germination rate.Under the priming agents,the highest changes in normal seedling rate were observed at the low and optimum germination temperatures by AsA priming in the Hashemi and NORIN-22 genotypes,and at the high germination temperature under KCl priming in the Hashemi genotype.
文摘Glioblastoma Multiforme (GBM) represents one of the most aggressive and metastatic brain tumors, with a dismal success rate of less than three percent after five years, particularly in tumors with active immune checkpoints. This necessitates the development of targeted endogenous agents for precise GBM treatment. Previous experiments utilizing Chemovar Specific Cannabis Extractions (CSCEs), fractionated with polar solvents and quantified using Liquid and Gas Column Chromatography combined with Mass Spectrometry (LC/GCMS), have shown reduced viability and motility in human GBM cell lines. However, the complexity of the botanical substance has hindered the personalization of standard cannabis medicines for GBM due to unknown synergistic effects of multiple compounds. To address this limitation, our study focuses on exposing AM251 cells to chemovar fractions extracted using a non-polar solvent, thereby isolating a broader spectrum of constituents. By employing LC/GCMS in conjunction with Nuclear Magnetic Resonance (NMR), we have identified and quantified nine* compounds present in the non-polar CSCE that exhibit significant efficacy (0.1 μM) in inducing cytotoxicity* in GBM tumor cells. Conversely, the polar fraction in our experiment did not demonstrate efficacy against UM251 cells. The quantification of individual compounds within a cannabis extraction that selectively induces cell death in brain tumors holds promise for guiding future research and facilitating the development of a standardized CSCE for GBM therapy.
文摘Diabetes is a metabolic disease characterized by abnormally elevated blood glucose levels.Persistent hyperglycemia leads to diabetic nephropathy,diabetic retinopathy,diabetes with periodontal disease and other diabetic complications.These diseases have become the main causes of disability and death in diabetic patients.Artesunate is well known as an antimalarial drug for controlling malaria symptoms.Current studies have shown that artesunate improves diabetes and its complications by protecting islet cells,improving glucose and lipid metabolism,anti-inflammatory and immune regulation.Based on the research status in recent years,this paper focuses on the mechanism of artesunate in diabetes and its complications,to provide a theoretical basis for future diabetes research.
基金sponsored by the National Natural Science Foundation of China(42002181)projecta public bidding project of 2020 Shanxi Provincial Science and Technology Program(20201101002-03).
文摘In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on coal reservoir permeability and production capacity are significant for CBM development.This study investigated the CBM development zone in the Zhengzhuang area of the Qinshui Basin.According to the low mechanical strength of coal reservoirs,this study derived a calculation model of the in-situ stress of coal reservoirs based on the multi-loop hydraulic fracturing method and analyzed the impacts of initial fractures on the calculated results.Moreover,by combining the data such as the in-situ stress,permeability,and drainage and recovery data of CBM wells,this study revealed the spatial distribution patterns of the current in-situ stress of the coal reservoirs and discussed the impacts of the insitu stress on the permeability and production capacity.The results are as follows.(1)Under given fracturing pressure,longer initial fractures are associated with higher calculated maximum horizontal principal stress values.Therefore,ignoring the effects of the initial fractures will cause the calculated values of the in-situ stress to be less than the actual values.(2)As the burial depth increases,the fracturing pressure,closure pressure,and the maximum and minimum horizontal principal stress of the coal reservoirs in the Zhengzhuang area constantly increase.The average gradients of the maximum and minimum horizontal principal stress are 3.17 MPa/100 m and 2.05 MPa/100 m,respectively.(3)Coal reservoir permeability is significantly controlled by the magnitude and state of the current in-situ stress.The coal reservoir permeability decreases exponentially with an increase in the effective principal stress.Moreover,a low lateral pressure coefficient(less than 1)is associated with minor horizontal compressive effects and high coal reservoir permeability.(4)Under similar conditions,such as resource endowments,CBM well capacity is higher in primary structural coal regions with moderate paleotectonic stress modification,low current in-situ stress,and lateral pressure coefficient of less than 1.