For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are ac...For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are acquired using specialized maritime LiDAR sensors in both inland waterways and wide-open ocean environments. The simulated data is generated by placing a ship in the LiDAR coordinate system and scanning it with a redeveloped Blensor that emulates the operation of a LiDAR sensor equipped with various laser beams. Furthermore,we also render point clouds for foggy and rainy weather conditions. To describe a realistic shipping environment, a dynamic tail wave is modeled by iterating the wave elevation of each point in a time series. Finally, networks serving small objects are migrated to ship applications by feeding our dataset. The positive effect of simulated data is described in object detection experiments, and the negative impact of tail waves as noise is verified in single-object tracking experiments. The Dataset is available at https://github.com/zqy411470859/ship_dataset.展开更多
Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate ...Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate and the accuracy.A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃posed for the YOLOv5s model.This method introduces an additional small target detection head and replaces the original Intersection over Union(IoU)metric with Normalized Wasserstein Distance(NWD),while considering both the detection accuracy and the detection speed of infrared small targets.Experimental results demonstrate that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU,while reach⁃ing a maximum effective detection accuracy of 91.9 AP@0.5,effectively improving the efficiency of infrared small target detection under resource-constrained conditions.展开更多
In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are of...In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.展开更多
The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribu...The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribution of its electric field.Regarding the issue of accurately predicting the depth of diffusion in InGaAs/InP SPAD,simulation analysis and device development were carried out,focusing on the dual diffusion behavior of zinc atoms.A formula of X_(j)=k√t-t_(0)+c to quantitatively predict the diffusion depth is obtained by fitting the simulated twice-diffusion depths based on a two-dimensional(2D)model.The 2D impurity morphologies and the one-dimensional impurity profiles for the dual-diffused region are characterized by using scanning electron micros-copy and secondary ion mass spectrometry as a function of the diffusion depth,respectively.InGaAs/InP SPAD devices with different dual-diffusion conditions are also fabricated,which show breakdown behaviors well consis-tent with the simulated results under the same junction geometries.The dark count rate(DCR)of the device de-creased as the multiplication width increased,as indicated by the results.DCRs of 2×10^(6),1×10^(5),4×10^(4),and 2×10^(4) were achieved at temperatures of 300 K,273 K,263 K,and 253 K,respectively,with a bias voltage of 3 V,when the multiplication width was 1.5µm.These results demonstrate an effective prediction route for accu-rately controlling the dual-diffused zinc junction geometry in InP-based planar device processing.展开更多
Taiji-2 project is the second step of Taiji program,which is to verify the required technology for Taiji-3 mission.The feasibility study of Taiji-2 is successfully finished,and some of the main progress is introduced ...Taiji-2 project is the second step of Taiji program,which is to verify the required technology for Taiji-3 mission.The feasibility study of Taiji-2 is successfully finished,and some of the main progress is introduced here.展开更多
The physical trend of group-I/tellurides is unexpected and contrary to the conventional wisdom. The present firstprinciples calculations give fundamental insights into the extent to which group-Ⅱ telluride compounds ...The physical trend of group-I/tellurides is unexpected and contrary to the conventional wisdom. The present firstprinciples calculations give fundamental insights into the extent to which group-Ⅱ telluride compounds present special properties upon mixing the d valence character. Our results provide explanations for the unexpected experimental observations based on the abnormal binding ordering of metal d electrons and their strong perturbation to the band edge states. The insights into the binary tellurides are useful for the study and control of the structural and chemical perturbation in their ternary alloys and heterostructures.展开更多
Hafnium-based ferroelectric films,remaining their ferroelectricity down to nanoscale thickness,present a promising application for low-power logic devices and nonvolatile memories.It has been appealing for researchers...Hafnium-based ferroelectric films,remaining their ferroelectricity down to nanoscale thickness,present a promising application for low-power logic devices and nonvolatile memories.It has been appealing for researchers to reduce the required temperature to obtain the ferroelectric phase in hafnium-based ferroelectric films for applications such as flexible and wearable electronics.This work demonstrates that a remanent polarization(P_(r))value of>5μC/cm^(2)can be obtained in asdeposited Hf_(0.5)Zr_(0.5)O_(2)(HZO)films that are fabricated by thermal atomic layer deposition(TALD)under low temperature of 250℃.The ferroelectric orthorhombic phase(o-phase)in the as-deposited HZO films is detected by scanning transmission electron microscopy(STEM).This low fabrication temperature further extends the compatibility of ferroelectric HZO films to flexible electronics and avoids the cost imposed by following high-temperature annealing treatments.展开更多
