Before CCD detectors were widely employed in observational astronomy, the main method of detection was the use of glass astrophotographic plates. Astronomical plates have been used to record information on the positio...Before CCD detectors were widely employed in observational astronomy, the main method of detection was the use of glass astrophotographic plates. Astronomical plates have been used to record information on the position and activity of celestial bodies for more than 100 years. There are about 30 000 astronomical plates in China, and the digitization of astronomical plates is of great significance for permanent preservation and to make full use of these valuable observation data. A digitizer with high precision and high measuring speed is a key piece of equipment for carrying out the task of dig- itizing these astronomical plates. A digitizer for glass astrophotographic plates was developed jointly by Shanghai Astronomical Observatory and Nishimura Co., Ltd of Japan. The digitizer's hardware was manufactured by Nishimura Co., Ltd, and the performance test, error corrections as well as image pro- cessing of the digitizer were carried out by Shanghai Astronomical Observatory. The main structure and working mode of the digitizer are introduced in this paper. A performance test shows that brightness uniformity of illumination within the measuring area is better than 0.15%, the repeatability of digitized positions is better than 0.2 μm and the repeatability of digitized brightness is better than 0.01 instrumen- tal magnitude. The systematic factors affecting digitized positions, such as lens distortion, the actual optical resolution, non-linearity of guide rails, non-uniformity of linear motors in the mobile platform, deviation of the image mosaic, and non-orthogonality between the direction of scanning and camera lin- ear array, are calibrated and evaluated. Based on an astronomical plate with a size of 300 mm × 300 mm, which was digitized at different angles, the conversion residuals of positions of common stars on dif- ferent images were investigated. The results show that the standard deviations of the residuals are better than 0.9μm and the residual distribution is almost random, which demonstrates the digitizer has a higher precision for digitization.展开更多
As an important station of International Laser Ranging Service(ILRS),Shanghai Astronomical Observatory(SHAO)has upgraded Satellite Laser Ranging(SLR)system with high repetition rate and achieved some technological pro...As an important station of International Laser Ranging Service(ILRS),Shanghai Astronomical Observatory(SHAO)has upgraded Satellite Laser Ranging(SLR)system with high repetition rate and achieved some technological progress,There are a lot of improvements for overall system performance,such as annual observation passes,measurement precision and quality of observation data.SLR technology with repetition rate of 10 kHz is accomplished firstly in China,and space debris laser ranging technology with200 Hz laser is promoted and proved to be more detective for weak echo,which lead to successful measurement for 40,000 km satellites and space debris within 3000 km.At the same time,SLR based on multi-telescopes and 1064 nm wavelength are planned to make a breakthrough of detection capabilities,and also to expand its application fields.These progresses will be introduced in this paper in detail.展开更多
The Shanghai Tianma 65 m radio telescope(TMRT)is a large,fully rotatable radio telescope with multiple scientific purposes.The main body of the telescope and four low-frequency receiving systems,including L,C,and S/X ...The Shanghai Tianma 65 m radio telescope(TMRT)is a large,fully rotatable radio telescope with multiple scientific purposes.The main body of the telescope and four low-frequency receiving systems,including L,C,and S/X bands,were completed between 2008 and 2012.From 2013 to 2017,four high-frequency receiving systems,including Ku,K,Ka,and Q bands,were constructed and their performance was comprehensively tested.There are three main innovations.(1)A fully movable large radio telescope system with advanced performance and complete functions has been built.(2)An advanced,reliable main reflector adjustment system has been completed,overcoming gravity deformation and creating a large antenna with a main reflective surface accuracy of 0.28 mm(root mean square)for any elevation.(3)Five innovative technologies have been developed to achieve high-precision pointing in any direction within 3″.The TMRT has made a crucial contribution to the orbital measurement and positioning of China’s lunar and deep space probes.Significantly enhancing China's ability to participate in international VLBI observations and radio astronomy,this has facilitated a series of achievements in observational radio astronomical research,in areas such as VLBI,spectral lines,and pulsars.展开更多
From the mid-19th century to the end of the 20th century, photographic plates served as the primary detectors for astronomical observations. Astronomical photographic observations in China began in 1901, and over a ce...From the mid-19th century to the end of the 20th century, photographic plates served as the primary detectors for astronomical observations. Astronomical photographic observations in China began in 1901, and over a century, a total of approximately 30,000 astronomical photographic plates were captured. These historical plates play an irreplaceable role in conducting long-term, time-domain astronomical research. To preserve and explore these valuable original astronomical observational data, Shanghai Astronomical Observatory has organized the transportation of plates, taken during nighttime observations from various stations across the country, to the Sheshan Plate Archive for centralized preservation. For the first time, plate information statistics were calculated. On this basis, the plates were cleaned and digitally scanned, and finally digitized images were acquired for 29,314 plates. In this study, using Gaia DR2 as the reference star catalog, astrometric processing was carried out successfully on 15,696 single-exposure plates, including object extraction, stellar identification,and plate model computation. As a result, for long focal length telescopes, such as the 40 cm double-tube refractor telescope, the 1.56 m reflector telescope at Shanghai Astronomical Observatory, and the 1m reflecting telescope at Yunnan Astronomical Observatory, the astrometric accuracy obtained for their plates is approximately 0."1–0."3. The distribution of astrometric accuracy for medium and short focal length telescopes ranges from 0."3 to 1."0. The relevant data of this batch of plates, including digitized images and a stellar catalog of the plates, are archived and released by the National Astronomical Data Center. Users can access and download plate data based on keywords such as station, telescope, observation year, and observed celestial coordinates.展开更多
