Osteoporosis(OP)is a prevalent metabolic bone disease.While drug therapy is essential to prevent bone loss in osteoporotic patients,current treatments are limited by side effects and high costs,necessitating the devel...Osteoporosis(OP)is a prevalent metabolic bone disease.While drug therapy is essential to prevent bone loss in osteoporotic patients,current treatments are limited by side effects and high costs,necessitating the development of more effective and safer targeted therapies.Utilizing a zebrafish(Danio rerio)larval model of osteoporosis,we explored the influence of the metabolite spermine on bone homeostasis.Results showed that spermine exhibited dual activity in osteoporotic zebrafish larvae by increasing bone formation and decreasing bone resorption.Spermine not only demonstrated excellent biosafety but also mitigated prednisolone-induced embryonic neurotoxicity and cardiotoxicity.Notably,spermine showcased protective attributes in the nervous systems of both zebrafish embryos and larvae.At the molecular level,Rac1 was identified as playing a pivotal role in mediating the antiosteoporotic effects of spermine,with P53 potentially acting downstream of Rac1.These findings were confirmed using mouse(Mus musculus)models,in which spermine not only ameliorated osteoporosis but also promoted bone formation and mineralization under healthy conditions,suggesting strong potential as a bonestrengthening agent.This study underscores the beneficial role of spermine in osteoporotic bone homeostasis and skeletal system development,highlighting pivotal molecular mediators.Given their efficacy and safety,human endogenous metabolites like spermine are promising candidates for new anti-osteoporotic drug development and daily bone-fortifying agents.展开更多
Endodontic diseases are a kind of chronic infectious oral disease. Common endodontic treatment concepts are based on the removal of inflamed or necrotic pulp tissue and the replacement by gutta-percha. However, it is ...Endodontic diseases are a kind of chronic infectious oral disease. Common endodontic treatment concepts are based on the removal of inflamed or necrotic pulp tissue and the replacement by gutta-percha. However, it is very essential for endodontic treatment to debride the root canal system and prevent the root canal system from bacterial reinfection after root canal therapy(RCT). Recent research, encompassing bacterial etiology and advanced imaging techniques, contributes to our understanding of the root canal system’s anatomy intricacies and the technique sensitivity of RCT. Success in RCT hinges on factors like patients, infection severity, root canal anatomy, and treatment techniques. Therefore, improving disease management is a key issue to combat endodontic diseases and cure periapical lesions. The clinical difficulty assessment system of RCT is established based on patient conditions, tooth conditions, root canal configuration, and root canal needing retreatment, and emphasizes pre-treatment risk assessment for optimal outcomes. The findings suggest that the presence of risk factors may correlate with the challenge of achieving the high standard required for RCT. These insights contribute not only to improve education but also aid practitioners in treatment planning and referral decision-making within the field of endodontics.展开更多
Malocclusion,identified by the World Health Organization(WHO)as one of three major oral diseases,profoundly impacts the dental-maxillofacial functions,facial esthetics,and long-term development of~260 million children...Malocclusion,identified by the World Health Organization(WHO)as one of three major oral diseases,profoundly impacts the dental-maxillofacial functions,facial esthetics,and long-term development of~260 million children in China.Beyond its physical manifestations,malocclusion also significantly influences the psycho-social well-being of these children.Timely intervention in malocclusion can foster an environment conducive to dental-maxillofacial development and substantially decrease the incidence of malocclusion or reduce the severity and complexity of malocclusion in the permanent dentition,by mitigating the negative impact of abnormal environmental influences on the growth.Early orthodontic treatment encompasses accurate identification and treatment of dental and maxillofacial morphological and functional abnormalities during various stages of dental-maxillofacial development,ranging from fetal stages to the early permanent dentition phase.From an economic and societal standpoint,the urgency for effective early orthodontic treatments for malocclusions in childhood cannot be overstated,underlining its profound practical and social importance.This consensus paper discusses the characteristics and the detrimental effects of malocclusion in children,emphasizing critical need for early treatment.It elaborates on corresponding core principles and fundamental approaches in early orthodontics,proposing comprehensive guidance for preventive and interceptive orthodontic treatment,serving as a reference for clinicians engaged in early orthodontic treatment.展开更多
Endo-periodontal lesions (EPLs) involve both the periodontium and pulp tissue and have complicated etiologies and pathogenic mechanisms,including unique anatomical and microbiological characteristics and multiple cont...Endo-periodontal lesions (EPLs) involve both the periodontium and pulp tissue and have complicated etiologies and pathogenic mechanisms,including unique anatomical and microbiological characteristics and multiple contributing factors.This etiological complexity leads to difficulties in determining patient prognosis,posing great challenges in clinical practice.Furthermore,EPL-affected teeth require multidisciplinary therapy,including periodontal therapy,endodontic therapy and others,but there is still much debate about the appropriate timing of periodontal therapy and root canal therapy.By compiling the most recent findings on the etiology,pathogenesis,clinical characteristics,diagnosis,therapy,and prognosis of EPL-affected teeth,this consensus sought to support clinicians in making the best possible treatment decisions based on both biological and clinical evidence.展开更多
The dental operative microscope has been widely employed in the field of dentistry,particularly in endodontics and operative dentistry,resulting in significant advancements in the effectiveness of root canal therapy,e...The dental operative microscope has been widely employed in the field of dentistry,particularly in endodontics and operative dentistry,resulting in significant advancements in the effectiveness of root canal therapy,endodontic surgery,and dental restoration.However,the improper use of this microscope continues to be common in clinical settings,primarily due to operators’insufficient understanding and proficiency in both the features and established operating procedures of this equipment.In October 2019,Professor Jingping Liang,Vice Chairman of the Society of Cariology and Endodontology,Chinese Stomatological Association,organized a consensus meeting with Chinese experts in endodontics and operative dentistry.The objective of this meeting was to establish a standard operation procedure for the dental operative microscope.Subsequently,a consensus was reached and officially issued.Over the span of about four years,the content of this consensus has been further developed and improved through practical experience.展开更多
