An environmental capacity model for the petroleum hydrocarbon pollutions (PHs) in Jiaozhou Bay is constructed based on field surveys, mesocosm, and parallel laboratory experiments. Simulated results of PHs seasonal ...An environmental capacity model for the petroleum hydrocarbon pollutions (PHs) in Jiaozhou Bay is constructed based on field surveys, mesocosm, and parallel laboratory experiments. Simulated results of PHs seasonal successions in 2003 match the field surveys of Jiaozhou Bay resaonably well with a highest value in July. The Monte Carlo analysis confirms that the variation of PHs concentration significantly correlates with the river input. The water body in the bay is reasonably subjected to self-purification processes, such as volatilization to the atmosphere, biodegradation by microorganism, and transport to the Yellow Sea by water exchange. The environmental capacity of PHs in Jiaozhou Bay is 1500 tons per year IF the seawater quality criterion (Grade Ⅰ/Ⅱ, 0.05 mgLl) in the region is to be satisfied. The contribution to self-purification by volatilization, biodegradation, and transport to the Yellow Sea accounts for 48%, 28%, and 23%, respectively, which make these three processes the main ways of PHs purification in Jiaozhou Bay.展开更多
The rapid development of urbanization has led to a rapid increase in total energy consumption.The proportion of domestic energy consumption to total energy consumption has gradually increased and has become the major ...The rapid development of urbanization has led to a rapid increase in total energy consumption.The proportion of domestic energy consumption to total energy consumption has gradually increased and has become the major driving force for energy consumption.With the pressure from urbanization and domestic energy consumption,it is necessary to study the impact of urbanization on domestic energy consumption of the regional level and to explore the function paths of these two factors.The findings are helpful to realize sustainable development based on the actual situation analysis,horizontal survey data and statistical yearbook panel data.The current situation and changing trends in domestic energy consumption of Shandong Province are systematically examined through field investigation and survey questionnaire.The time-series econometric model is applied to analyze the relationship between urbanization rate and total domestic energy consumption.The research results show that the total domestic energy consumption and urbanization rate of Shandong are generally increasing.The urbanization rate development and domestic energy consumption have a long-term stable and balanced relationship.An increase in urbanization rate can cause an increase in domestic energy consumption.There is a slight difference between the average total energy consumption levels of urban and rural residents,but their energy consumption structures differ a lot.These findings provide basic data support and reference for local governments to formulate energy-conservation and emission-reduction policies.展开更多
Micro-energy systems contribute significantly to environmental improvement by reducing dependence on power grids through the utilization of multiple renewable energy sources.This study quantified the environmental imp...Micro-energy systems contribute significantly to environmental improvement by reducing dependence on power grids through the utilization of multiple renewable energy sources.This study quantified the environmental impact of a micro-energy network system in an industrial park through a life cycle assessment using the operation of the micro-energy network over a year as the functional unit and“cradle-to-gate”as the system boundary.Based on the baseline scenario,a natural gas generator set was added to replace central heating,and the light pipes were expanded to constitute the optimized scenario.The results showed that the key impact categories for both scenarios were global warming,fine particulate matter formation,human carcinogenic toxicity,and human non-carcinogenic toxicity.The overall environmental impact of the optimized scenario was reduced by 68%compared to the baseline scenario.A sensitivity analysis of the key factors showed that electricity from the power grid was the key impact factor in both scenarios,followed by central heating and natural gas.Therefore,to reduce the environmental impact of network systems,it is necessary to further optimize the grid power structure.The research approach can be used to optimize micro-energy networks and evaluate the environmental impact of different energy systems.展开更多