Before charge-coupled device detectors became widely employed in observational astronomy,for more than a hundred years,the main detection method was photography on astronomical glass plates.Recently,in order to preser...Before charge-coupled device detectors became widely employed in observational astronomy,for more than a hundred years,the main detection method was photography on astronomical glass plates.Recently,in order to preserve these historical data and maintain their usability,the International Astronomical Union has appealed to all countries for global digitization of astronomical plates by developing or adopting advanced digitization technology.Specialized digitizers with high precision and high measuring speed represent key equipment for this task.The Shanghai Astronomical Observatory and the Nishimura Co.,Ltd in Japan cooperated between 2013 and 2016 to develop the first Chinese high-precision astronomical plate digitizer,which was then used for complete digitization of all nighttime-observation astronomical plates in China.Then,in 2019–2021,the Shanghai Astronomical Observatory independently developed new models of plate digitizers that enabled countries such as Uzbekistan and Italy to digitize their astronomical plates.Additionally,a new high-precision and multifunction digitizer was also used to digitize valuable microscope slides from the Shanghai Natural History Museum,providing a successful example of cross-domain application of high-precision digitization technology.展开更多
The Educational Adaptive-optics Solar Telescope(EAST)at the Shanghai Astronomy Museum has been running routine astronomical observations since 2021.It is a 65-cm-aperture Gregorian solar telescope for scientific educa...The Educational Adaptive-optics Solar Telescope(EAST)at the Shanghai Astronomy Museum has been running routine astronomical observations since 2021.It is a 65-cm-aperture Gregorian solar telescope for scientific education,outreach,and research.The telescope system is designed in an“open”format so that the solar tower architecture can be integrated with it,and visitors can watch the observations live from inside the tower.Equipped with adaptive optics,a high-resolution imaging system,and an integral field unit spectro-imaging system,this telescope can obtain high-resolution solar images in the TiO and Hαbands,and perform spectral image reconstruction using 400 optical fibers at selected wavelengths.It can be used not only in public education and scientific outreach but also in solar physics research.展开更多
A large ground-based optical/infrared telescope is being planned for a world-class astronomical site in China.The cloud-free night percentage is the primary meteorological consideration for evaluating candidate sites....A large ground-based optical/infrared telescope is being planned for a world-class astronomical site in China.The cloud-free night percentage is the primary meteorological consideration for evaluating candidate sites.The data from GMS and NOAA satellites and the MODIS instrument were utilized in this research,covering the period from 1996 to 2015.Our data analysis benefits from overlapping results from different independent teams as well as a uniform analysis of selected sites using GMS+NOAA data.Although significant ground-based monitoring is needed to validate these findings,we identify three different geographical regions with a high percentage of cloud-free conditions(~83%on average),which is slightly lower than at Mauna Kea and Cerro Armazones(~85%on average)and were chosen for the large international projects TMT and ELT respectively.Our study finds evidence that cloud distributions and the seasonal changes affected by the prevailing westerly winds and summer monsoons reduce the cloud cover in areas influenced by the westerlies.This is consistent with the expectations from climate change models and is suggestive that most of the identified sites will have reduced cloud cover in the future.展开更多
Based on previous site testing and satellite cloud data,Ali,Daocheng and Muztagh-ata have been selected as candidate sites for the Large Optical/Infrared Telescope(LOT) in China.We present the data collection,processi...Based on previous site testing and satellite cloud data,Ali,Daocheng and Muztagh-ata have been selected as candidate sites for the Large Optical/Infrared Telescope(LOT) in China.We present the data collection,processing,management and quality analysis for our site testing based on using similar hardware.We analyze meteorological data,seeing,background light,cloud and precipitable water vapor data from 2017 March 10 to 2019 March 10.We also investigated the relative usefulness of our all-sky camera data in comparison to that from the meteorological TERRA satellite data based on a night-by-night comparison of the correlation and consistency between them.We find a 6% discrepancy arising from a wide range of factors.展开更多
A space-based Very Long Baseline Interferometry (VLBI) program, named as the Cosmic Microscope, is proposed to involve dual VLBI telescopes in the space working together with giant ground-based telescopes (e.g., Squar...A space-based Very Long Baseline Interferometry (VLBI) program, named as the Cosmic Microscope, is proposed to involve dual VLBI telescopes in the space working together with giant ground-based telescopes (e.g., Square Kilometre Array, FAST, Arecibo) to image the low radio frequency Universe with the purpose of unraveling the compact structure of cosmic constituents including supermassive black holes and binaries, pulsars, astronomical masers and the underlying source, and exoplanets amongst others. The operational frequency bands are 30, 74, 330 and 1670 MHz, supporting broad science areas. The mission plans to launch two 30-m-diameter radio telescopes into 2 000 km×90 000 km elliptical orbits. The two telescopes can work in flexibly diverse modes,(i) Space-ground VLBI. The maximum space-ground baseline length is about100 000 km; it provides a high-dynamic-range imaging capacity with unprecedented high resolutions at low frequencies (0.3 mas at 1.67 GHz and 20 mas at 30 MHz) enabling studies of exoplanets and supermassive black hole binaries (which emit nanoHz gravitational waves),(ii) Space-space single-baseline VLBI. This unique baseline enables the detection of flaring hydroxyl masers, and more precise position measurement of pulsars and radio transients at mas level.(iii) Single dish mode, where each telescope can be used to monitor transient bursts and rapidly trigger follow-up VLBI observations. The large space telescope will also contribute in measuring and constraining the total angular power spectrum from the Epoch of Reionization. In short, the Cosmic Microscope offers astronomers the opportunity to conduct novel, frontier science.展开更多
Data archiving is one of the most critical issues for modern astronomical observations.With the development of a new generation of radio telescopes,the transfer and archiving of massive remote data have become urgent ...Data archiving is one of the most critical issues for modern astronomical observations.With the development of a new generation of radio telescopes,the transfer and archiving of massive remote data have become urgent problems to be solved.Herein,we present a practical and robust file-level flow-control approach,called the Unlimited Sliding-Window(USW),by referring to the classic flow-control method in the TCP protocol.Based on the USW and the Next Generation Archive System(NGAS)developed for the Murchison Widefield Array telescope,we further implemented an enhanced archive system(ENGAS)using ZeroMQ middleware.The ENGAS substantially improves the transfer performance and ensures the integrity of transferred files.In the tests,the ENGAS is approximately three to twelve times faster than the NGAS and can fully utilize the bandwidth of network links.Thus,for archiving radio observation data,the ENGAS reduces the communication time,improves the bandwidth utilization,and solves the remote synchronous archiving of data from observatories such as Mingantu spectral radioheliograph.It also provides a better reference for the future construction of the Square Kilometer Array(SKA)Science Regional Center.展开更多