Cancer cell membrane(CCM)derived nanotechnology functionalizes nanoparticles(NPs)to recognize homologous cells,exhibiting translational potential in accurate tumor therapy.However,these nanoplatforms are majorly gener...Cancer cell membrane(CCM)derived nanotechnology functionalizes nanoparticles(NPs)to recognize homologous cells,exhibiting translational potential in accurate tumor therapy.However,these nanoplatforms are majorly generated from fixed cell lines and are typically evaluated in cell line-derived subcutaneous-xenografts(CDX),ignoring the tumor heterogeneity and differentiation from inter-and intra-individuals and microenvironments between heterotopic-and orthotopic-tumors,limiting the therapeutic efficiency of such nanoplatforms.Herein,various biomimetic nanoplatforms(CCM-modified gold@Carbon,i.e.,Au@C-CCM)were fabricated by coating CCMs of head and neck squamous cell carcinoma(HNSCC)cell lines and patient-derived cells on the surface of Au@C NP.The generated Au@C-CCMs were evaluated on corresponding CDX,tongue orthotopic xenograft(TOX),immunecompetent primary and distant tumor models,and patient-derived xenograft(PDX)models.The Au@C-CCM generates a photothermal conversion efficiency up to 44.2% for primary HNSCC therapy and induced immunotherapy to inhibit metastasis via photothermal therapy-induced immunogenic cell death.The homologous CCM endowed the nanoplatforms with optimal targeting properties for the highest therapeutic efficiency,far above those with mismatched CCMs,resulting in distinct tumor ablation and tumor growth inhibition in all four models.This work reinforces the feasibility of biomimetic NPs combining modular designed CMs and functional cores for customized treatment of HNSCC,can be further extended to other malignant tumors therapy.展开更多
Recently,the glymphatic system has been recognised as an important‘waste solutes transport channel’within the brain.1 Studies have shown that blockage of the glymphatic system leads to increased beta-amyloid deposit...Recently,the glymphatic system has been recognised as an important‘waste solutes transport channel’within the brain.1 Studies have shown that blockage of the glymphatic system leads to increased beta-amyloid deposits,accelerating the onset and progression of Alzheimer’s disease(AD).12 Given that cervical lymph nodes receive cerebrospinal fluid from the brain’s glymphatic system,34 we speculated that decompression of the lymphatic trunk and cervical lymphatic-venous anastomosis(LVA)could facilitate the flow of cerebrospinal fluid in the cranial glymphatic system,potentially accelerating the clearance of harmful beta-amyloid and tau proteins.We collaborated with surgeons who specialise in LVA supermicrosurgery for maxillofacial tumours and lymphoedema to develop a procedure to relieve the blockage of the glymphatic system.This surgery employs supermicrosurgery techniques to create LVA connecting the bilateral cervical,deep lymphatic vessels to the veins,resulting in lymphatic trunk decompression,which allows the lymph fluid in the high-pressure lymphatic vessels to flow into the low-pressure venous system.The goal of the minimally invasive surgery is to enhance the removal of proteins,such as beta-amyloid and tau,from the brain’s lymphatic systems to the maxillofacial lymphatic vessels,unclogging protein blockages within the brain.This extracranial procedure is safer than intracranial approaches.展开更多
Uncovering the risk factors of pulmonary hypertension and its mechanisms is crucial for the prevention and treatment of the disease.In the current study,we showed that experimental periodontitis,which was established ...Uncovering the risk factors of pulmonary hypertension and its mechanisms is crucial for the prevention and treatment of the disease.In the current study,we showed that experimental periodontitis,which was established by ligation of molars followed by orally smearing subgingival plaques from patients with periodontitis,exacerbated hypoxia-induced pulmonary hypertension in mice.Mechanistically,periodontitis dysregulated the pulmonary microbiota by promoting ectopic colonization and enrichment of oral bacteria in the lungs,contributing to pulmonary infiltration of interferon gamma positive(IFNγ^(+))T cells and aggravating the progression of pulmonary hypertension.In addition,we identified Prevotella zoogleoformans as the critical periodontitis-associated bacterium driving the exacerbation of pulmonary hypertension by periodontitis,and the exacerbation was potently ameliorated by both cervical lymph node excision and IFNγneutralizing antibodies.Our study suggests a proof of concept that the combined prevention and treatment of periodontitis and pulmonary hypertension are necessary.展开更多
Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly un...Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly understood.Here,we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution.Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response(IR),bone remodeling(BR),tooth development(TD),epithelial development(ED),and cell cycle(CC)signatures.Of note,we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence,which was dominated by the EZH2-mediated program.Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids.These data described the tumor subpopulation and clarified the identity,function,and regulatory mechanism of CC ameloblastoma cells,providing a potential therapeutic target for ameloblastoma.展开更多
Chemical cleaning and disinfection are crucial steps for eliminating infection in root canal treatment. However, irrigant selection or irrigation procedures are far from clear. The vapor lock effect in the apical regi...Chemical cleaning and disinfection are crucial steps for eliminating infection in root canal treatment. However, irrigant selection or irrigation procedures are far from clear. The vapor lock effect in the apical region has yet to be solved, impeding irrigation efficacy and resulting in residual infections and compromised treatment outcomes.展开更多
Genetic studies have revealed a critical role of Distal-homeobox (Dlx) genes in bone formation,and our previous study showed that Dlx2 overexpressing in neural crest cells leads to profound abnormalities of the cranio...Genetic studies have revealed a critical role of Distal-homeobox (Dlx) genes in bone formation,and our previous study showed that Dlx2 overexpressing in neural crest cells leads to profound abnormalities of the craniofacial tissues.The aim of this study was to investigate the role and the underlying molecular mechanisms of Dlx2 in osteogenic differentiation of mouse bone marrow stromal cells (BMSCs) and pre-osteoblast MC3T3-E1 cells.Initially,we observed upregulation of Dlx2 during the early osteogenesis in BMSCs and MC3T3-E1 cells.Moreover,Dlx2 overexpression enhanced alkaline phosphatase (ALP) activity and extracellular matrix mineralization in BMSCs and MC3T3-E1 cell line.In addition,micro-CT of implanted tissues in nude mice confirmed that Dlx2 overexpression in BMSCs promoted bone formation in vivo.Unexpectedly,Dlx2 overexpression had little impact on the expression level of the pivotal osteogenic transcription factors Runx2,Dlx5,Msx2,and Osterix,but led to upregulation of Alp and Osteocalcin (OCN),both of which play critical roles in promoting osteoblast maturation.Importantly,luciferase analysis showed that Dlx2 overexpression stimulated both OCN and Alp promoter activity.Through chromatin-immunoprecipitation assay and site-directed mutagenesis analysis,we provide molecular evidence that Dlx2 transactivates OCN and Alp expression by directly binding to the Dlx2-response cis-acting elements in the promoter of the two genes.Based on these findings,we demonstrate that Dlx2 overexpression enhances osteogenic differentiation in vitro and accelerates bone formation in vivo via direct upregulation of the OCN and Alp gene,suggesting that Dlx2 plays a crucial role in osteogenic differentiation and bone formation.展开更多