As a metal alloy,NiCr films have a relatively high resistivity and low temperature coefficient of resistance (TCR) and are widely used in electronic components and sensors.However,the resistivity of pure NiCr is insuf...As a metal alloy,NiCr films have a relatively high resistivity and low temperature coefficient of resistance (TCR) and are widely used in electronic components and sensors.However,the resistivity of pure NiCr is insufficient for high-resistance and highly stable film resistors.In this study,a quaternary NiCrAlSi target (47:33:10:10,wt.%) was successfully used to prepare resistor films with resistivities ranging from 1000 to 10 000μΩcm and TCR within±100 ppm/K.An oxygen flow was introduced during the sputtering process.The films exhibit hightemperature stability at 450℃.The films were analyzed using Auger electron spectroscopy,x-ray diffraction,time-of-flight secondary-ion mass spectrometry,and x-ray photoelectron spectroscopy.The results show that the difference in the oxide proportion of the films caused the differences in resistivity.The near-zero TCR values were considered to be due to the competition between silicon and other metals.This study provides new insights into the electrical properties of NiCr-based films containing Si,which will drive the manufacturing of resistors with high resistivity and zero TCR.展开更多
Terahertz wave is between microwave and infrared bands in the electromagnetic spectrum with the frequency range from 0.1 THz to 10 THz. Controlling and processing of the polarization state in terahertz wave are the fo...Terahertz wave is between microwave and infrared bands in the electromagnetic spectrum with the frequency range from 0.1 THz to 10 THz. Controlling and processing of the polarization state in terahertz wave are the focus due to its great influence on the characteristics. In this paper, a transmissive metasurface terahertz polarization converter is designed in 3D structure with an upper surface of ruler-like rectangular, an intermediate dielectric layer and a lower surface of metal grid wires. Numerical simulations of the converter show that the polarization conversion ratio(PCR) is above 99.9% at 0.288 THz–1.6 THz, the polarization rotation angle(PRA) is close to 90° at 0.06 THz–1.4 THz, and the ellipticity angle(EA) is close to 0° at 0.531 THz–1.49 THz. The origin of the efficient polarization conversion is explained by analyzing the electric field intensity, magnetic field intensity, surface current, electric field energy density, and magnetic field energy density distributions of the converter at 1.19 THz and 0.87 THz, which are consistent with the energy transmittance and transmittance coefficient. In addition, the effects of different thickness and material of intermediate layer, thickness of upper surface material, polarized wave incidence angle, and metasurface materials on the performance of the polarization converter are discussed, and how they affect the conversion performance of the polarization converter are also explained.Our results provide a strong theoretical basis and technical support to develop high performance transmission-type terahertz polarization converters, and play an important role to promote the development of terahertz science and technology.展开更多
We demonstrate the use of an infrared modulated photoluminescence(PL)method based on a step-scan Fourier-transform infrared spectrometer to analyze intersubband transition(ISBT)of InGaAs/InAlAs quantum cascade detecto...We demonstrate the use of an infrared modulated photoluminescence(PL)method based on a step-scan Fourier-transform infrared spectrometer to analyze intersubband transition(ISBT)of InGaAs/InAlAs quantum cascade detector(QCD)structures.By configuring oblique and parallel excitation geometries,high signal-to-noise ratio PL spectra in near-to-far-infrared region are measured.With support from numerical calculations based on the k·p perturbation theory,the spectra is attributed to intraband and interband transitions of InGaAs/InAlAs QCD structures.Temperature evolution results show that the k-dependent transitions caused by longitudinal optical phonon-assisted scattering(Frohlich interaction)plays an important role in the ISBT.These results suggest that this infrared modulated-PL method has great potential in characterizing QCD devices and conducting performance diagnostics.展开更多
Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-t...Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-tion microlens arrays preparation in the conventional engraving method.It has a serious impact on its performance and subsequent applications.In response to the problem of errors of Si diffraction microlens arrays in the conven-tional method,a novel self-alignment method for high precision Si diffraction microlens arrays preparation is pro-posed.The accuracy of the Si diffractive microlens arrays preparation is determined by the accuracy of the first li-thography mask in the novel self-alignment method.In the subsequent etching,the etched area will be protected by the mask layer and the sacrifice layer or the protective layer.The unprotection area is carved to effectively block the non-etching areas,accurately etch the etching area required,and solve the problem of errors.The high precision Si diffraction microlens arrays are obtained by the novel self-alignment method and the diffraction effi-ciency could reach 92.6%.After integrating with IRFPAs,the average blackbody responsity increased by 8.3%,and the average blackbody detectivity increased by 10.3%.It indicates that the Si diffraction microlens arrays can improve the filling factor and reduce crosstalk of IRFPAs through convergence,thereby improving the perfor-mance of the IRFPAs.The results are of great reference significance for improving their performance through opti-mizing the preparation level of micro nano devices.展开更多