Electron density profiles of Venus' ionosphere are inverted from the Venus Express (VEX) one-way open-loop radio occultation experiments carried out by the Shanghai 25 m antenna from November 2011 to January 2012 a...Electron density profiles of Venus' ionosphere are inverted from the Venus Express (VEX) one-way open-loop radio occultation experiments carried out by the Shanghai 25 m antenna from November 2011 to January 2012 at solar maximum conditions and by the New Norcia 35 m antenna from August 2006 to June 2008 at solar intermediate conditions. The electron density profile (from 110 km to 400 km), retrieved from the X-band egress observation at the Shanghai station, shows a single peak near 147 km with a peak density of about 2 × 10^4 cm-3 at a solar zenith angle of 94° As a comparison, the VEX radio science (VeRa) observations at the New Norcia station were also examined, including S- and X-band and dual-frequency data in the ingress mode. The results show that the electron density profiles retrieved from the S-band data are more analogous to the dual-frequency data in terms of the profile shape, compared with the X-band data. Generally, the S-band results slightly underestimate the magnitude of the peak density, while the X-band results overestimate it. The discrepancy in the X-band profile is probably due to the relatively larger unmod- eled orbital errors. It is also expected that the ionopause height is sensitive to the solar wind dynamical pressure in high and intermediate solar activities, usually in the range of 200-1000 km on the dayside and much higher on the nightside. Structural variations ("bulges" and fluctuations) can be found in the electron density profiles during intermediate solar activity, which may be caused by the interaction of the solar wind with the ionosphere. Considerable ionizations can be observed in Venus' nightside ionosphere, which are unexpected for the Martian nightside ionosphere in most cases.展开更多
The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main ...The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main specifications,design,performance analysis,testing,and construction of the telescope antenna.The measured total efficiency is better than 50%over the whole elevation angle range,first sidelobe levels are less than−20 dB,antenna system noise temperatures are less than 70 K at 30°elevation angle,and pointing accuracy is less than 3″.The measured and calculated results are in good agreement,verifying the effectiveness of the design and analysis.展开更多
The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a di...The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.展开更多
We present an independent catalog(FRIIRGcat)of 45,241 Fanaroff–Riley TypeⅡ(FR-Ⅱ)radio galaxies compiled from the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters(FIRST)survey and employed the de...We present an independent catalog(FRIIRGcat)of 45,241 Fanaroff–Riley TypeⅡ(FR-Ⅱ)radio galaxies compiled from the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters(FIRST)survey and employed the deep learning method.Among them,optical and/or infrared counterparts are identified for 41,425 FR-Ⅱs.This catalog spans luminosities 2.63×10^(22)≤L_(rad)≤6.76×10^(29)W Hz^(-1)and redshifts up to z=5.01.The spectroscopic classification indicates that there are 1431 low-excitation radio galaxies and 260 high-excitation radio galaxies.Among the spectroscopically identified sources,black hole masses are estimated for 4837 FR-Is,which are in 10^(7.5)■M_(BH)■10^(9.5)M_(⊙).Interestingly,this catalog reveals a couple of giant radio galaxies(GRGs),which are already in the existing GRG catalog,confirming the efficiency of this FR-I catalog.Furthermore,284new GRGs are unveiled in this new FR-I sample;they have the largest projected sizes ranging from 701 to1209 kpc and are located at redshifts 0.31<z<2.42.Finally,we explore the distribution of the jet position angle and it shows that the faint Images of the FIRST images are significantly affected by the systematic effect(the observing beams).The method presented in this work is expected to be applicable to the radio sky surveys that are currently being conducted because they have finely refined telescope arrays.On the other hand,we are expecting that further new methods will be dedicated to solving this problem.展开更多
We report our identification of three gigaelectronvoltγ-ray sources,4FGL J0502.6+0036,4FGL J1055.9+6507,and 4FGL J1708.2+5519,as Active Galactic Nuclei(AGNs).They are listed in the latest Fermi-Large Area Telescope s...We report our identification of three gigaelectronvoltγ-ray sources,4FGL J0502.6+0036,4FGL J1055.9+6507,and 4FGL J1708.2+5519,as Active Galactic Nuclei(AGNs).They are listed in the latest Fermi-Large Area Telescope source catalog as unidentified ones.We find that the sources all showedγ-ray flux variations in recent years.Using different survey catalogs,we are able to find a radio source within the error circle of each source's position.Further analysis of optical sources in the fields allows us to determine the optical counterparts,which showed similar variation patterns to those seen inγ-rays.The optical counterparts have reported redshifts of 0.6,1.5,and 2.3,respectively,estimated from photometric measurements.In addition,we also obtain an X-ray spectrum of 4FGL J0502.6+0036 and a flux upper limit on the X-ray emission of 4FGL J1055.9+6507 by analyzing the archival data.The broadband spectral energy distributions of the three sources from radio toγ-rays are constructed.Comparing mainly theγ-ray properties of the three sources with those of different sub-classes of AGNs,we tentatively identify them as blazars.Followup optical spectroscopy is highly warranted for obtaining their spectral features and thus verifying the identification.展开更多
Studying the seasonal deformation in GPS time series is important to interpreting geophysical contributors and identifying unmodeled and mismodeled seasonal signals.Traditional seasonal signal extraction used the leas...Studying the seasonal deformation in GPS time series is important to interpreting geophysical contributors and identifying unmodeled and mismodeled seasonal signals.Traditional seasonal signal extraction used the least squares method,which models seasonal deformation as a constant seasonal amplitude and phase.However,the seasonal variations are not constant from year to year,and the seasonal amplitude and phase are time-variable.In order to obtain the time-variable seasonal signal in the GPS station coordinate time series,singular spectrum analysis(SSA)is conducted in this study.We firstly applied the SSA on simulated seasonal signals with different frequencies 1.00 cycle per year(cpy),1.04 cpy and with time-variable amplitude are superimposed.It was found that SSA can successfully obtain the seasonal variations with different frequencies and with time-variable amplitude superimposed.Then,SSA is carried out on the GPS observations in Yunnan Province.The results show that the time-variable amplitude seasonal signals are ubiquitous in Yunnan Province,and the timevariable amplitude change in 2019 in the region is extracted,which is further explained by the soil moisture mass loading and atmospheric pressure loading.After removing the two loading effects,the SSA obtained modulated seasonal signals which contain the obvious seasonal variations at frequency of 1.046 cpy,it is close with the GPS draconitic year,1.040 cpy.Hence,the time-variable amplitude changes in 2019 and the seasonal GPS draconitic year in the region could be discriminated successfully by SSA in Yunnan Province.展开更多