Aim To investigate the relationship between the positioning of the lower central incisor and physical morphology of the surrounding alveolar bone. Methodology Thirty-eight patients (18 males, 20 females), with mean ...Aim To investigate the relationship between the positioning of the lower central incisor and physical morphology of the surrounding alveolar bone. Methodology Thirty-eight patients (18 males, 20 females), with mean age of 13.4 years, were included in this study. As part of orthodontic treatment planning the patients were required to take dental Cone-beam CT (CBCT) covering the region of lower incisors, the sur- rounding alveolar bone and the mandibular symphysis. The cephalometric parameters were designed and measured to indicate the inclination of lower central incisor and physical morphology of the adjacent alveolar bone. Computer-aided descriptive statistical analysis was performed using SPSS 15.0 software package for Windows. A correlation analysis and a linear regression analysis between the incisor inclination and the alveolar bone morphology were performed. Results Significant positive correlations were found between the lower central incisor inclination and the morphological contour of the alveolar bone (P〈0.05). The lower central incisor root apex was closer to the lingual alveolar crest when it was buccally inclined. Conclusion The morphology of the alveolar bone may be affected by incisal inclination.展开更多
Oligodontia is the congenital absence of six or more teeth and comprises the more severe forms of tooth agenesis.Many genes have been implicated in the etiology of tooth agenesis,which is highly variable in its clinic...Oligodontia is the congenital absence of six or more teeth and comprises the more severe forms of tooth agenesis.Many genes have been implicated in the etiology of tooth agenesis,which is highly variable in its clinical presentation.The purpose of this study was to identify associations between genetic mutations and clinical features of oligodontia patients.An online systematic search of papers published from January 1992 to June 2021 identified 381 oligodontia cases meeting the eligibility criteria of causative gene mutation,phenotype description,and radiographic records.Additionally,ten families with oligodontia were recruited and their genetic etiologies were determined by whole-exome sequence analyses.We identified a novel mutation in WNT10A(c.99_105dup)and eight previously reported mutations in WNT10A(c.433 G>A;c.682 T>A;c.318 C>G;c.511.C>T;c.321 C>A),EDAR(c.581 C>T),and LRP6(c.1003 C>T,c.2747 G>T).Collectively,20 different causative genes were implicated among those 393 cases with oligodontia.For each causative gene,the mean number of missing teeth per case and the frequency of teeth missing at each position were calculated.Genotype–phenotype correlation analysis indicated that molars agenesis is more likely linked to PAX9 mutations,mandibular first premolar agenesis is least associated with PAX9 mutations.展开更多
The objective of this study was to investigate the compositional profiles and microbial shifts of oral microbiota during head-and-neck radiotherapy.Bioinformatic analysis based on 16S rRNA gene pyrosequencing was perf...The objective of this study was to investigate the compositional profiles and microbial shifts of oral microbiota during head-and-neck radiotherapy.Bioinformatic analysis based on 16S rRNA gene pyrosequencing was performed to assess the diversity and variation of oral microbiota of irradiated patients.Eight patients with head and neck cancers were involved in this study.For each patient, supragingival plaque samples were collected at seven time points before and during radiotherapy.A total of 147 232 qualified sequences were obtained through pyrosequencing and bioinformatic analysis,representing 3 460 species level operational taxonomic units(OTUs) and 140 genus level taxa.Temporal variations were observed across different time points and supported by cluster analysis based on weighted UniFrac metrics.Moreover,the low evenness of oral microbial communities in relative abundance was revealed by Lorenz curves.This study contributed to a better understanding of the detailed characterization of oral bacterial diversity of irradiated patients.展开更多
To develop a biodegradable membrane with guided bone regeneration(GBR),a Mg-2.0Zn-1.0Gd alloy(wt.%,MZG)membrane with Ca-P coating was designed and fabricated in this study.The microstructure,hydrophilicity,in vitro de...To develop a biodegradable membrane with guided bone regeneration(GBR),a Mg-2.0Zn-1.0Gd alloy(wt.%,MZG)membrane with Ca-P coating was designed and fabricated in this study.The microstructure,hydrophilicity,in vitro degradation,cytotoxicity,antibacterial effect and in vivo regenerative performance for the membrane with and without Ca-P coating were evaluated.After coating,the membrane exhibited an enhance hydrophilicity and corrosion resistance,showed good in vitro cytocompatibility upon MC3T3E-1 cells,and exhibited excellent antibacterial effect against E.coli,Staphylococcus epidermis and Staphylococcus aureus,simultaneously.In vivo experiment using the rabbit calvarial defect model confirmed that Ca-P coated MZG membrane underwent progressive degradation without inflammatory reaction and significantly improved the new bone formation at both 1.5 and 3 months after the surgery.All the results strongly indicate that MZG with Ca-P coating have great potential for clinical application as GBR membranes.展开更多
Neurotrophic factors,currently administered orally or by intravenous drip or intramuscular injection,are the main method for the treatment of peripheral nerve crush injury.However,the low effective drug concentration ...Neurotrophic factors,currently administered orally or by intravenous drip or intramuscular injection,are the main method for the treatment of peripheral nerve crush injury.However,the low effective drug concentration arriving at the injury site results in unsatisfactory outcomes.Therefore,there is an urgent need for a treatment method that can increase the effective drug concentration in the injured area.In this study,we first fabricated a gelatin modified by methacrylic anhydride hydrogel and loaded it with vascular endothelial growth factor that allowed the controlled release of the neurotrophic factor.This modified gelatin exhibited good physical and chemical properties,biocompatibility and supported the adhesion and proliferation of RSC96 cells and human umbilical vein endothelial cells.When injected into the epineurium of crushed nerves,the composite hydrogel in the rat sciatic nerve crush injury model promoted nerve regeneration,functional recovery and vascularization.The results showed that the modified gelatin gave sustained delivery of vascular endothelial growth factors and accelerated the repair of crushed peripheral nerves.展开更多