The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precis...The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precision control.Establishing one spacecraftwith two laser links,compared to one spacecraft with a single laser link,requires an upgraded decoupling algorithmfor the link establishment.The decoupling algorithmwe designed reassigns the degrees of freedomand forces in the control loop to ensure sufficient degrees of freedomfor optical axis control.In addressing the distinct dynamic characteristics of different degrees of freedom,a transfer function compensation method is used in the decoupling process to further minimize motion coupling.The open-loop frequency response of the systemis obtained through simulation.The upgraded decoupling algorithms effectively reduce the open-loop frequency response by 30 dB.The transfer function compensation method efficiently suppresses the coupling of low-frequency noise.展开更多
Visual near-infrared imaging equipment has broad applications in various fields such as venipuncture,facial injections,and safety verification due to its noncontact,compact,and portable design.Currently,most studies u...Visual near-infrared imaging equipment has broad applications in various fields such as venipuncture,facial injections,and safety verification due to its noncontact,compact,and portable design.Currently,most studies utilize near-infrared single-wavelength for image acquisition of veins.However,many substances in the skin,including water,protein,and melanin can create significant background noise,which hinders accurate detection.In this paper,we developed a dual-wavelength imaging system with phase-locked denoising technology to acquire vein image.The signals in the effective region are compared by using the absorption valley and peak of hemoglobin at 700nm and 940nm,respectively.The phase-locked denoising algorithm is applied to decrease the noise and interference of complex surroundings from the images.The imaging results of the vein are successfully extracted in complex noise environment.It is demonstrated that the denoising effect on hand veins imaging can be improved with 57.3%by using our dual-wavelength phase-locked denoising technology.Consequently,this work proposes a novel approach for venous imaging with dual-wavelengths and phase-locked denoising algorithm to extract venous imaging results in complex noisy environment better.展开更多
Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experiment...Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experimentally demonstrated a 4 mm size,all-silicon metasurface metalens with large depth of focus opera-tional across a broadband range from 9µm to 11.5µm.The experimental results confirm effective focusing and imaging capabilities of the metalens in LWIR region,thus paving the way for practical LWIR applications of met-alens technology.展开更多
Skeletal muscle has a robust regeneration ability that is impaired by severe injury,disease,and aging.resulting in a decline in skeletal muscle function.Therefore,improving skeletal muscle regeneration is a key challe...Skeletal muscle has a robust regeneration ability that is impaired by severe injury,disease,and aging.resulting in a decline in skeletal muscle function.Therefore,improving skeletal muscle regeneration is a key challenge in treating skeletal muscle-related disorders.Owing to their significant role in tissue regeneration,implantation of M2 macrophages(M2MФ)has great potential for improving skeletal muscle regeneration.Here,we present a short-wave infrared(SWIR)fluorescence imaging technique to obtain more in vivo information for an in-depth evaluation of the skeletal muscle regeneration effect after M2MФtransplantation.SWIR fluorescence imaging was employed to track implanted M2MФin the injured skeletal muscle of mouse models.It is found that the implanted M2MФaccumulated at the injury site for two weeks.Then,SWIR fluorescence imaging of blood vessels showed that M2MФimplantation could improve the relative perfusion ratio on day 5(1.09±0.09 vs 0.85±0.05;p=0.01)and day 9(1.38±0.16 vs 0.95±0.03;p=0.01)post-injury,as well as augment the degree of skeletal muscle regencration on day 13 post-injury.Finally,multiple linear regression analyses determined that post-injury time and relative perfusion ratio could be used as predictive indicators to evaluate skeletal muscle regeneration.These results provide more in vivo details about M2MФin skeletal muscle regeneration and confirm that M2MФcould promote angiogenesis and improve the degree of skeletal muscle repair,which will guide the research and development of M2MФimplantation to improve skeletal muscle regeneration.展开更多
The China Space Station Telescope(CSST)is a two-meter space telescope with multiple back-end instruments.The Fine Guidance Sensor(FGS)is an essential subsystem of the CSST Precision Image Stability System to ensure th...The China Space Station Telescope(CSST)is a two-meter space telescope with multiple back-end instruments.The Fine Guidance Sensor(FGS)is an essential subsystem of the CSST Precision Image Stability System to ensure the required absolute pointing accuracy and line-of-sight stabilization.In this study,we construct the Main Guide Star Catalog for FGS.To accomplish this,we utilize the information about the FGS and object information from the Gaia Data Release 3.We provide an FGS instrument magnitude and exclude variables,binaries,and high proper motion stars from the catalog to ensure uniform FGS guidance capabilities.Subsequently,we generate a HEALPix index,which provides a hierarchical tessellation of the celestial sphere,and employ the Voronoi algorithm to achieve a homogeneous distribution of stars across the catalog.This distribution ensures adequate coverage and sampling of the sky.The performance of the CSST guide star catalog was assessed by simulating the field of view of the FGS according to the CSST mock survey strategy catalog.The analysis of the results indicates that this catalog provides adequate coverage and accuracy.The catalog's performance meets the FGS requirements,ensuring the functioning of the FGS and its guidance capabilities.展开更多