We analyze the optical light curve data,obtained with the Zwicky Transient Facility(ZTF)survey,for 47 γ-ray blazars monitored by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope(Fermi).These 47sou...We analyze the optical light curve data,obtained with the Zwicky Transient Facility(ZTF)survey,for 47 γ-ray blazars monitored by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope(Fermi).These 47sources are selected because they are among the Fermi blazars with the largest optical variations in the ZTF data.Two color-magnitude variation patterns are seen in them,with one being redder-to-stable-when-brighter(RSWB;in 31 sources)and the other being stable when brighter(in 16 sources).The patterns fit with the results recently reported in several similar studies with different data.Moreover,we find that the colors in the stable state of the sources share similar values,for which(after being corrected for the Galactic extinction)most sources are in a range of 0.4–0.55.This feature could be intrinsic and may be applied in,for example,study of the intragalactic medium.We also determine the turning points for the sources showing the RSWB pattern,after which the color changes saturate and become stable.We find a correlation between optical fluxes and γ-ray fluxes at the turning points.The physical implications of the correlation remain to be investigated,probably better with a sample of high-qualityγ-ray flux measurements.展开更多
This paper presents an innovative surrogate modeling method using a graph neural network to compensate for gravitational and thermal deformation in large radio telescopes.Traditionally,rapid compensation is feasible f...This paper presents an innovative surrogate modeling method using a graph neural network to compensate for gravitational and thermal deformation in large radio telescopes.Traditionally,rapid compensation is feasible for gravitational deformation but not for temperature-induced deformation.The introduction of this method facilitates real-time calculation of deformation caused both by gravity and temperature.Constructing the surrogate model involves two key steps.First,the gravitational and thermal loads are encoded,which facilitates more efficient learning for the neural network.This is followed by employing a graph neural network as an end-to-end model.This model effectively maps external loads to deformation while preserving the spatial correlations between nodes.Simulation results affirm that the proposed method can successfully estimate the surface deformation of the main reflector in real-time and can deliver results that are practically indistinguishable from those obtained using finite element analysis.We also compare the proposed surrogate model method with the out-of-focus holography method and yield similar results.展开更多
The Five-hundred-meter Aperture Spherical Radio Telescope(FAST)Core Array is a proposed extension of FAST,integrating 24 secondary 40-m antennas implanted within 5 km of the FAST site.This original array design will c...The Five-hundred-meter Aperture Spherical Radio Telescope(FAST)Core Array is a proposed extension of FAST,integrating 24 secondary 40-m antennas implanted within 5 km of the FAST site.This original array design will combine the unprecedented sensitivity of FAST with a high angular resolution(4.3"at a frequency of 1.4 GHz),thereby exceeding the capabilities at similar frequencies of next-generation arrays such as the Square Kilometre Array Phase 1 or the next-generation Very Large Array.This article presents the technical specifications of the FAST Core Array,evaluates its potential relatively to existing radio telescope arrays,and describes its expected scientific prospects.The proposed array will be equipped with technologically advanced backend devices,such as real-time signal processing systems.A phased array feed receiver will be mounted on FAST to improve the survey efficiency of the FAST Core Array,whose broad frequency coverage and large field of view(FOV)will be essential to study transient cosmic phenomena such as fast radio bursts and gravitational wave events,to conduct surveys and resolve structures in neutral hydrogen galaxies,to monitor or detect pulsars,and to investigate exoplanetary systems.Finally,the FAST Core Array can strengthen China's major role in the global radio astronomy community,owing to a wide range of potential scientific applications from cosmology to exoplanet science.展开更多
The Gravitational wave burst high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a dedicated mission for monitoring high-energy transients.Here we report the design of the GECAM Scientific Ground Segment(...The Gravitational wave burst high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a dedicated mission for monitoring high-energy transients.Here we report the design of the GECAM Scientific Ground Segment(GSGS)in terms of the scientific requirements,including the architecture,the external interfaces,the main function,and workflow.Judging from the analysis and verification results during the commissioning phase,the GSGS functions well and is able to monitor the status of the payloads,adjust the parameters,develop the scientific observation plans,generate the scientific data products,analyze the data,etc.Thus,the on-orbit operation and scientific researches of GECAM are guaranteed.展开更多
基金supported by the National Science and Technology Basic Work (2012FY120500)the National Natural Science Foundation of China (U1331112 and 11573055)
文摘Before CCD detectors were widely employed in observational astronomy, the main method of detection was the use of glass astrophotographic plates. Astronomical plates have been used to record information on the position and activity of celestial bodies for more than 100 years. There are about 30 000 astronomical plates in China, and the digitization of astronomical plates is of great significance for permanent preservation and to make full use of these valuable observation data. A digitizer with high precision and high measuring speed is a key piece of equipment for carrying out the task of dig- itizing these astronomical plates. A digitizer for glass astrophotographic plates was developed jointly by Shanghai Astronomical Observatory and Nishimura Co., Ltd of Japan. The digitizer's hardware was manufactured by Nishimura Co., Ltd, and the performance test, error corrections as well as image pro- cessing of the digitizer were carried out by Shanghai Astronomical Observatory. The main structure and working mode of the digitizer are introduced in this paper. A performance test shows that brightness uniformity of illumination within the measuring area is better than 0.15%, the repeatability of digitized positions is better than 0.2 μm and the repeatability of digitized brightness is better than 0.01 instrumen- tal magnitude. The systematic factors affecting digitized positions, such as lens distortion, the actual optical resolution, non-linearity of guide rails, non-uniformity of linear motors in the mobile platform, deviation of the image mosaic, and non-orthogonality between the direction of scanning and camera lin- ear array, are calibrated and evaluated. Based on an astronomical plate with a size of 300 mm × 300 mm, which was digitized at different angles, the conversion residuals of positions of common stars on dif- ferent images were investigated. The results show that the standard deviations of the residuals are better than 0.9μm and the residual distribution is almost random, which demonstrates the digitizer has a higher precision for digitization.