Ginsenoside Rb1, the effective constituent of ginseng, has been demonstrated to play favorable roles in improving the immunity system. However, there is little study on the osteogenesis and angiogenesis effect of Gins...Ginsenoside Rb1, the effective constituent of ginseng, has been demonstrated to play favorable roles in improving the immunity system. However, there is little study on the osteogenesis and angiogenesis effect of Ginsenoside Rb1. Moreover, how to establish a delivery system of Ginsenoside Rb1 and its repairment ability in bone defect remains elusive. In this study, the role of Ginsenoside Rb1 in cell viability, proliferation, apoptosis, osteogenic genes expression, ALP activity of rat BMSCs were evaluated firstly. Then,micro-nano HAp granules combined with silk were prepared to establish a delivery system of Ginsenoside Rb1, and the osteogenic and angiogenic effect of Ginsenoside Rb1 loaded on micro-nano HAp/silk in rat calvarial defect models were assessed by sequential fluorescence labeling, and histology analysis, respectively. It revealed that Ginsenoside Rb1 could maintain cell viability, significantly increased ALP activity, osteogenic and angiogenic genes expression. Meanwhile, micro-nano HAp granules combined with silk were fabricated smoothly and were a delivery carrier for Ginsenoside Rb1. Significantly, Ginsenoside Rb1 loaded on micro-nano HAp/silk could facilitate osteogenesis and angiogenesis. All the outcomes hint that Ginsenoside Rb1 could reinforce the osteogenesis differentiation and angiogenesis factor’s expression of BMSCs. Moreover, micro-nano HAp combined with silk could act as a carrier for Ginsenoside Rb1 to repair bone defect.展开更多
Medication-related osteonecrosis of the jaw(MRONJ)is primarily associated with administering antiresorptive or antiangiogenic drugs.Despite significant research on MRONJ,its pathogenesis and effective treatments are s...Medication-related osteonecrosis of the jaw(MRONJ)is primarily associated with administering antiresorptive or antiangiogenic drugs.Despite significant research on MRONJ,its pathogenesis and effective treatments are still not fully understood.Animal models can be used to simulate the pathophysiological features of MRONJ,serving as standardized in vivo experimental platforms to explore the pathogenesis and therapies of MRONJ.Rodent models exhibit excellent effectiveness and high reproducibility in mimicking human MRONJ,but classical methods cannot achieve a complete replica of the pathogenesis of MRONJ.Modified rodent models have been reported with improvements for better mimicking of MRONJ onset in clinic.This review summarizes representative classical and modified rodent models of MRONJ created through various combinations of systemic drug induction and local stimulation and discusses their effectiveness and efficiency.Currently,there is a lack of a unified assessment system for MRONJ models,which hinders a standard definition of MRONJ-like lesions in rodents.Therefore,this review comprehensively summarizes assessment systems based on published peer-review articles,including new approaches in gross observation,histological assessments,radiographic assessments,and serological assessments.This review can serve as a reference for model establishment and evaluation in future preclinical studies on MRONJ.展开更多
PLLA-magnesium composites have been widely investigated as potential biodegradable materials for bone implants.Lower/higher corrosion resistance of the crystalized/amorphous magnesium alloys allows tailoring of biodeg...PLLA-magnesium composites have been widely investigated as potential biodegradable materials for bone implants.Lower/higher corrosion resistance of the crystalized/amorphous magnesium alloys allows tailoring of biodegradability rate.In this work,the amorphous Mg_(65)Zn_(30)Ca_(5)was investigated versus traditional crystalized Mg_(65)Zn_(30)Ca_(5),and a PLLA-Mg_(65)Zn_(30)Ca_(5)composite has been successfully fabricated using hot injection process.Furthermore,the high corrosion resistance of the amorphous Mg_(65)Zn_(30)Ca_(5)prevented the high alkalization and deterioration of mechanical strength.In addition,the high Zn content intended to improve the glass forming ability,also enhances the anti-bacterial property of the PLLA-Mg_(65)Zn_(30)Ca_(5)composite.The remarkable performance of the PLLA-Mg_(65)Zn_(30)Ca_(5)composite shows its promising application in bone repair and tissue regeneration.展开更多
Following dental implantation,the characteristic bacterial milieu of the oral cavity may lead to peri-implant inflammation,which can negatively impact osseointegration and cause implant failure.To improve soft tissue ...Following dental implantation,the characteristic bacterial milieu of the oral cavity may lead to peri-implant inflammation,which can negatively impact osseointegration and cause implant failure.To improve soft tissue sealing around the implant,enhance osseointegration,and improve implant success rates,this paper proposes a composite multifunctional coating(PHG)prepared using gelatin and polydopamine/hydroxyapatite nanoparticles,investigates the effects of this novel coating on cell adhesion,proliferation,antibacterial activity,osteogenic differentiation,and evaluates its immune-related properties.The PHG coating was proved to have satisfactory hydrophilicity and wettability for cell attachment.Furthermore,it improved the expression of adhesion-related genes and proteins in human gingival fibroblasts,indicating its adhesion-promoting effect.Additionally,bone marrow mesenchymal stem cells exhibited strong osteogenic differentiation potential and mineralization on PHG-coated surfaces.Notably,the PHG coating exhibited antibacterial activity against Streptococcus mutans,as well as anti-inflammatory effects,potentially via the regulation of macrophages.Therefore,the proposed PHG coating may promote soft tissue sealing and bone bonding,providing a potential strategy for the surface modification of dental implants.展开更多
基金supported by the National Natural Science Foundation of China (81921002,81900970,82130027)Innovative Research Team of High-Level Local Universities in Shanghai (SHSMUZLCX20212400)+1 种基金Young Physician Innovation Team Project (QC202003)of Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghai“Rising Stars of Medical Talent”Youth Development Program is also acknowledged。
文摘Osteoporosis(OP)is a prevalent metabolic bone disease.While drug therapy is essential to prevent bone loss in osteoporotic patients,current treatments are limited by side effects and high costs,necessitating the development of more effective and safer targeted therapies.Utilizing a zebrafish(Danio rerio)larval model of osteoporosis,we explored the influence of the metabolite spermine on bone homeostasis.Results showed that spermine exhibited dual activity in osteoporotic zebrafish larvae by increasing bone formation and decreasing bone resorption.Spermine not only demonstrated excellent biosafety but also mitigated prednisolone-induced embryonic neurotoxicity and cardiotoxicity.Notably,spermine showcased protective attributes in the nervous systems of both zebrafish embryos and larvae.At the molecular level,Rac1 was identified as playing a pivotal role in mediating the antiosteoporotic effects of spermine,with P53 potentially acting downstream of Rac1.These findings were confirmed using mouse(Mus musculus)models,in which spermine not only ameliorated osteoporosis but also promoted bone formation and mineralization under healthy conditions,suggesting strong potential as a bonestrengthening agent.This study underscores the beneficial role of spermine in osteoporotic bone homeostasis and skeletal system development,highlighting pivotal molecular mediators.Given their efficacy and safety,human endogenous metabolites like spermine are promising candidates for new anti-osteoporotic drug development and daily bone-fortifying agents.