Waste pyrolysis technology as a new method of waste treatment induces more and more attention. Waste pyrolysis technology is not on- ly good for garbage reduction, but also can restrain the generation of dioxin, reach...Waste pyrolysis technology as a new method of waste treatment induces more and more attention. Waste pyrolysis technology is not on- ly good for garbage reduction, but also can restrain the generation of dioxin, reaching the target for harmless decrement. We introduced technique process, development situations at home and abroad, existing problems and improvement measures of waste pyrolytic technology.展开更多
The particle characterization from the influent and effluent of a chemical-biological flocculation (CBF) process was studied with a laser diffraction device. Water samples from a chemically enhanced primary treatme...The particle characterization from the influent and effluent of a chemical-biological flocculation (CBF) process was studied with a laser diffraction device. Water samples from a chemically enhanced primary treatment (CEPT) process and a primary sediment tank process were also analyzed for comparison. The results showed that CBF process was not only effective for both the big size particles and small size particles removal, but also the best particle removal process in the three processes. The results also indicated that CBF process was superior to CEPT process in the heavy metals removal. The high and non-selective removal for heavy metals might be closely related to its strong ability to eliminate small particles. Samples from different locations in CBF reactors showed that small particles were easier to aggregate into big ones and those disrupted flocs could properly flocculate again along CBF reactor because of the biological flocculation.展开更多
In comparison with seasonal sea ice(first-year ice,FY ice),multiyear(MY)sea ice is thicker and has more opportunity to survive through the summer melting seasons.Therefore,the variability of wintertime MY ice plays a ...In comparison with seasonal sea ice(first-year ice,FY ice),multiyear(MY)sea ice is thicker and has more opportunity to survive through the summer melting seasons.Therefore,the variability of wintertime MY ice plays a vital role in modulating the variations in the Arctic sea ice minimum extent during the following summer.As a response,the ice-ocean-atmosphere interactions may be significantly affected by the variations in the MY ice cover.Satellite observations are characterized by their capability to capture the spatiotemporal changes of Arctic sea ice.During the recent decades,many active and passive sensors onboard a variety of satellites(QuikSCAT,ASCAT,SSMIS,ICESat,CryoSat-2,etc.)have been used to monitor the dramatic loss of Arctic MY ice.The main objective of this study is to outline the advances and remaining challenges in monitoring the MY ice changes through the utilization of multiple satellite observations.We summarize the primary satellite data sources that are used to identify MY ice.The methodology to classify MY ice and derive MY ice concentration is reviewed.The interannual variability and trends in the MY ice time series in terms of coverage,thickness,volume,and age composition are evaluated.The potential causes associated with the observed Arctic MY ice loss are outlined,which are primarily related to the export and melting mechanisms.In addition,the causes to the MY ice depletion from the perspective of the oceanic water inflow from Pacific and Atlantic Oceans and the water vapor intrusion,as well as the roles of synoptic weather,are analyzed.The remaining challenges and possible upcoming research subjects in detecting the rapidly changing Arctic MY ice using the combined application of multisource remote sensing techniques are discussed.Moreover,some suggestions for the future application of satellite observations on the investigations of MY ice cover changes are proposed.展开更多
The effects of soil texture, initial water content and bulk density on diesel oil infiltration in fine sand and silty clay loam materials were evaluated. Three physical and two empirical equations express diesel oil i...The effects of soil texture, initial water content and bulk density on diesel oil infiltration in fine sand and silty clay loam materials were evaluated. Three physical and two empirical equations express diesel oil infiltration through soils with time, with coefficients of determination greater than 0.99. Diesel oil infiltrates more quickly in the fine sand than in the silty clay loam material. Diesel oil infiltration rates are found to decrease with increasing initial water content and bulk density for the silty clay loam material. The infiltration rate of diesel oil in the fine sand material increases slightly with increasing initial water content. The diesel oil saturated conductivity(Kdiesel) decreases with increasing bulk density for the silty clay loam column. Diesel oil sorptivity(S) decreases linearly with increased initial water content and bulk density of the silty clay loam material. Changes in empirical parameters relative to initial water content and bulk density are similar to the parameter S.展开更多