基金The National Natural Science Foundation (NSF) of China (U1631240 and 11503068)CAS Key Technology Talent Program
文摘As an important station of International Laser Ranging Service(ILRS),Shanghai Astronomical Observatory(SHAO)has upgraded Satellite Laser Ranging(SLR)system with high repetition rate and achieved some technological progress,There are a lot of improvements for overall system performance,such as annual observation passes,measurement precision and quality of observation data.SLR technology with repetition rate of 10 kHz is accomplished firstly in China,and space debris laser ranging technology with200 Hz laser is promoted and proved to be more detective for weak echo,which lead to successful measurement for 40,000 km satellites and space debris within 3000 km.At the same time,SLR based on multi-telescopes and 1064 nm wavelength are planned to make a breakthrough of detection capabilities,and also to expand its application fields.These progresses will be introduced in this paper in detail.
基金supported by National Natural Science Foundation of China(12273098).
文摘The Shanghai Tianma 65 m radio telescope(TMRT)is a large,fully rotatable radio telescope with multiple scientific purposes.The main body of the telescope and four low-frequency receiving systems,including L,C,and S/X bands,were completed between 2008 and 2012.From 2013 to 2017,four high-frequency receiving systems,including Ku,K,Ka,and Q bands,were constructed and their performance was comprehensively tested.There are three main innovations.(1)A fully movable large radio telescope system with advanced performance and complete functions has been built.(2)An advanced,reliable main reflector adjustment system has been completed,overcoming gravity deformation and creating a large antenna with a main reflective surface accuracy of 0.28 mm(root mean square)for any elevation.(3)Five innovative technologies have been developed to achieve high-precision pointing in any direction within 3″.The TMRT has made a crucial contribution to the orbital measurement and positioning of China’s lunar and deep space probes.Significantly enhancing China's ability to participate in international VLBI observations and radio astronomy,this has facilitated a series of achievements in observational radio astronomical research,in areas such as VLBI,spectral lines,and pulsars.
基金supported by the Shanghai Science and Technology Innovation Action Plan(grant No.21511104100)the Global Common Challenge Special Project(grant No.018GJHZ2023110GC)the China National Key Basic Research Program(grant No.2012FY120500)。
文摘From the mid-19th century to the end of the 20th century, photographic plates served as the primary detectors for astronomical observations. Astronomical photographic observations in China began in 1901, and over a century, a total of approximately 30,000 astronomical photographic plates were captured. These historical plates play an irreplaceable role in conducting long-term, time-domain astronomical research. To preserve and explore these valuable original astronomical observational data, Shanghai Astronomical Observatory has organized the transportation of plates, taken during nighttime observations from various stations across the country, to the Sheshan Plate Archive for centralized preservation. For the first time, plate information statistics were calculated. On this basis, the plates were cleaned and digitally scanned, and finally digitized images were acquired for 29,314 plates. In this study, using Gaia DR2 as the reference star catalog, astrometric processing was carried out successfully on 15,696 single-exposure plates, including object extraction, stellar identification,and plate model computation. As a result, for long focal length telescopes, such as the 40 cm double-tube refractor telescope, the 1.56 m reflector telescope at Shanghai Astronomical Observatory, and the 1m reflecting telescope at Yunnan Astronomical Observatory, the astrometric accuracy obtained for their plates is approximately 0."1–0."3. The distribution of astrometric accuracy for medium and short focal length telescopes ranges from 0."3 to 1."0. The relevant data of this batch of plates, including digitized images and a stellar catalog of the plates, are archived and released by the National Astronomical Data Center. Users can access and download plate data based on keywords such as station, telescope, observation year, and observed celestial coordinates.
基金This work was conducted with the financial support of the National Key Research and Development Program of China(Grant No.2021YFE0103400)of the Shanghai Science and Technology Commission through its Scientific Research Project program(Grant No.21511104100)of the National Natural Science Foundation of China(Grant No.12073062).
文摘Before charge-coupled device detectors became widely employed in observational astronomy,for more than a hundred years,the main detection method was photography on astronomical glass plates.Recently,in order to preserve these historical data and maintain their usability,the International Astronomical Union has appealed to all countries for global digitization of astronomical plates by developing or adopting advanced digitization technology.Specialized digitizers with high precision and high measuring speed represent key equipment for this task.The Shanghai Astronomical Observatory and the Nishimura Co.,Ltd in Japan cooperated between 2013 and 2016 to develop the first Chinese high-precision astronomical plate digitizer,which was then used for complete digitization of all nighttime-observation astronomical plates in China.Then,in 2019–2021,the Shanghai Astronomical Observatory independently developed new models of plate digitizers that enabled countries such as Uzbekistan and Italy to digitize their astronomical plates.Additionally,a new high-precision and multifunction digitizer was also used to digitize valuable microscope slides from the Shanghai Natural History Museum,providing a successful example of cross-domain application of high-precision digitization technology.