文摘Endodontic diseases are a kind of chronic infectious oral disease. Common endodontic treatment concepts are based on the removal of inflamed or necrotic pulp tissue and the replacement by gutta-percha. However, it is very essential for endodontic treatment to debride the root canal system and prevent the root canal system from bacterial reinfection after root canal therapy(RCT). Recent research, encompassing bacterial etiology and advanced imaging techniques, contributes to our understanding of the root canal system’s anatomy intricacies and the technique sensitivity of RCT. Success in RCT hinges on factors like patients, infection severity, root canal anatomy, and treatment techniques. Therefore, improving disease management is a key issue to combat endodontic diseases and cure periapical lesions. The clinical difficulty assessment system of RCT is established based on patient conditions, tooth conditions, root canal configuration, and root canal needing retreatment, and emphasizes pre-treatment risk assessment for optimal outcomes. The findings suggest that the presence of risk factors may correlate with the challenge of achieving the high standard required for RCT. These insights contribute not only to improve education but also aid practitioners in treatment planning and referral decision-making within the field of endodontics.
基金supported by the National Natural Science Foundation of China(82171001,82222015)Research Funding from West China School/Hospital of Stomatology Sichuan University(RCDWJS2023-1)Align Technology Specialized Scientific Research Fund(21H0922).
文摘Malocclusion,identified by the World Health Organization(WHO)as one of three major oral diseases,profoundly impacts the dental-maxillofacial functions,facial esthetics,and long-term development of~260 million children in China.Beyond its physical manifestations,malocclusion also significantly influences the psycho-social well-being of these children.Timely intervention in malocclusion can foster an environment conducive to dental-maxillofacial development and substantially decrease the incidence of malocclusion or reduce the severity and complexity of malocclusion in the permanent dentition,by mitigating the negative impact of abnormal environmental influences on the growth.Early orthodontic treatment encompasses accurate identification and treatment of dental and maxillofacial morphological and functional abnormalities during various stages of dental-maxillofacial development,ranging from fetal stages to the early permanent dentition phase.From an economic and societal standpoint,the urgency for effective early orthodontic treatments for malocclusions in childhood cannot be overstated,underlining its profound practical and social importance.This consensus paper discusses the characteristics and the detrimental effects of malocclusion in children,emphasizing critical need for early treatment.It elaborates on corresponding core principles and fundamental approaches in early orthodontics,proposing comprehensive guidance for preventive and interceptive orthodontic treatment,serving as a reference for clinicians engaged in early orthodontic treatment.
基金supported by Jiangsu Province Key Research and Development Program(No.BE2022670)the National Key Research and Development Program of China(No.2023YFC2506300)+1 种基金Jiangsu Provincial Medical Key Discipline Cultivation Unit(No.JSDW202246)Nanjing Medical Science and Technology development Fund(ZKX22054).
文摘Endo-periodontal lesions (EPLs) involve both the periodontium and pulp tissue and have complicated etiologies and pathogenic mechanisms,including unique anatomical and microbiological characteristics and multiple contributing factors.This etiological complexity leads to difficulties in determining patient prognosis,posing great challenges in clinical practice.Furthermore,EPL-affected teeth require multidisciplinary therapy,including periodontal therapy,endodontic therapy and others,but there is still much debate about the appropriate timing of periodontal therapy and root canal therapy.By compiling the most recent findings on the etiology,pathogenesis,clinical characteristics,diagnosis,therapy,and prognosis of EPL-affected teeth,this consensus sought to support clinicians in making the best possible treatment decisions based on both biological and clinical evidence.
文摘The dental operative microscope has been widely employed in the field of dentistry,particularly in endodontics and operative dentistry,resulting in significant advancements in the effectiveness of root canal therapy,endodontic surgery,and dental restoration.However,the improper use of this microscope continues to be common in clinical settings,primarily due to operators’insufficient understanding and proficiency in both the features and established operating procedures of this equipment.In October 2019,Professor Jingping Liang,Vice Chairman of the Society of Cariology and Endodontology,Chinese Stomatological Association,organized a consensus meeting with Chinese experts in endodontics and operative dentistry.The objective of this meeting was to establish a standard operation procedure for the dental operative microscope.Subsequently,a consensus was reached and officially issued.Over the span of about four years,the content of this consensus has been further developed and improved through practical experience.
