To reduce the vibration and sound radiation of underwater cylindrical shells,a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper.A vibroacoustic coupling model of a finite cyli...To reduce the vibration and sound radiation of underwater cylindrical shells,a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper.A vibroacoustic coupling model of a finite cylindrical shell covered with this skin for the case of turbulence excitation is established based on the shell theories of Donnell.The model is solved with the modal superposition method to investigate the effects of the structural parameters of micro floating raft elements on the performance of reducing vibration and sound radiation of the cylindrical shell of this skin.The results indicate that increasing the stiffness ratio,damping ratio,mass ratio,or decreasing the interval betweenmicro floating raft elements can improve the vibration and sound radiation reduction performance of this skin over the frequency range 0∼2000 Hz.Moreover,the mean quadratic velocity level and sound radiation power level of the finite cylindrical shell with this skin can be reduced by 12.00 dB and 9.65 dB respectively compared to the finite cylindrical shell with homogeneous viscoelastic coating in the frequency range from0∼2000Hz,implying a favorable performance of this skin for reducing the vibration and sound radiation of cylindrical shells.展开更多
The present study aims to plumb blockage of the deep-sea mining pump transporting large particles with different shapes. A numerical work was performed through combining the computational fluid dynamics(CFD) technique...The present study aims to plumb blockage of the deep-sea mining pump transporting large particles with different shapes. A numerical work was performed through combining the computational fluid dynamics(CFD) technique and the discrete element method(DEM). Six particle shapes with sphericity ranging from 0.67 to 1.0 were selected. A velocity triangle is built with the absolute, relative, and circumferential velocities of particles. Velocity triangles with absolute velocity angles ranging from 90° to 180° prevail in the first-stage impeller. With declining sphericity, more particles follow the velocity triangle with absolute velocity angles ranging from 0° to 90°, which weakens the ability of particles to pass through the flow passage. Furthermore, the forces acting on the particles traveling in the impeller passage are analyzed. Large particles, especially non-spherical ones, suffer from high centrifugal force and therefore move along the suction surface of the impeller blades. Non-spherical particles undergo great drag force as a result of large surface area. The distribution of drag force angles is featured by two peaks, and one vanishes due to blockage.As particle sphericity declines, both magnitude and angle of the pressure gradient force decrease. Variation of the drag force and the pressure gradient force causes clockwise deflection of the centripetal force, resulting in deflection and elongation of particle trajectory, which increases the possibility of blockage.展开更多
This study aimed to investigate the effect of fatigue characteristics on the static and dynamic performance of Eucommia ulmoides gum isolators, and to explore the performance changes of Eucommia ulmoides gum isolators...This study aimed to investigate the effect of fatigue characteristics on the static and dynamic performance of Eucommia ulmoides gum isolators, and to explore the performance changes of Eucommia ulmoides gum isolators with different formulations. For this purpose, we used five formulations of Eucommia ulmoides gum isolators and set different fatigue test methods to study the static and dynamic performance changes of Eucommia ulmoides gum isolators with different formulations by changing the amplitude. The experimental results showed that the addition of Eucommia ulmoides gum had an impact on the performance of the isolator, and the number of fatigue cycles would lead to the hardening of the Eucommia ulmoides gum isolator and changes in its static and dynamic performance. In the range of two million vibrations, the performance change of the isolator was significant in the early stage and then tended to be flat, indicating that the impact of fatigue on the performance of the isolator would not continue to persist. It is worth noting that the study found that the addition of 30% Eucommia ulmoides gum had the least impact on the performance of the isolator under fatigue. Therefore, for long-term use of Eucommia ulmoides gum isolators, attention should be paid to their fatigue characteristics to ensure their stability and reliability. Additionally, this study provides a reference for the design and application of Eucommia ulmoides gum isolators. In summary, this study provides important reference value for a deeper understanding of the fatigue characteristics of Eucommia ulmoides gum isolators and for ensuring their stable and reliable performance. .展开更多