In this study,a point-of-care sensing protocol has been reported for rapid and sensitive detection of Microcystin-LR(MC-LR)in water by personal glucose meter.The proposed immunosensor has been fabricated by using a pr...In this study,a point-of-care sensing protocol has been reported for rapid and sensitive detection of Microcystin-LR(MC-LR)in water by personal glucose meter.The proposed immunosensor has been fabricated by using a primary antibody coated ZnFe2O4 nanoparticles to capture the target MC-LR.Consequently,the invertase@secondary antibody-conjugated graphene oxide-Au NPs can be immobilized for formating the sandwich immuno-complexes,which allowed for enzymatic conversion of sucrose to glucose.Thus,the concentration of MC-LR can be refelected by the converted glucose,which can be easily measured by the personal glucose meter(PGM).The PGM readout immunosensing method possessed good reproducibility and stability,which may have significant potential for other applications.展开更多
Tri-doped Ca_(9)LiY_(2/3)(PO_(4))_(7):Ce^(3+),Tb^(3+),Mn^(2+)phosphors were prepared by a high-temperature solid state method.Under UV light excitation,Ca_(9)LiY_(2/3)(PO_(4))_(7):Ce^(3+)samples exhibit a broad band r...Tri-doped Ca_(9)LiY_(2/3)(PO_(4))_(7):Ce^(3+),Tb^(3+),Mn^(2+)phosphors were prepared by a high-temperature solid state method.Under UV light excitation,Ca_(9)LiY_(2/3)(PO_(4))_(7):Ce^(3+)samples exhibit a broad band ranging from 320 to 500 nm.At 77 K,the emission spectra of Ca_(9)LiY_(2/3)(PO_(4))7:Ce^(3+)samples present two obvious emission peaks,indicating that Ce^(3+)ions occupy two different kinds of lattice sites(Ca(1/2)and Ca(3)),As a good sensitizer for Tb^(3+),Ce^(3+)ions in Ca_(9)LiY_(2/3)(PO_(4))_(7)lattice can effectively transfer part of energy to Tb^(3+),and the energy trans fer mechanism is determined to be dipole-dipole interaction.Consequently,the emitting color for Ce^(3+)and Tb^(3+)co-doped Ca_(9)LiY_(2/3)(PO_(4))_(7)samples can be tuned from bluish violet to green.In order to further enlarge the emission gamut,Mn^(2+)ions as red emission components were added,forming tri-doped single-phase Ca_(9)LiY_(2/3)(PO_(4))_(7):Ce^(3+),Tb^(3+),Mn^(2+)phosphors.The Ca_(9)LiY_(2/3)(PO_(4))_(7):Ce^(3+),Tb^(3+),Mn^(2+)phosphors exhibit tunable emission properties through controlling the relative doping concentration of Ce^(3+),Tb^(3+)and Mn^(2+).Especially,Ca_(9)LiY_(2/3)(PO_(4))_(7):0.09 Ce^(3+),0.12 Tb^(3+),0.30 Mn^(2+)can emit warm white light.The sample shows good thermal stability.At 150℃,the emission intensity for Ce^(3+)(360 nm),Tb^(3+)(545 nm)and Mn^(2+)(655 nm)decreases to 63%,69%,and 72%of its initial intensity,respectively.Moreover,the sample obtains good stability after 10 cycles between room temperature and150℃.展开更多
The characteristic flavor of the enzymatic hydrolysate of Lentinus edodes,which was involved in the Maillard reaction by xylose,fructose,glucose,sucrose,mannose,maltose,vitamin C(VC)and L-arabinose,was determined and ...The characteristic flavor of the enzymatic hydrolysate of Lentinus edodes,which was involved in the Maillard reaction by xylose,fructose,glucose,sucrose,mannose,maltose,vitamin C(VC)and L-arabinose,was determined and analyzed by gas chromatography-ion mobility spectroscopy(GC-IMS).The characteristic flavor fingerprints of Maillard reaction products(MRPs)of L.edodes enzymatic hydrolysate were constructed.The differences in the characteristic flavors of Maillard reaction with different reducing sugars and VC were compared.The main characteristic flavor,characteristic peak,characteristic marker substance and content were determined,a principal component analysis(PCA)of volatile organic compounds(VOCs)was carried out.The results showed that there were 42 kinds of monomers and some dimers of volatile compounds in the samples including 17 aldehydes,5 alcohols,7 ketones,2 esters,2 acids,7 other compounds and 2 ethers.The volatile VOCs of the sample with added sucrose,VC and L-arabinose were significantly higher than those of the enzymatic hydrolysate of L.edodes.After the Maillard reaction,the flavor of the hydrolysate was significantly improved,and the main components changed significantly.展开更多
基金supported by the Science Fund Projects of Shandong Province (No.ZR2010DM005)National Key Technology Research and Development Program (No. 2010BAC69B01)+1 种基金Scientific and Technical Projects of Shandong Province on Environmental Protection ‘The source, capacity, and technology study of total control of pollutants in Shandong Province’Science and Technology Development Plan of Qingdao (No. 11-2-3-66-nsh and No. 11-2-1-18-hy)