基金funded by The National Natural Science Foundation of China(81872199)Key Program of National Natural Science Foundation of China(82030085)+4 种基金The National Key Research and Development Program of China(2017YFC0908500)The National Natural Science Foundation of China(82002853)China Postdoctoral Science Foundation(2019M661565)Innovative Research Team of High-level Local Universities in Shanghai(SHSMU-ZLCX20212300,SSMU-ZLCX20180500)funded by“Shuguang Program”supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(19SG13)。
文摘Cancer cell membrane(CCM)derived nanotechnology functionalizes nanoparticles(NPs)to recognize homologous cells,exhibiting translational potential in accurate tumor therapy.However,these nanoplatforms are majorly generated from fixed cell lines and are typically evaluated in cell line-derived subcutaneous-xenografts(CDX),ignoring the tumor heterogeneity and differentiation from inter-and intra-individuals and microenvironments between heterotopic-and orthotopic-tumors,limiting the therapeutic efficiency of such nanoplatforms.Herein,various biomimetic nanoplatforms(CCM-modified gold@Carbon,i.e.,Au@C-CCM)were fabricated by coating CCMs of head and neck squamous cell carcinoma(HNSCC)cell lines and patient-derived cells on the surface of Au@C NP.The generated Au@C-CCMs were evaluated on corresponding CDX,tongue orthotopic xenograft(TOX),immunecompetent primary and distant tumor models,and patient-derived xenograft(PDX)models.The Au@C-CCM generates a photothermal conversion efficiency up to 44.2% for primary HNSCC therapy and induced immunotherapy to inhibit metastasis via photothermal therapy-induced immunogenic cell death.The homologous CCM endowed the nanoplatforms with optimal targeting properties for the highest therapeutic efficiency,far above those with mismatched CCMs,resulting in distinct tumor ablation and tumor growth inhibition in all four models.This work reinforces the feasibility of biomimetic NPs combining modular designed CMs and functional cores for customized treatment of HNSCC,can be further extended to other malignant tumors therapy.
基金supported by the National Key R&D Program of China(2023YFC36003200)Shanghai Mental Health Center investigator-initiated trial programme(2024-TX-001)+1 种基金Shanghai's Top Priority Research Center(2022ZZ01017)CAMS Innovation Fund for Medical Sciences(2019-12M-5-037).
文摘Recently,the glymphatic system has been recognised as an important‘waste solutes transport channel’within the brain.1 Studies have shown that blockage of the glymphatic system leads to increased beta-amyloid deposits,accelerating the onset and progression of Alzheimer’s disease(AD).12 Given that cervical lymph nodes receive cerebrospinal fluid from the brain’s glymphatic system,34 we speculated that decompression of the lymphatic trunk and cervical lymphatic-venous anastomosis(LVA)could facilitate the flow of cerebrospinal fluid in the cranial glymphatic system,potentially accelerating the clearance of harmful beta-amyloid and tau proteins.We collaborated with surgeons who specialise in LVA supermicrosurgery for maxillofacial tumours and lymphoedema to develop a procedure to relieve the blockage of the glymphatic system.This surgery employs supermicrosurgery techniques to create LVA connecting the bilateral cervical,deep lymphatic vessels to the veins,resulting in lymphatic trunk decompression,which allows the lymph fluid in the high-pressure lymphatic vessels to flow into the low-pressure venous system.The goal of the minimally invasive surgery is to enhance the removal of proteins,such as beta-amyloid and tau,from the brain’s lymphatic systems to the maxillofacial lymphatic vessels,unclogging protein blockages within the brain.This extracranial procedure is safer than intracranial approaches.
基金fundings from the National Natural Science Foundation of China(82330015,81991503,81921002,and 82303275)Science and Technology Commission of Shanghai Municipality(23ZR1438300).
文摘Uncovering the risk factors of pulmonary hypertension and its mechanisms is crucial for the prevention and treatment of the disease.In the current study,we showed that experimental periodontitis,which was established by ligation of molars followed by orally smearing subgingival plaques from patients with periodontitis,exacerbated hypoxia-induced pulmonary hypertension in mice.Mechanistically,periodontitis dysregulated the pulmonary microbiota by promoting ectopic colonization and enrichment of oral bacteria in the lungs,contributing to pulmonary infiltration of interferon gamma positive(IFNγ^(+))T cells and aggravating the progression of pulmonary hypertension.In addition,we identified Prevotella zoogleoformans as the critical periodontitis-associated bacterium driving the exacerbation of pulmonary hypertension by periodontitis,and the exacerbation was potently ameliorated by both cervical lymph node excision and IFNγneutralizing antibodies.Our study suggests a proof of concept that the combined prevention and treatment of periodontitis and pulmonary hypertension are necessary.
基金supported by the National Natural Science Foundation of China(82141112)Guangdong Financial Fund for High-Caliber Hospital Construction(174-2018-XMZC-0001-03-0125/D-14)C.W.and the Clinical Research Program of 9th People’s Hospital,Shanghai Jiao Tong University School of Medicine(JYLJ202112).
文摘Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly understood.Here,we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution.Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response(IR),bone remodeling(BR),tooth development(TD),epithelial development(ED),and cell cycle(CC)signatures.Of note,we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence,which was dominated by the EZH2-mediated program.Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids.These data described the tumor subpopulation and clarified the identity,function,and regulatory mechanism of CC ameloblastoma cells,providing a potential therapeutic target for ameloblastoma.
文摘Chemical cleaning and disinfection are crucial steps for eliminating infection in root canal treatment. However, irrigant selection or irrigation procedures are far from clear. The vapor lock effect in the apical region has yet to be solved, impeding irrigation efficacy and resulting in residual infections and compromised treatment outcomes.
基金supported by grant (81771036) from National Natural Science Foundation of China (to S.G.S.)grant (81741028) from National Natural Science Foundation of China (to J.D.)grant (17410710500) Shanghai International Scientific and Technological Cooperation Projects Laser Micromachine and Vascularization of TCP/PCL Scaffolds (to W.Z.)
文摘Genetic studies have revealed a critical role of Distal-homeobox (Dlx) genes in bone formation,and our previous study showed that Dlx2 overexpressing in neural crest cells leads to profound abnormalities of the craniofacial tissues.The aim of this study was to investigate the role and the underlying molecular mechanisms of Dlx2 in osteogenic differentiation of mouse bone marrow stromal cells (BMSCs) and pre-osteoblast MC3T3-E1 cells.Initially,we observed upregulation of Dlx2 during the early osteogenesis in BMSCs and MC3T3-E1 cells.Moreover,Dlx2 overexpression enhanced alkaline phosphatase (ALP) activity and extracellular matrix mineralization in BMSCs and MC3T3-E1 cell line.In addition,micro-CT of implanted tissues in nude mice confirmed that Dlx2 overexpression in BMSCs promoted bone formation in vivo.Unexpectedly,Dlx2 overexpression had little impact on the expression level of the pivotal osteogenic transcription factors Runx2,Dlx5,Msx2,and Osterix,but led to upregulation of Alp and Osteocalcin (OCN),both of which play critical roles in promoting osteoblast maturation.Importantly,luciferase analysis showed that Dlx2 overexpression stimulated both OCN and Alp promoter activity.Through chromatin-immunoprecipitation assay and site-directed mutagenesis analysis,we provide molecular evidence that Dlx2 transactivates OCN and Alp expression by directly binding to the Dlx2-response cis-acting elements in the promoter of the two genes.Based on these findings,we demonstrate that Dlx2 overexpression enhances osteogenic differentiation in vitro and accelerates bone formation in vivo via direct upregulation of the OCN and Alp gene,suggesting that Dlx2 plays a crucial role in osteogenic differentiation and bone formation.