基金supported by the Shanghai Municipal People’s Government
文摘The Educational Adaptive-optics Solar Telescope(EAST)at the Shanghai Astronomy Museum has been running routine astronomical observations since 2021.It is a 65-cm-aperture Gregorian solar telescope for scientific education,outreach,and research.The telescope system is designed in an“open”format so that the solar tower architecture can be integrated with it,and visitors can watch the observations live from inside the tower.Equipped with adaptive optics,a high-resolution imaging system,and an integral field unit spectro-imaging system,this telescope can obtain high-resolution solar images in the TiO and Hαbands,and perform spectral image reconstruction using 400 optical fibers at selected wavelengths.It can be used not only in public education and scientific outreach but also in solar physics research.
基金partly supported by the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administered by the Chinese Academy of Sciences(CAS)supported by the National Natural Science Foundation of China(Grant Nos.11573054,11703065,11603044 and 11873081)+1 种基金support from a CAS PIFIUK STFC grant ST/R006598/1。
文摘A large ground-based optical/infrared telescope is being planned for a world-class astronomical site in China.The cloud-free night percentage is the primary meteorological consideration for evaluating candidate sites.The data from GMS and NOAA satellites and the MODIS instrument were utilized in this research,covering the period from 1996 to 2015.Our data analysis benefits from overlapping results from different independent teams as well as a uniform analysis of selected sites using GMS+NOAA data.Although significant ground-based monitoring is needed to validate these findings,we identify three different geographical regions with a high percentage of cloud-free conditions(~83%on average),which is slightly lower than at Mauna Kea and Cerro Armazones(~85%on average)and were chosen for the large international projects TMT and ELT respectively.Our study finds evidence that cloud distributions and the seasonal changes affected by the prevailing westerly winds and summer monsoons reduce the cloud cover in areas influenced by the westerlies.This is consistent with the expectations from climate change models and is suggestive that most of the identified sites will have reduced cloud cover in the future.
基金partly supported by the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China (MOF) and administered by the Chinese Academy of Sciences (CAS)supported by the National NaturalScience Foundation of China (Grant Nos.11573054,11703065,11603044 and 11873081)HRAJ acknowledges support from a CAS PIFI and UK STFC grant ST/R006598/1。
文摘Based on previous site testing and satellite cloud data,Ali,Daocheng and Muztagh-ata have been selected as candidate sites for the Large Optical/Infrared Telescope(LOT) in China.We present the data collection,processing,management and quality analysis for our site testing based on using similar hardware.We analyze meteorological data,seeing,background light,cloud and precipitable water vapor data from 2017 March 10 to 2019 March 10.We also investigated the relative usefulness of our all-sky camera data in comparison to that from the meteorological TERRA satellite data based on a night-by-night comparison of the correlation and consistency between them.We find a 6% discrepancy arising from a wide range of factors.
基金Supported with funding from the Ministry of Science and Technology of China(2018YFA0404600)the Chinese Academy of Sciences(114231KYSB20170003)
文摘A space-based Very Long Baseline Interferometry (VLBI) program, named as the Cosmic Microscope, is proposed to involve dual VLBI telescopes in the space working together with giant ground-based telescopes (e.g., Square Kilometre Array, FAST, Arecibo) to image the low radio frequency Universe with the purpose of unraveling the compact structure of cosmic constituents including supermassive black holes and binaries, pulsars, astronomical masers and the underlying source, and exoplanets amongst others. The operational frequency bands are 30, 74, 330 and 1670 MHz, supporting broad science areas. The mission plans to launch two 30-m-diameter radio telescopes into 2 000 km×90 000 km elliptical orbits. The two telescopes can work in flexibly diverse modes,(i) Space-ground VLBI. The maximum space-ground baseline length is about100 000 km; it provides a high-dynamic-range imaging capacity with unprecedented high resolutions at low frequencies (0.3 mas at 1.67 GHz and 20 mas at 30 MHz) enabling studies of exoplanets and supermassive black hole binaries (which emit nanoHz gravitational waves),(ii) Space-space single-baseline VLBI. This unique baseline enables the detection of flaring hydroxyl masers, and more precise position measurement of pulsars and radio transients at mas level.(iii) Single dish mode, where each telescope can be used to monitor transient bursts and rapidly trigger follow-up VLBI observations. The large space telescope will also contribute in measuring and constraining the total angular power spectrum from the Epoch of Reionization. In short, the Cosmic Microscope offers astronomers the opportunity to conduct novel, frontier science.