文摘An environmental capacity model for the petroleum hydrocarbon pollutions (PHs) in Jiaozhou Bay is constructed based on field surveys, mesocosm, and parallel laboratory experiments. Simulated results of PHs seasonal successions in 2003 match the field surveys of Jiaozhou Bay resaonably well with a highest value in July. The Monte Carlo analysis confirms that the variation of PHs concentration significantly correlates with the river input. The water body in the bay is reasonably subjected to self-purification processes, such as volatilization to the atmosphere, biodegradation by microorganism, and transport to the Yellow Sea by water exchange. The environmental capacity of PHs in Jiaozhou Bay is 1500 tons per year IF the seawater quality criterion (Grade Ⅰ/Ⅱ, 0.05 mgLl) in the region is to be satisfied. The contribution to self-purification by volatilization, biodegradation, and transport to the Yellow Sea accounts for 48%, 28%, and 23%, respectively, which make these three processes the main ways of PHs purification in Jiaozhou Bay.
基金funded by Natural Science Foundation of China(71974116)Shandong Natural Science Foundation(2019MG009)Shandong Provincial Social Science Planning Research Project(20CGLJ13).
文摘The rapid development of urbanization has led to a rapid increase in total energy consumption.The proportion of domestic energy consumption to total energy consumption has gradually increased and has become the major driving force for energy consumption.With the pressure from urbanization and domestic energy consumption,it is necessary to study the impact of urbanization on domestic energy consumption of the regional level and to explore the function paths of these two factors.The findings are helpful to realize sustainable development based on the actual situation analysis,horizontal survey data and statistical yearbook panel data.The current situation and changing trends in domestic energy consumption of Shandong Province are systematically examined through field investigation and survey questionnaire.The time-series econometric model is applied to analyze the relationship between urbanization rate and total domestic energy consumption.The research results show that the total domestic energy consumption and urbanization rate of Shandong are generally increasing.The urbanization rate development and domestic energy consumption have a long-term stable and balanced relationship.An increase in urbanization rate can cause an increase in domestic energy consumption.There is a slight difference between the average total energy consumption levels of urban and rural residents,but their energy consumption structures differ a lot.These findings provide basic data support and reference for local governments to formulate energy-conservation and emission-reduction policies.
基金funded by the National Key R&D Project[Grant No.2019YFC1903900]Key R&D Province[Grant No.2023SFGC0101]Taishan Scholar Project[Grant No.tsqn202103010].
文摘Micro-energy systems contribute significantly to environmental improvement by reducing dependence on power grids through the utilization of multiple renewable energy sources.This study quantified the environmental impact of a micro-energy network system in an industrial park through a life cycle assessment using the operation of the micro-energy network over a year as the functional unit and“cradle-to-gate”as the system boundary.Based on the baseline scenario,a natural gas generator set was added to replace central heating,and the light pipes were expanded to constitute the optimized scenario.The results showed that the key impact categories for both scenarios were global warming,fine particulate matter formation,human carcinogenic toxicity,and human non-carcinogenic toxicity.The overall environmental impact of the optimized scenario was reduced by 68%compared to the baseline scenario.A sensitivity analysis of the key factors showed that electricity from the power grid was the key impact factor in both scenarios,followed by central heating and natural gas.Therefore,to reduce the environmental impact of network systems,it is necessary to further optimize the grid power structure.The research approach can be used to optimize micro-energy networks and evaluate the environmental impact of different energy systems.
文摘Waste pyrolysis technology as a new method of waste treatment induces more and more attention. Waste pyrolysis technology is not on- ly good for garbage reduction, but also can restrain the generation of dioxin, reaching the target for harmless decrement. We introduced technique process, development situations at home and abroad, existing problems and improvement measures of waste pyrolytic technology.
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No. 2002AA601320) the Shandong Environment Protection Bureau Program (No. 2006032, 2006043)the Ph.D Fund of Shandong Jianzhu University (No. 624006, 2006043).