Sea ice thickness is one of the most important input parameters in the studies on sea ice disaster prevention and mitigation. It is also the most important content in remote sensing monitoring of sea ice. In this stud...Sea ice thickness is one of the most important input parameters in the studies on sea ice disaster prevention and mitigation. It is also the most important content in remote sensing monitoring of sea ice. In this study, a practical model of sea ice thickness(PMSIT) was proposed based on the Moderate Resolution Imaging Spectroradiometer(MODIS) data. In the proposed model, the MODIS data of the first band were used to estimate sea ice thickness and the difference between the second-band reflectance and the fifth-band reflectance in the MODIS data was calculated to obtain the difference attenuation index(DAI) of each pixel. The obtained DAI was used to estimate the integrated attenuation coefficient of the first band of the MODIS at the pixel level. Then the model was used to estimate sea ice thickness in the Bohai Sea with the MODIS data and then validated with the actual sea ice survey data. The validation results showed that the proposed model and corresponding parameterization scheme could largely avoid the estimation error of sea ice thickness caused by the spatial and temporal heterogeneity of sea ice extinction and allowed the error of 18.7% compared with the measured sea ice thickness.展开更多
We perform a theoretical study on a low dark current InGaAs/GaAs very-long-wavelength (〉 12 μm) quantum well infrared photodetector (VLW-QWIP), based on a double barrier resonant tunnelling structure (DBRTS). ...We perform a theoretical study on a low dark current InGaAs/GaAs very-long-wavelength (〉 12 μm) quantum well infrared photodetector (VLW-QWIP), based on a double barrier resonant tunnelling structure (DBRTS). The ground tunnelling state of the central quantum well (QW) of the DBRTS can resonate with the first excited bound state of the doped InGaAs QW by adjusting the structure parameters of the DBRTS. Investigation of the carrier transport performance of this device is carried out based on quantum wave transport theory. It has been shown that the dark current in this device can be significantly reduced by two orders compared to conventional InGaAs/GaAs VLW-QWIPs, while the photocurrent is almost the same as those in conventional VLW-QWIPs. This DBRTS integrated VLW-QWIP structure may stimulate the experimental investigation for VLW-QWIPs at high operation temperatures.展开更多
The surface roughness characteristics (e.g., height and slope) of sea ice are critical for determining the parameters of an electromagnetic scattering, a surface emission and a surface drag coefficients. It is also ...The surface roughness characteristics (e.g., height and slope) of sea ice are critical for determining the parameters of an electromagnetic scattering, a surface emission and a surface drag coefficients. It is also important in identifying various ice types, retrieval ice thickness, surface temperature and drag coefficients from remote sensing data. The point clouds (a set of points which are usually defined by X, Y, and Z coordinates that represents the external surface of an object on earth) of land fast ice in five in situ sites in the eastern coast Bohai Sea were measured using a laser scanner-Trimble GX during 2011-2012 winter season. Two hundred and fifty profiles selected from the point clouds of different samples have been used to calcu- late the height root mean square, height skewness, height kurtosis, slope root mean square, slope skewness and slope kurtosis of them. The root mean square of the height, the root mean square of the slope and the correlation length are about 0.090, 0.075 and 11.74 m, respectively. The heights of 150 profiles in three sites manifest the Gaussian distribution and the slopes of total 250 profiles distributed exponentially. In addition, the fractal dimension and power spectral density profiles were calculated. The results show that the fractal dimension of land fast ice in the Bohai Sea is about 1.132. The power spectral densities of 250 profiles can be expressed through an exponential autocorrelation function.展开更多
InAsSb epilayers with a cutoff wavelength of 4.8 μm have been successfully grown on InAs substrates by one-step liquid phase epitaxy (LPE) technology. The epilayers were characterized by X-ray diffraction (XRD), ...InAsSb epilayers with a cutoff wavelength of 4.8 μm have been successfully grown on InAs substrates by one-step liquid phase epitaxy (LPE) technology. The epilayers were characterized by X-ray diffraction (XRD), Fourier transform infrared (PTIR) transmittance measurements and scanning electron microscopy (SEM). The influence of different growth conditions on the optical and structural properties of the materials was studied. The results revealed that the good crystalline quality, mirror smooth surface and flat interface of InAsSb epilayers were achieved. They benefited from optimized growth conditions, i.e., sufficient homogeneity of the growth melt and a very slow cooling rate.展开更多
基金supported by the National Natural Science Foundation of China (62173103)the Fundamental Research Funds for the Central Universities of China (3072022JC0402,3072022JC0403)。
文摘For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are acquired using specialized maritime LiDAR sensors in both inland waterways and wide-open ocean environments. The simulated data is generated by placing a ship in the LiDAR coordinate system and scanning it with a redeveloped Blensor that emulates the operation of a LiDAR sensor equipped with various laser beams. Furthermore,we also render point clouds for foggy and rainy weather conditions. To describe a realistic shipping environment, a dynamic tail wave is modeled by iterating the wave elevation of each point in a time series. Finally, networks serving small objects are migrated to ship applications by feeding our dataset. The positive effect of simulated data is described in object detection experiments, and the negative impact of tail waves as noise is verified in single-object tracking experiments. The Dataset is available at https://github.com/zqy411470859/ship_dataset.