基金supported by the National Key Research and Development Program of China(2020SKA0110300)the Joint Research Fund in Astronomy(U1831204 and U1931141)under cooperative agreement between the National Natural Science Foundation of China(NSFC)+7 种基金the Chinese Academy of Sciences(CAS)(NSFC,No.11903009)the Funds for International Cooperation and Exchange of the NSFC(11961141001)Yunnan Key Research and Development Program(2018IA054)The Key Science and Technology Program of Henan Province(Nos.202102210152,212102210611 and 202102210125)the Research and Cultivation Fund Project of Anyang Normal University(AYNUKPY-2019-24 and AYNUKPY-2020-25)supported by Astronomical Big Data Joint Research Centerco-founded by the National Astronomical ObservatoriesChinese Academy of Sciences and Alibaba Cloud。
文摘Data archiving is one of the most critical issues for modern astronomical observations.With the development of a new generation of radio telescopes,the transfer and archiving of massive remote data have become urgent problems to be solved.Herein,we present a practical and robust file-level flow-control approach,called the Unlimited Sliding-Window(USW),by referring to the classic flow-control method in the TCP protocol.Based on the USW and the Next Generation Archive System(NGAS)developed for the Murchison Widefield Array telescope,we further implemented an enhanced archive system(ENGAS)using ZeroMQ middleware.The ENGAS substantially improves the transfer performance and ensures the integrity of transferred files.In the tests,the ENGAS is approximately three to twelve times faster than the NGAS and can fully utilize the bandwidth of network links.Thus,for archiving radio observation data,the ENGAS reduces the communication time,improves the bandwidth utilization,and solves the remote synchronous archiving of data from observatories such as Mingantu spectral radioheliograph.It also provides a better reference for the future construction of the Square Kilometer Array(SKA)Science Regional Center.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11103063 and 11178008)the National Key Basic Research Program of China (Grant No. 2015CB857101)partly supported by the Key Laboratory of Planetary Sciences, Chinese Academy of Sciences (Grant No. PSL15 04)
文摘Electron density profiles of Venus' ionosphere are inverted from the Venus Express (VEX) one-way open-loop radio occultation experiments carried out by the Shanghai 25 m antenna from November 2011 to January 2012 at solar maximum conditions and by the New Norcia 35 m antenna from August 2006 to June 2008 at solar intermediate conditions. The electron density profile (from 110 km to 400 km), retrieved from the X-band egress observation at the Shanghai station, shows a single peak near 147 km with a peak density of about 2 × 10^4 cm-3 at a solar zenith angle of 94° As a comparison, the VEX radio science (VeRa) observations at the New Norcia station were also examined, including S- and X-band and dual-frequency data in the ingress mode. The results show that the electron density profiles retrieved from the S-band data are more analogous to the dual-frequency data in terms of the profile shape, compared with the X-band data. Generally, the S-band results slightly underestimate the magnitude of the peak density, while the X-band results overestimate it. The discrepancy in the X-band profile is probably due to the relatively larger unmod- eled orbital errors. It is also expected that the ionopause height is sensitive to the solar wind dynamical pressure in high and intermediate solar activities, usually in the range of 200-1000 km on the dayside and much higher on the nightside. Structural variations ("bulges" and fluctuations) can be found in the electron density profiles during intermediate solar activity, which may be caused by the interaction of the solar wind with the ionosphere. Considerable ionizations can be observed in Venus' nightside ionosphere, which are unexpected for the Martian nightside ionosphere in most cases.
文摘The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main specifications,design,performance analysis,testing,and construction of the telescope antenna.The measured total efficiency is better than 50%over the whole elevation angle range,first sidelobe levels are less than−20 dB,antenna system noise temperatures are less than 70 K at 30°elevation angle,and pointing accuracy is less than 3″.The measured and calculated results are in good agreement,verifying the effectiveness of the design and analysis.
基金This work is supported by“the Fundamental Research Funds for the Central Universities”,111 project No.B20019Shanghai Natural Science Foundation,grant No.19ZR1466800.
文摘The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.
基金supported by the National SKA Program of China(2022SKA0120101,2022SKA0130100,2022SKA 0130104)the National Natural Science Foundation of China(NSFC,grant No.12103013)+5 种基金the Foundation of Science and Technology of Guizhou Province(Nos.(2021)023)the Foundation of Guizhou Provincial Education Department(Nos.KY(2021)303,KY(2020)003,KY(2023)059)supported by the National Natural Science Foundation of China(NSFC,grant Nos.12103076 and 12233005)the National Key R&D Program of China(2020YFE0202100)the Shanghai Sailing Program(21YF1455300)the China Postdoctoral Science Foundation(2021M693267)。
文摘We present an independent catalog(FRIIRGcat)of 45,241 Fanaroff–Riley TypeⅡ(FR-Ⅱ)radio galaxies compiled from the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters(FIRST)survey and employed the deep learning method.Among them,optical and/or infrared counterparts are identified for 41,425 FR-Ⅱs.This catalog spans luminosities 2.63×10^(22)≤L_(rad)≤6.76×10^(29)W Hz^(-1)and redshifts up to z=5.01.The spectroscopic classification indicates that there are 1431 low-excitation radio galaxies and 260 high-excitation radio galaxies.Among the spectroscopically identified sources,black hole masses are estimated for 4837 FR-Is,which are in 10^(7.5)■M_(BH)■10^(9.5)M_(⊙).Interestingly,this catalog reveals a couple of giant radio galaxies(GRGs),which are already in the existing GRG catalog,confirming the efficiency of this FR-I catalog.Furthermore,284new GRGs are unveiled in this new FR-I sample;they have the largest projected sizes ranging from 701 to1209 kpc and are located at redshifts 0.31<z<2.42.Finally,we explore the distribution of the jet position angle and it shows that the faint Images of the FIRST images are significantly affected by the systematic effect(the observing beams).The method presented in this work is expected to be applicable to the radio sky surveys that are currently being conducted because they have finely refined telescope arrays.On the other hand,we are expecting that further new methods will be dedicated to solving this problem.
基金supported by the Basic Research Program of Yunnan Province(No.202201AS070005)the National Natural Science Foundation of China(NSFC,grant No.12273033)+1 种基金the Original Innovation Program of the Chinese Academy of Sciences(E085021002)support of the science research program for graduate students of Yunnan University(KC-23234629)。
文摘We report our identification of three gigaelectronvoltγ-ray sources,4FGL J0502.6+0036,4FGL J1055.9+6507,and 4FGL J1708.2+5519,as Active Galactic Nuclei(AGNs).They are listed in the latest Fermi-Large Area Telescope source catalog as unidentified ones.We find that the sources all showedγ-ray flux variations in recent years.Using different survey catalogs,we are able to find a radio source within the error circle of each source's position.Further analysis of optical sources in the fields allows us to determine the optical counterparts,which showed similar variation patterns to those seen inγ-rays.The optical counterparts have reported redshifts of 0.6,1.5,and 2.3,respectively,estimated from photometric measurements.In addition,we also obtain an X-ray spectrum of 4FGL J0502.6+0036 and a flux upper limit on the X-ray emission of 4FGL J1055.9+6507 by analyzing the archival data.The broadband spectral energy distributions of the three sources from radio toγ-rays are constructed.Comparing mainly theγ-ray properties of the three sources with those of different sub-classes of AGNs,we tentatively identify them as blazars.Followup optical spectroscopy is highly warranted for obtaining their spectral features and thus verifying the identification.