文摘The particle characterization from the influent and effluent of a chemical-biological flocculation (CBF) process was studied with a laser diffraction device. Water samples from a chemically enhanced primary treatment (CEPT) process and a primary sediment tank process were also analyzed for comparison. The results showed that CBF process was not only effective for both the big size particles and small size particles removal, but also the best particle removal process in the three processes. The results also indicated that CBF process was superior to CEPT process in the heavy metals removal. The high and non-selective removal for heavy metals might be closely related to its strong ability to eliminate small particles. Samples from different locations in CBF reactors showed that small particles were easier to aggregate into big ones and those disrupted flocs could properly flocculate again along CBF reactor because of the biological flocculation.
基金the National Key Research and Development Program of China(No.2017YFC1404000)the National Natural Science Foundation of China(No.41406215)+3 种基金the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1606401)the Qingdao National Laboratory for Marine Science and Technologythe Postdoctoral Science Foundation of China(No.014M561971)the Open Funds for the Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences(No.MGE2020KG04)。
文摘In comparison with seasonal sea ice(first-year ice,FY ice),multiyear(MY)sea ice is thicker and has more opportunity to survive through the summer melting seasons.Therefore,the variability of wintertime MY ice plays a vital role in modulating the variations in the Arctic sea ice minimum extent during the following summer.As a response,the ice-ocean-atmosphere interactions may be significantly affected by the variations in the MY ice cover.Satellite observations are characterized by their capability to capture the spatiotemporal changes of Arctic sea ice.During the recent decades,many active and passive sensors onboard a variety of satellites(QuikSCAT,ASCAT,SSMIS,ICESat,CryoSat-2,etc.)have been used to monitor the dramatic loss of Arctic MY ice.The main objective of this study is to outline the advances and remaining challenges in monitoring the MY ice changes through the utilization of multiple satellite observations.We summarize the primary satellite data sources that are used to identify MY ice.The methodology to classify MY ice and derive MY ice concentration is reviewed.The interannual variability and trends in the MY ice time series in terms of coverage,thickness,volume,and age composition are evaluated.The potential causes associated with the observed Arctic MY ice loss are outlined,which are primarily related to the export and melting mechanisms.In addition,the causes to the MY ice depletion from the perspective of the oceanic water inflow from Pacific and Atlantic Oceans and the water vapor intrusion,as well as the roles of synoptic weather,are analyzed.The remaining challenges and possible upcoming research subjects in detecting the rapidly changing Arctic MY ice using the combined application of multisource remote sensing techniques are discussed.Moreover,some suggestions for the future application of satellite observations on the investigations of MY ice cover changes are proposed.
基金Projects(40272108,41402208)supported by the National Natural Science Foundation of ChinaProjects(ZR2012DL05,ZR2015EL044)supported by Shandong Provincial Natural Science Foundation,China+1 种基金Project(4072-114017)supported by Young Teachers’ Development of Shandong University of Technology,ChinaProject(J12LC51)supported by Shandong Province Higher Educational Science and Technology Program,China
文摘The effects of soil texture, initial water content and bulk density on diesel oil infiltration in fine sand and silty clay loam materials were evaluated. Three physical and two empirical equations express diesel oil infiltration through soils with time, with coefficients of determination greater than 0.99. Diesel oil infiltrates more quickly in the fine sand than in the silty clay loam material. Diesel oil infiltration rates are found to decrease with increasing initial water content and bulk density for the silty clay loam material. The infiltration rate of diesel oil in the fine sand material increases slightly with increasing initial water content. The diesel oil saturated conductivity(Kdiesel) decreases with increasing bulk density for the silty clay loam column. Diesel oil sorptivity(S) decreases linearly with increased initial water content and bulk density of the silty clay loam material. Changes in empirical parameters relative to initial water content and bulk density are similar to the parameter S.