文摘Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate and the accuracy.A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃posed for the YOLOv5s model.This method introduces an additional small target detection head and replaces the original Intersection over Union(IoU)metric with Normalized Wasserstein Distance(NWD),while considering both the detection accuracy and the detection speed of infrared small targets.Experimental results demonstrate that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU,while reach⁃ing a maximum effective detection accuracy of 91.9 AP@0.5,effectively improving the efficiency of infrared small target detection under resource-constrained conditions.
基金Supported by the National Natural Science Foundation of China(NSFC)(61904183,61974152,62104237,62004205)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y202057)+1 种基金Shanghai Science and Technology Committee Rising-Star Program(20QA1410500)Shanghai Sail Plans(21YF1455000)。
文摘In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.
基金Supported by Shanghai Natural Science Foundation(22ZR1472600).
文摘The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribution of its electric field.Regarding the issue of accurately predicting the depth of diffusion in InGaAs/InP SPAD,simulation analysis and device development were carried out,focusing on the dual diffusion behavior of zinc atoms.A formula of X_(j)=k√t-t_(0)+c to quantitatively predict the diffusion depth is obtained by fitting the simulated twice-diffusion depths based on a two-dimensional(2D)model.The 2D impurity morphologies and the one-dimensional impurity profiles for the dual-diffused region are characterized by using scanning electron micros-copy and secondary ion mass spectrometry as a function of the diffusion depth,respectively.InGaAs/InP SPAD devices with different dual-diffusion conditions are also fabricated,which show breakdown behaviors well consis-tent with the simulated results under the same junction geometries.The dark count rate(DCR)of the device de-creased as the multiplication width increased,as indicated by the results.DCRs of 2×10^(6),1×10^(5),4×10^(4),and 2×10^(4) were achieved at temperatures of 300 K,273 K,263 K,and 253 K,respectively,with a bias voltage of 3 V,when the multiplication width was 1.5µm.These results demonstrate an effective prediction route for accu-rately controlling the dual-diffused zinc junction geometry in InP-based planar device processing.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA15021100)the National Natural Science Foundation of China(12147103)the Fundamental Research Funds for the Central Universities。
文摘Taiji-2 project is the second step of Taiji program,which is to verify the required technology for Taiji-3 mission.The feasibility study of Taiji-2 is successfully finished,and some of the main progress is introduced here.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10847111 and 61006091)the Startup Project for Ph. D. of Guangdong University of Technology (Grant No. 083034)the Fundamental Research Funds for the Central Universities of South China University of Technology (Grant No. 2009ZM0022)
文摘The physical trend of group-I/tellurides is unexpected and contrary to the conventional wisdom. The present firstprinciples calculations give fundamental insights into the extent to which group-Ⅱ telluride compounds present special properties upon mixing the d valence character. Our results provide explanations for the unexpected experimental observations based on the abnormal binding ordering of metal d electrons and their strong perturbation to the band edge states. The insights into the binary tellurides are useful for the study and control of the structural and chemical perturbation in their ternary alloys and heterostructures.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFA1200700)the National Natural Science Foundation of China(Grant Nos.T2222025 and 62174053)+5 种基金the Open Research Projects of Zhejiang Laboratory(Grant No.2021MD0AB03)the Shanghai Science and Technology Innovation Action Plan(Grant Nos.21JC1402000 and 21520714100)the Guangdong Provincial Key Laboratory Program(Grant No.2021B1212040001)the Fundamental Research Funds for the Central Universitiessupport from the Zuckerman STEM Leadership ProgramPazy Research Foundation(Grant No.149-2020)。
文摘Hafnium-based ferroelectric films,remaining their ferroelectricity down to nanoscale thickness,present a promising application for low-power logic devices and nonvolatile memories.It has been appealing for researchers to reduce the required temperature to obtain the ferroelectric phase in hafnium-based ferroelectric films for applications such as flexible and wearable electronics.This work demonstrates that a remanent polarization(P_(r))value of>5μC/cm^(2)can be obtained in asdeposited Hf_(0.5)Zr_(0.5)O_(2)(HZO)films that are fabricated by thermal atomic layer deposition(TALD)under low temperature of 250℃.The ferroelectric orthorhombic phase(o-phase)in the as-deposited HZO films is detected by scanning transmission electron microscopy(STEM).This low fabrication temperature further extends the compatibility of ferroelectric HZO films to flexible electronics and avoids the cost imposed by following high-temperature annealing treatments.
基金support from the Innovation Foundation of the Shanghai Institute of Technical Physics,Chinese Academy of Sciences。
文摘As a metal alloy,NiCr films have a relatively high resistivity and low temperature coefficient of resistance (TCR) and are widely used in electronic components and sensors.However,the resistivity of pure NiCr is insufficient for high-resistance and highly stable film resistors.In this study,a quaternary NiCrAlSi target (47:33:10:10,wt.%) was successfully used to prepare resistor films with resistivities ranging from 1000 to 10 000μΩcm and TCR within±100 ppm/K.An oxygen flow was introduced during the sputtering process.The films exhibit hightemperature stability at 450℃.The films were analyzed using Auger electron spectroscopy,x-ray diffraction,time-of-flight secondary-ion mass spectrometry,and x-ray photoelectron spectroscopy.The results show that the difference in the oxide proportion of the films caused the differences in resistivity.The near-zero TCR values were considered to be due to the competition between silicon and other metals.This study provides new insights into the electrical properties of NiCr-based films containing Si,which will drive the manufacturing of resistors with high resistivity and zero TCR.