文摘Aim To investigate the relationship between the positioning of the lower central incisor and physical morphology of the surrounding alveolar bone. Methodology Thirty-eight patients (18 males, 20 females), with mean age of 13.4 years, were included in this study. As part of orthodontic treatment planning the patients were required to take dental Cone-beam CT (CBCT) covering the region of lower incisors, the sur- rounding alveolar bone and the mandibular symphysis. The cephalometric parameters were designed and measured to indicate the inclination of lower central incisor and physical morphology of the adjacent alveolar bone. Computer-aided descriptive statistical analysis was performed using SPSS 15.0 software package for Windows. A correlation analysis and a linear regression analysis between the incisor inclination and the alveolar bone morphology were performed. Results Significant positive correlations were found between the lower central incisor inclination and the morphological contour of the alveolar bone (P〈0.05). The lower central incisor root apex was closer to the lingual alveolar crest when it was buccally inclined. Conclusion The morphology of the alveolar bone may be affected by incisal inclination.
基金supported by the National Institute of Dental and Craniofacial Research(DE015846)a National Research Foundation of Korea(NRF)grant funded by the Korean government(MEST)(NRF-2018R1A5A2024418 and NRF-2020R1A2C2100543)。
文摘Oligodontia is the congenital absence of six or more teeth and comprises the more severe forms of tooth agenesis.Many genes have been implicated in the etiology of tooth agenesis,which is highly variable in its clinical presentation.The purpose of this study was to identify associations between genetic mutations and clinical features of oligodontia patients.An online systematic search of papers published from January 1992 to June 2021 identified 381 oligodontia cases meeting the eligibility criteria of causative gene mutation,phenotype description,and radiographic records.Additionally,ten families with oligodontia were recruited and their genetic etiologies were determined by whole-exome sequence analyses.We identified a novel mutation in WNT10A(c.99_105dup)and eight previously reported mutations in WNT10A(c.433 G>A;c.682 T>A;c.318 C>G;c.511.C>T;c.321 C>A),EDAR(c.581 C>T),and LRP6(c.1003 C>T,c.2747 G>T).Collectively,20 different causative genes were implicated among those 393 cases with oligodontia.For each causative gene,the mean number of missing teeth per case and the frequency of teeth missing at each position were calculated.Genotype–phenotype correlation analysis indicated that molars agenesis is more likely linked to PAX9 mutations,mandibular first premolar agenesis is least associated with PAX9 mutations.
基金supported by a grant from the National Natural Science Foundation(No.81070826/30872886) of Chinapartly sponsored by Shanghai Rising-Star Program(No.12QH1401400)funded by the Shanghai Jiao Tong University(Grant No.YG2011MS67)
文摘The objective of this study was to investigate the compositional profiles and microbial shifts of oral microbiota during head-and-neck radiotherapy.Bioinformatic analysis based on 16S rRNA gene pyrosequencing was performed to assess the diversity and variation of oral microbiota of irradiated patients.Eight patients with head and neck cancers were involved in this study.For each patient, supragingival plaque samples were collected at seven time points before and during radiotherapy.A total of 147 232 qualified sequences were obtained through pyrosequencing and bioinformatic analysis,representing 3 460 species level operational taxonomic units(OTUs) and 140 genus level taxa.Temporal variations were observed across different time points and supported by cluster analysis based on weighted UniFrac metrics.Moreover,the low evenness of oral microbial communities in relative abundance was revealed by Lorenz curves.This study contributed to a better understanding of the detailed characterization of oral bacterial diversity of irradiated patients.
基金This work was supported by National Natural Sci-ence Foundation of China(No.81600827,No.U1804251,No.81600827 and No.51971134)the National Key R&D program of China(No.2016YFC1102103)+1 种基金the Science and Technology Commission of Shanghai(18441908000)Shanghai Jiao Tong University Biomedi-cal Engineering Research Fund(YG2019ZDA02).Dr.Jiawen Si wants to thank his wife Qifan Hu and daughter Jinnuo Si for their support,care and love over the past years,and say“thank god for sending you to me on angel’s wings”.
文摘To develop a biodegradable membrane with guided bone regeneration(GBR),a Mg-2.0Zn-1.0Gd alloy(wt.%,MZG)membrane with Ca-P coating was designed and fabricated in this study.The microstructure,hydrophilicity,in vitro degradation,cytotoxicity,antibacterial effect and in vivo regenerative performance for the membrane with and without Ca-P coating were evaluated.After coating,the membrane exhibited an enhance hydrophilicity and corrosion resistance,showed good in vitro cytocompatibility upon MC3T3E-1 cells,and exhibited excellent antibacterial effect against E.coli,Staphylococcus epidermis and Staphylococcus aureus,simultaneously.In vivo experiment using the rabbit calvarial defect model confirmed that Ca-P coated MZG membrane underwent progressive degradation without inflammatory reaction and significantly improved the new bone formation at both 1.5 and 3 months after the surgery.All the results strongly indicate that MZG with Ca-P coating have great potential for clinical application as GBR membranes.
基金supported by the Interdisciplinary Program of Shanghai Jiao Tong University,China,No.YG2021QN60(both to WL)Fundamental Research Program Funding of Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,China,No.JYZZ086B(both to WL).