基金the Natural Science Foundation of Shandong(No.ZR2017MB017)for the financial support
文摘In this study,a point-of-care sensing protocol has been reported for rapid and sensitive detection of Microcystin-LR(MC-LR)in water by personal glucose meter.The proposed immunosensor has been fabricated by using a primary antibody coated ZnFe2O4 nanoparticles to capture the target MC-LR.Consequently,the invertase@secondary antibody-conjugated graphene oxide-Au NPs can be immobilized for formating the sandwich immuno-complexes,which allowed for enzymatic conversion of sucrose to glucose.Thus,the concentration of MC-LR can be refelected by the converted glucose,which can be easily measured by the personal glucose meter(PGM).The PGM readout immunosensing method possessed good reproducibility and stability,which may have significant potential for other applications.
基金Project supported by the National Natural Science Foundation of China(51672265)the Natural Science Foundation of Shandong Province(ZR2018JL016)+1 种基金the Applied Basic Research Plan of Qingdao(18-2-2-15-jch)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization(RERU2019003)。
文摘Tri-doped Ca_(9)LiY_(2/3)(PO_(4))_(7):Ce^(3+),Tb^(3+),Mn^(2+)phosphors were prepared by a high-temperature solid state method.Under UV light excitation,Ca_(9)LiY_(2/3)(PO_(4))_(7):Ce^(3+)samples exhibit a broad band ranging from 320 to 500 nm.At 77 K,the emission spectra of Ca_(9)LiY_(2/3)(PO_(4))7:Ce^(3+)samples present two obvious emission peaks,indicating that Ce^(3+)ions occupy two different kinds of lattice sites(Ca(1/2)and Ca(3)),As a good sensitizer for Tb^(3+),Ce^(3+)ions in Ca_(9)LiY_(2/3)(PO_(4))_(7)lattice can effectively transfer part of energy to Tb^(3+),and the energy trans fer mechanism is determined to be dipole-dipole interaction.Consequently,the emitting color for Ce^(3+)and Tb^(3+)co-doped Ca_(9)LiY_(2/3)(PO_(4))_(7)samples can be tuned from bluish violet to green.In order to further enlarge the emission gamut,Mn^(2+)ions as red emission components were added,forming tri-doped single-phase Ca_(9)LiY_(2/3)(PO_(4))_(7):Ce^(3+),Tb^(3+),Mn^(2+)phosphors.The Ca_(9)LiY_(2/3)(PO_(4))_(7):Ce^(3+),Tb^(3+),Mn^(2+)phosphors exhibit tunable emission properties through controlling the relative doping concentration of Ce^(3+),Tb^(3+)and Mn^(2+).Especially,Ca_(9)LiY_(2/3)(PO_(4))_(7):0.09 Ce^(3+),0.12 Tb^(3+),0.30 Mn^(2+)can emit warm white light.The sample shows good thermal stability.At 150℃,the emission intensity for Ce^(3+)(360 nm),Tb^(3+)(545 nm)and Mn^(2+)(655 nm)decreases to 63%,69%,and 72%of its initial intensity,respectively.Moreover,the sample obtains good stability after 10 cycles between room temperature and150℃.
基金This work was supported by the Innovative Engineering project of Shandong Academy of Agricultural Sciences(CXGC2022A36)Modern Agricultural Industry Technology System of Shandong Province(SDAIT-07-09).
文摘The characteristic flavor of the enzymatic hydrolysate of Lentinus edodes,which was involved in the Maillard reaction by xylose,fructose,glucose,sucrose,mannose,maltose,vitamin C(VC)and L-arabinose,was determined and analyzed by gas chromatography-ion mobility spectroscopy(GC-IMS).The characteristic flavor fingerprints of Maillard reaction products(MRPs)of L.edodes enzymatic hydrolysate were constructed.The differences in the characteristic flavors of Maillard reaction with different reducing sugars and VC were compared.The main characteristic flavor,characteristic peak,characteristic marker substance and content were determined,a principal component analysis(PCA)of volatile organic compounds(VOCs)was carried out.The results showed that there were 42 kinds of monomers and some dimers of volatile compounds in the samples including 17 aldehydes,5 alcohols,7 ketones,2 esters,2 acids,7 other compounds and 2 ethers.The volatile VOCs of the sample with added sucrose,VC and L-arabinose were significantly higher than those of the enzymatic hydrolysate of L.edodes.After the Maillard reaction,the flavor of the hydrolysate was significantly improved,and the main components changed significantly.