基金supported by the National Natural Science Fundation (Grant Nos. 12134016 and 61625505)Chinese Academy of Sciences (Grant No. ZDBS-LY-JSC025)+1 种基金Sino– Russia International Joint Laboratory of Terahertz Materials and Devices (Grant No. 18590750500)Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01)。
文摘Terahertz wave is between microwave and infrared bands in the electromagnetic spectrum with the frequency range from 0.1 THz to 10 THz. Controlling and processing of the polarization state in terahertz wave are the focus due to its great influence on the characteristics. In this paper, a transmissive metasurface terahertz polarization converter is designed in 3D structure with an upper surface of ruler-like rectangular, an intermediate dielectric layer and a lower surface of metal grid wires. Numerical simulations of the converter show that the polarization conversion ratio(PCR) is above 99.9% at 0.288 THz–1.6 THz, the polarization rotation angle(PRA) is close to 90° at 0.06 THz–1.4 THz, and the ellipticity angle(EA) is close to 0° at 0.531 THz–1.49 THz. The origin of the efficient polarization conversion is explained by analyzing the electric field intensity, magnetic field intensity, surface current, electric field energy density, and magnetic field energy density distributions of the converter at 1.19 THz and 0.87 THz, which are consistent with the energy transmittance and transmittance coefficient. In addition, the effects of different thickness and material of intermediate layer, thickness of upper surface material, polarized wave incidence angle, and metasurface materials on the performance of the polarization converter are discussed, and how they affect the conversion performance of the polarization converter are also explained.Our results provide a strong theoretical basis and technical support to develop high performance transmission-type terahertz polarization converters, and play an important role to promote the development of terahertz science and technology.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFB2203400)the National Natural Science Foundation of China(Grant Nos.61974044 and 11974368)the Shanghai Committee of Science and Technology of China(Grant Nos.20142201000 and 21ZR1421500)。
文摘We demonstrate the use of an infrared modulated photoluminescence(PL)method based on a step-scan Fourier-transform infrared spectrometer to analyze intersubband transition(ISBT)of InGaAs/InAlAs quantum cascade detector(QCD)structures.By configuring oblique and parallel excitation geometries,high signal-to-noise ratio PL spectra in near-to-far-infrared region are measured.With support from numerical calculations based on the k·p perturbation theory,the spectra is attributed to intraband and interband transitions of InGaAs/InAlAs QCD structures.Temperature evolution results show that the k-dependent transitions caused by longitudinal optical phonon-assisted scattering(Frohlich interaction)plays an important role in the ISBT.These results suggest that this infrared modulated-PL method has great potential in characterizing QCD devices and conducting performance diagnostics.
基金Supported by the National Natural Science Foundation of China(NSFC 62105100)the National Key research and development program in the 14th five year plan(2021YFA1200700)。
文摘Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-tion microlens arrays preparation in the conventional engraving method.It has a serious impact on its performance and subsequent applications.In response to the problem of errors of Si diffraction microlens arrays in the conven-tional method,a novel self-alignment method for high precision Si diffraction microlens arrays preparation is pro-posed.The accuracy of the Si diffractive microlens arrays preparation is determined by the accuracy of the first li-thography mask in the novel self-alignment method.In the subsequent etching,the etched area will be protected by the mask layer and the sacrifice layer or the protective layer.The unprotection area is carved to effectively block the non-etching areas,accurately etch the etching area required,and solve the problem of errors.The high precision Si diffraction microlens arrays are obtained by the novel self-alignment method and the diffraction effi-ciency could reach 92.6%.After integrating with IRFPAs,the average blackbody responsity increased by 8.3%,and the average blackbody detectivity increased by 10.3%.It indicates that the Si diffraction microlens arrays can improve the filling factor and reduce crosstalk of IRFPAs through convergence,thereby improving the perfor-mance of the IRFPAs.The results are of great reference significance for improving their performance through opti-mizing the preparation level of micro nano devices.
基金supported by the National Key Research and Development Program of China(2022YFC2203700).
文摘The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precision control.Establishing one spacecraftwith two laser links,compared to one spacecraft with a single laser link,requires an upgraded decoupling algorithmfor the link establishment.The decoupling algorithmwe designed reassigns the degrees of freedomand forces in the control loop to ensure sufficient degrees of freedomfor optical axis control.In addressing the distinct dynamic characteristics of different degrees of freedom,a transfer function compensation method is used in the decoupling process to further minimize motion coupling.The open-loop frequency response of the systemis obtained through simulation.The upgraded decoupling algorithms effectively reduce the open-loop frequency response by 30 dB.The transfer function compensation method efficiently suppresses the coupling of low-frequency noise.