基金funded by National Natural Science Foundation of China(Grant No.11803065)Natural Science Foundation of Shanghai(Grant No.22ZR1472800)。
文摘Studying the seasonal deformation in GPS time series is important to interpreting geophysical contributors and identifying unmodeled and mismodeled seasonal signals.Traditional seasonal signal extraction used the least squares method,which models seasonal deformation as a constant seasonal amplitude and phase.However,the seasonal variations are not constant from year to year,and the seasonal amplitude and phase are time-variable.In order to obtain the time-variable seasonal signal in the GPS station coordinate time series,singular spectrum analysis(SSA)is conducted in this study.We firstly applied the SSA on simulated seasonal signals with different frequencies 1.00 cycle per year(cpy),1.04 cpy and with time-variable amplitude are superimposed.It was found that SSA can successfully obtain the seasonal variations with different frequencies and with time-variable amplitude superimposed.Then,SSA is carried out on the GPS observations in Yunnan Province.The results show that the time-variable amplitude seasonal signals are ubiquitous in Yunnan Province,and the timevariable amplitude change in 2019 in the region is extracted,which is further explained by the soil moisture mass loading and atmospheric pressure loading.After removing the two loading effects,the SSA obtained modulated seasonal signals which contain the obvious seasonal variations at frequency of 1.046 cpy,it is close with the GPS draconitic year,1.040 cpy.Hence,the time-variable amplitude changes in 2019 and the seasonal GPS draconitic year in the region could be discriminated successfully by SSA in Yunnan Province.
基金supported by the National Science Foundation under Grant No.AST-2034437 and a collaboration including Caltech,IPACsupported by the Basic Research Program of Yunnan Province(No.202201AS070005)+2 种基金the National Natural Science Foundation of China(NSFC,grant No.12273033)the Original Innovation Program of the Chinese Academy of Sciences(E085021002)the support of the science research program for graduate students of Yunnan University(KC-23234629)。
文摘We analyze the optical light curve data,obtained with the Zwicky Transient Facility(ZTF)survey,for 47 γ-ray blazars monitored by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope(Fermi).These 47sources are selected because they are among the Fermi blazars with the largest optical variations in the ZTF data.Two color-magnitude variation patterns are seen in them,with one being redder-to-stable-when-brighter(RSWB;in 31 sources)and the other being stable when brighter(in 16 sources).The patterns fit with the results recently reported in several similar studies with different data.Moreover,we find that the colors in the stable state of the sources share similar values,for which(after being corrected for the Galactic extinction)most sources are in a range of 0.4–0.55.This feature could be intrinsic and may be applied in,for example,study of the intragalactic medium.We also determine the turning points for the sources showing the RSWB pattern,after which the color changes saturate and become stable.We find a correlation between optical fluxes and γ-ray fluxes at the turning points.The physical implications of the correlation remain to be investigated,probably better with a sample of high-qualityγ-ray flux measurements.
基金supported by the National Key Basic Research and Development Program of China(2021YFC22035-01)the National Natural Science Foundation of China(U1931137).
文摘This paper presents an innovative surrogate modeling method using a graph neural network to compensate for gravitational and thermal deformation in large radio telescopes.Traditionally,rapid compensation is feasible for gravitational deformation but not for temperature-induced deformation.The introduction of this method facilitates real-time calculation of deformation caused both by gravity and temperature.Constructing the surrogate model involves two key steps.First,the gravitational and thermal loads are encoded,which facilitates more efficient learning for the neural network.This is followed by employing a graph neural network as an end-to-end model.This model effectively maps external loads to deformation while preserving the spatial correlations between nodes.Simulation results affirm that the proposed method can successfully estimate the surface deformation of the main reflector in real-time and can deliver results that are practically indistinguishable from those obtained using finite element analysis.We also compare the proposed surrogate model method with the out-of-focus holography method and yield similar results.
基金supported by the National Key R&D Program of China(2022YFA1602904)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(YSBR-063)the National Natural Science Foundation of China(12225303 and 12041301).
文摘The Five-hundred-meter Aperture Spherical Radio Telescope(FAST)Core Array is a proposed extension of FAST,integrating 24 secondary 40-m antennas implanted within 5 km of the FAST site.This original array design will combine the unprecedented sensitivity of FAST with a high angular resolution(4.3"at a frequency of 1.4 GHz),thereby exceeding the capabilities at similar frequencies of next-generation arrays such as the Square Kilometre Array Phase 1 or the next-generation Very Large Array.This article presents the technical specifications of the FAST Core Array,evaluates its potential relatively to existing radio telescope arrays,and describes its expected scientific prospects.The proposed array will be equipped with technologically advanced backend devices,such as real-time signal processing systems.A phased array feed receiver will be mounted on FAST to improve the survey efficiency of the FAST Core Array,whose broad frequency coverage and large field of view(FOV)will be essential to study transient cosmic phenomena such as fast radio bursts and gravitational wave events,to conduct surveys and resolve structures in neutral hydrogen galaxies,to monitor or detect pulsars,and to investigate exoplanetary systems.Finally,the FAST Core Array can strengthen China's major role in the global radio astronomy community,owing to a wide range of potential scientific applications from cosmology to exoplanet science.
基金supported by the National Key R&D Program of China(2022YFF0711404,2021YFA0718500)International Partnership Program of Chinese Academy of Sciences(grant No.113111KYSB20190020)+2 种基金the National Natural Science Foundation of China(NSFC,Grant No.U1938106)the open subject of the National HEP Data Center(E029S2S1)support from the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(grant Nos.XDA15360102,XDA15360300,XDA15052700 and E02212A02S)。
文摘The Gravitational wave burst high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a dedicated mission for monitoring high-energy transients.Here we report the design of the GECAM Scientific Ground Segment(GSGS)in terms of the scientific requirements,including the architecture,the external interfaces,the main function,and workflow.Judging from the analysis and verification results during the commissioning phase,the GSGS functions well and is able to monitor the status of the payloads,adjust the parameters,develop the scientific observation plans,generate the scientific data products,analyze the data,etc.Thus,the on-orbit operation and scientific researches of GECAM are guaranteed.