文摘Neurotrophic factors,currently administered orally or by intravenous drip or intramuscular injection,are the main method for the treatment of peripheral nerve crush injury.However,the low effective drug concentration arriving at the injury site results in unsatisfactory outcomes.Therefore,there is an urgent need for a treatment method that can increase the effective drug concentration in the injured area.In this study,we first fabricated a gelatin modified by methacrylic anhydride hydrogel and loaded it with vascular endothelial growth factor that allowed the controlled release of the neurotrophic factor.This modified gelatin exhibited good physical and chemical properties,biocompatibility and supported the adhesion and proliferation of RSC96 cells and human umbilical vein endothelial cells.When injected into the epineurium of crushed nerves,the composite hydrogel in the rat sciatic nerve crush injury model promoted nerve regeneration,functional recovery and vascularization.The results showed that the modified gelatin gave sustained delivery of vascular endothelial growth factors and accelerated the repair of crushed peripheral nerves.
基金supported by National Natural Science Foundation of China (81600828)Shanghai Sailing Program (16YF1406600)
文摘Ginsenoside Rb1, the effective constituent of ginseng, has been demonstrated to play favorable roles in improving the immunity system. However, there is little study on the osteogenesis and angiogenesis effect of Ginsenoside Rb1. Moreover, how to establish a delivery system of Ginsenoside Rb1 and its repairment ability in bone defect remains elusive. In this study, the role of Ginsenoside Rb1 in cell viability, proliferation, apoptosis, osteogenic genes expression, ALP activity of rat BMSCs were evaluated firstly. Then,micro-nano HAp granules combined with silk were prepared to establish a delivery system of Ginsenoside Rb1, and the osteogenic and angiogenic effect of Ginsenoside Rb1 loaded on micro-nano HAp/silk in rat calvarial defect models were assessed by sequential fluorescence labeling, and histology analysis, respectively. It revealed that Ginsenoside Rb1 could maintain cell viability, significantly increased ALP activity, osteogenic and angiogenic genes expression. Meanwhile, micro-nano HAp granules combined with silk were fabricated smoothly and were a delivery carrier for Ginsenoside Rb1. Significantly, Ginsenoside Rb1 loaded on micro-nano HAp/silk could facilitate osteogenesis and angiogenesis. All the outcomes hint that Ginsenoside Rb1 could reinforce the osteogenesis differentiation and angiogenesis factor’s expression of BMSCs. Moreover, micro-nano HAp combined with silk could act as a carrier for Ginsenoside Rb1 to repair bone defect.
基金supported by the National Natural Science Foundation of China(No.81921002,No.81900970)Young Physician Innovation Team Project(No.QC202003)from Ninth People’s Hospital,Shanghai Jiao Tong University School of MedicineShanghai Sailing Program(19YF1426000)jointly。
文摘Medication-related osteonecrosis of the jaw(MRONJ)is primarily associated with administering antiresorptive or antiangiogenic drugs.Despite significant research on MRONJ,its pathogenesis and effective treatments are still not fully understood.Animal models can be used to simulate the pathophysiological features of MRONJ,serving as standardized in vivo experimental platforms to explore the pathogenesis and therapies of MRONJ.Rodent models exhibit excellent effectiveness and high reproducibility in mimicking human MRONJ,but classical methods cannot achieve a complete replica of the pathogenesis of MRONJ.Modified rodent models have been reported with improvements for better mimicking of MRONJ onset in clinic.This review summarizes representative classical and modified rodent models of MRONJ created through various combinations of systemic drug induction and local stimulation and discusses their effectiveness and efficiency.Currently,there is a lack of a unified assessment system for MRONJ models,which hinders a standard definition of MRONJ-like lesions in rodents.Therefore,this review comprehensively summarizes assessment systems based on published peer-review articles,including new approaches in gross observation,histological assessments,radiographic assessments,and serological assessments.This review can serve as a reference for model establishment and evaluation in future preclinical studies on MRONJ.
基金supported by National Natural Science Foundation of China(Grant No.51471120)
文摘PLLA-magnesium composites have been widely investigated as potential biodegradable materials for bone implants.Lower/higher corrosion resistance of the crystalized/amorphous magnesium alloys allows tailoring of biodegradability rate.In this work,the amorphous Mg_(65)Zn_(30)Ca_(5)was investigated versus traditional crystalized Mg_(65)Zn_(30)Ca_(5),and a PLLA-Mg_(65)Zn_(30)Ca_(5)composite has been successfully fabricated using hot injection process.Furthermore,the high corrosion resistance of the amorphous Mg_(65)Zn_(30)Ca_(5)prevented the high alkalization and deterioration of mechanical strength.In addition,the high Zn content intended to improve the glass forming ability,also enhances the anti-bacterial property of the PLLA-Mg_(65)Zn_(30)Ca_(5)composite.The remarkable performance of the PLLA-Mg_(65)Zn_(30)Ca_(5)composite shows its promising application in bone repair and tissue regeneration.
基金funded by the National Natural Science Foundation of China(Nos.81801006,31870953,81901048,81620108006,81991505,81921002,81801023,and 82100963)Shanghai Rising-Star Program(21QA1405400)+1 种基金the National Key Research and Development Program of China(No.2016YFC1102900)Innovative Research Team of High-Level Local Universities in Shanghai(No.SSMU-ZDCX20180900)。
文摘Following dental implantation,the characteristic bacterial milieu of the oral cavity may lead to peri-implant inflammation,which can negatively impact osseointegration and cause implant failure.To improve soft tissue sealing around the implant,enhance osseointegration,and improve implant success rates,this paper proposes a composite multifunctional coating(PHG)prepared using gelatin and polydopamine/hydroxyapatite nanoparticles,investigates the effects of this novel coating on cell adhesion,proliferation,antibacterial activity,osteogenic differentiation,and evaluates its immune-related properties.The PHG coating was proved to have satisfactory hydrophilicity and wettability for cell attachment.Furthermore,it improved the expression of adhesion-related genes and proteins in human gingival fibroblasts,indicating its adhesion-promoting effect.Additionally,bone marrow mesenchymal stem cells exhibited strong osteogenic differentiation potential and mineralization on PHG-coated surfaces.Notably,the PHG coating exhibited antibacterial activity against Streptococcus mutans,as well as anti-inflammatory effects,potentially via the regulation of macrophages.Therefore,the proposed PHG coating may promote soft tissue sealing and bone bonding,providing a potential strategy for the surface modification of dental implants.