基金funded by National Key R&D Pro-gram of China(2021YFC2103300)National Key R&D Program of China(2021YFA0715500)+2 种基金National Natural Science Foundation of China(NSFC)(12227901)Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB0580000)Chinese Academy of Sciences President's International Fellowship Initiative(2021PT0007).
文摘Visual near-infrared imaging equipment has broad applications in various fields such as venipuncture,facial injections,and safety verification due to its noncontact,compact,and portable design.Currently,most studies utilize near-infrared single-wavelength for image acquisition of veins.However,many substances in the skin,including water,protein,and melanin can create significant background noise,which hinders accurate detection.In this paper,we developed a dual-wavelength imaging system with phase-locked denoising technology to acquire vein image.The signals in the effective region are compared by using the absorption valley and peak of hemoglobin at 700nm and 940nm,respectively.The phase-locked denoising algorithm is applied to decrease the noise and interference of complex surroundings from the images.The imaging results of the vein are successfully extracted in complex noise environment.It is demonstrated that the denoising effect on hand veins imaging can be improved with 57.3%by using our dual-wavelength phase-locked denoising technology.Consequently,this work proposes a novel approach for venous imaging with dual-wavelengths and phase-locked denoising algorithm to extract venous imaging results in complex noisy environment better.
基金Supported by National Key R&D Program of China(2021YFA0715500)National Natural Science Foundation of China(NSFC)(12227901)+1 种基金Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB0580000)Chinese Academy of Sciences President's In-ternational Fellowship Initiative(2021PT0007).
文摘Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experimentally demonstrated a 4 mm size,all-silicon metasurface metalens with large depth of focus opera-tional across a broadband range from 9µm to 11.5µm.The experimental results confirm effective focusing and imaging capabilities of the metalens in LWIR region,thus paving the way for practical LWIR applications of met-alens technology.
基金supported by Shanghai Sailing Program(22YF1438700)National Key Research and Development Program of China(2021YFA1201303)+5 种基金National Natural Science Foundation of China(82172511,81972121,81972129,82072521,82011530023,and 82111530200)Sanming Project of Medicine in Shenzhen(SZSM201612078)the Introduction Project of Clinical Medicine Expert Team for Suzhou(SZYJTD201714)Shanghai Talent Development Funding Scheme 2020080Shanghai Sailing Program(21YF1404100 and 22YF1405200)Research Project of Shanghai Science and Technology Commission(22DZ2204900)。
文摘Skeletal muscle has a robust regeneration ability that is impaired by severe injury,disease,and aging.resulting in a decline in skeletal muscle function.Therefore,improving skeletal muscle regeneration is a key challenge in treating skeletal muscle-related disorders.Owing to their significant role in tissue regeneration,implantation of M2 macrophages(M2MФ)has great potential for improving skeletal muscle regeneration.Here,we present a short-wave infrared(SWIR)fluorescence imaging technique to obtain more in vivo information for an in-depth evaluation of the skeletal muscle regeneration effect after M2MФtransplantation.SWIR fluorescence imaging was employed to track implanted M2MФin the injured skeletal muscle of mouse models.It is found that the implanted M2MФaccumulated at the injury site for two weeks.Then,SWIR fluorescence imaging of blood vessels showed that M2MФimplantation could improve the relative perfusion ratio on day 5(1.09±0.09 vs 0.85±0.05;p=0.01)and day 9(1.38±0.16 vs 0.95±0.03;p=0.01)post-injury,as well as augment the degree of skeletal muscle regencration on day 13 post-injury.Finally,multiple linear regression analyses determined that post-injury time and relative perfusion ratio could be used as predictive indicators to evaluate skeletal muscle regeneration.These results provide more in vivo details about M2MФin skeletal muscle regeneration and confirm that M2MФcould promote angiogenesis and improve the degree of skeletal muscle repair,which will guide the research and development of M2MФimplantation to improve skeletal muscle regeneration.
基金the support by National Key R&D Program of China(No.2022YFF0503403,2022YFF0711500)the support of National Natural Science Foundation of China(NSFC,grant Nos.11988101,12073047,12273077,12022306,12373048,12263005)+3 种基金the support from the Ministry of Science and Technology of China(Nos.2020SKA0110100)the science research grants from the China Manned Space Project(Nos.CMS-CSST-2021-B01,CMSCSST-2021-A01)CAS Project for Young Scientists in Basic Research(No.YSBR-062)the support from K.C.Wong Education Foundation。
文摘The China Space Station Telescope(CSST)is a two-meter space telescope with multiple back-end instruments.The Fine Guidance Sensor(FGS)is an essential subsystem of the CSST Precision Image Stability System to ensure the required absolute pointing accuracy and line-of-sight stabilization.In this study,we construct the Main Guide Star Catalog for FGS.To accomplish this,we utilize the information about the FGS and object information from the Gaia Data Release 3.We provide an FGS instrument magnitude and exclude variables,binaries,and high proper motion stars from the catalog to ensure uniform FGS guidance capabilities.Subsequently,we generate a HEALPix index,which provides a hierarchical tessellation of the celestial sphere,and employ the Voronoi algorithm to achieve a homogeneous distribution of stars across the catalog.This distribution ensures adequate coverage and sampling of the sky.The performance of the CSST guide star catalog was assessed by simulating the field of view of the FGS according to the CSST mock survey strategy catalog.The analysis of the results indicates that this catalog provides adequate coverage and accuracy.The catalog's performance meets the FGS requirements,ensuring the functioning of the FGS and its guidance capabilities.
基金Under the auspices of the National Natural Science Foundation of China(No.41306091)Public Science and Technology Research Funds Projects of Ocean(No.201505019-2)
文摘Sea ice thickness is one of the most important input parameters in the studies on sea ice disaster prevention and mitigation. It is also the most important content in remote sensing monitoring of sea ice. In this study, a practical model of sea ice thickness(PMSIT) was proposed based on the Moderate Resolution Imaging Spectroradiometer(MODIS) data. In the proposed model, the MODIS data of the first band were used to estimate sea ice thickness and the difference between the second-band reflectance and the fifth-band reflectance in the MODIS data was calculated to obtain the difference attenuation index(DAI) of each pixel. The obtained DAI was used to estimate the integrated attenuation coefficient of the first band of the MODIS at the pixel level. Then the model was used to estimate sea ice thickness in the Bohai Sea with the MODIS data and then validated with the actual sea ice survey data. The validation results showed that the proposed model and corresponding parameterization scheme could largely avoid the estimation error of sea ice thickness caused by the spatial and temporal heterogeneity of sea ice extinction and allowed the error of 18.7% compared with the measured sea ice thickness.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60476031 and 10474020
文摘We perform a theoretical study on a low dark current InGaAs/GaAs very-long-wavelength (〉 12 μm) quantum well infrared photodetector (VLW-QWIP), based on a double barrier resonant tunnelling structure (DBRTS). The ground tunnelling state of the central quantum well (QW) of the DBRTS can resonate with the first excited bound state of the doped InGaAs QW by adjusting the structure parameters of the DBRTS. Investigation of the carrier transport performance of this device is carried out based on quantum wave transport theory. It has been shown that the dark current in this device can be significantly reduced by two orders compared to conventional InGaAs/GaAs VLW-QWIPs, while the photocurrent is almost the same as those in conventional VLW-QWIPs. This DBRTS integrated VLW-QWIP structure may stimulate the experimental investigation for VLW-QWIPs at high operation temperatures.
基金The National High Technology Research and Development Program of China under contract No.2011AA100505the National Key Technology R&D Program of China under contract No.2006BAB03A03the State Key Laboratory of Earth Surface Processes and Resource Ecology,Beijing Normal University of China under contract Nos 2010-TD-02 and 2011-TDZD-050
文摘The surface roughness characteristics (e.g., height and slope) of sea ice are critical for determining the parameters of an electromagnetic scattering, a surface emission and a surface drag coefficients. It is also important in identifying various ice types, retrieval ice thickness, surface temperature and drag coefficients from remote sensing data. The point clouds (a set of points which are usually defined by X, Y, and Z coordinates that represents the external surface of an object on earth) of land fast ice in five in situ sites in the eastern coast Bohai Sea were measured using a laser scanner-Trimble GX during 2011-2012 winter season. Two hundred and fifty profiles selected from the point clouds of different samples have been used to calcu- late the height root mean square, height skewness, height kurtosis, slope root mean square, slope skewness and slope kurtosis of them. The root mean square of the height, the root mean square of the slope and the correlation length are about 0.090, 0.075 and 11.74 m, respectively. The heights of 150 profiles in three sites manifest the Gaussian distribution and the slopes of total 250 profiles distributed exponentially. In addition, the fractal dimension and power spectral density profiles were calculated. The results show that the fractal dimension of land fast ice in the Bohai Sea is about 1.132. The power spectral densities of 250 profiles can be expressed through an exponential autocorrelation function.
基金provided by the National Natural Science Foundation of China (No. 60777022)the Program for Young Excellent Tal-ents in Tongji University
文摘InAsSb epilayers with a cutoff wavelength of 4.8 μm have been successfully grown on InAs substrates by one-step liquid phase epitaxy (LPE) technology. The epilayers were characterized by X-ray diffraction (XRD), Fourier transform infrared (PTIR) transmittance measurements and scanning electron microscopy (SEM). The influence of different growth conditions on the optical and structural properties of the materials was studied. The results revealed that the good crystalline quality, mirror smooth surface and flat interface of InAsSb epilayers were achieved. They benefited from optimized growth conditions, i.e., sufficient homogeneity of the growth melt and a very slow cooling rate.