Up to present, there have been no studies concerning the application of fluid-structure interaction(FSI) analysis to the lifetime estimation of multi-stage centrifugal compressors under dangerous unsteady aerodynami...Up to present, there have been no studies concerning the application of fluid-structure interaction(FSI) analysis to the lifetime estimation of multi-stage centrifugal compressors under dangerous unsteady aerodynamic excitations. In this paper, computational fluid dynamics(CFD) simulations of a three-stage natural gas pipeline centrifugal compressor are performed under near-choke and near-surge conditions, and the unsteady aerodynamic pressure acting on impeller blades are obtained. Then computational structural dynamics(CSD) analysis is conducted through a one-way coupling FSI model to predict alternating stresses in impeller blades. Finally, the compressor lifetime is estimated using the nominal stress approach. The FSI results show that the impellers of latter stages suffer larger fluctuation stresses but smaller mean stresses than those at preceding stages under near-choke and near-surge conditions. The most dangerous position in the compressor is found to be located near the leading edge of the last-stage impeller blade. Compressor lifetime estimation shows that the investigated compressor can run up to 102.7 h under the near-choke condition and 200.2 h under the near-surge condition. This study is expected to provide a scientific guidance for the operation safety of natural gas pipeline centrifugal compressors.展开更多
In order to analyze the ice-going ship’s performance under the pack ice conditions, synthetic ice was introduced into a towing tank. A barrier using floating cylinder in the towing tank was designed to carry out the ...In order to analyze the ice-going ship’s performance under the pack ice conditions, synthetic ice was introduced into a towing tank. A barrier using floating cylinder in the towing tank was designed to carry out the resistance experiment. The test results indicated that the encountering frequency between the ship model and the pack ice shifts towards a high-velocity point as the concentration of the pack ice increases, and this encountering frequency creates an unstable region of the resistance, and the unstable region shifts to the higher speed with the increasing concentration. The results also showed that for the same speed points, the ratio of the pack ice resistance to the open water resistance increases with the increasing concentration, and for the same concentrations, this ratio decreases as the speed increases. Motion characteristics showed that the mean value of the heave motion increases as the speed increases, and the pitch motion tends to increase with the increasing speed. In addition, the total resistance of the fullscale was predicted.展开更多
As a type of hydraulic rotary actuator,a helical hydraulic rotary actuator exhibits a large angle,high torque,and compact structure;hence,it has been widely used in various fields.However,its core technology is propri...As a type of hydraulic rotary actuator,a helical hydraulic rotary actuator exhibits a large angle,high torque,and compact structure;hence,it has been widely used in various fields.However,its core technology is proprietary to several companies and thus has not been disclosed.Furthermore,the relevant reports are primarily limited to the component level.The dynamic characteristics of the output when a helical rotary actuator is applied to a closed-loop system are investigated from the perspective of driving system design.Two main aspects are considered:one is to establish a reliable mathematical model and the other is to consider the effect of system parameter perturbation on the output.In this study,a detailed mechanical analysis of a helical rotary hydraulic cylinder is first performed,factors such as friction and load are considered,and an accurate dynamic model of the actuator is established.Subsequently,considering the nonlinear characteristics of pressure flow and the dynamic characteristics of the valve,a dynamic model of a valve-controlled helical rotary actuator angle closed-loop system is described based on sixth-order nonlinear state equations,which has never been reported previously.After deriving the system model,a sensitivity analysis of 23 main parameters in the model with a perturbation of 10%is performed under nine operating conditions.Finally,the system dynamics model and sensitivity analysis results are verified via a prototype experiment and co-simulation,which demonstrate the reliability of the theoretical results obtained in this study.The results provide an accurate mathematical model and analysis basis for the structural optimization or control compensation of similar systems.展开更多
An inside-cushion structure with sidestep and taper-shaped plungers is studied to address the problems of high impact and vibration in high-speed hydraulic cylinders.First,the three stages of cushion processes are dis...An inside-cushion structure with sidestep and taper-shaped plungers is studied to address the problems of high impact and vibration in high-speed hydraulic cylinders.First,the three stages of cushion processes are discussed according to the varying flow area as the piston moves.Then,to establish a precise mathematical model,the states of the flow field are estimated in terms of the Reynolds number.Accordingly,the simulation model parameterized against measured data is developed and verified by experiment.Last,the average velocity,peak cushion pressure,and terminal velocity are defined to evaluate cushion performance.According to these optimized objectives,the non-linear programming by quadratic Lagrange(NLPQL)algorithm is applied to optimize the structure parameters.The optimization results indicate that the peak cushion pressure is reduced by 28%and terminal velocity is reduced by 21%without reduction of average velocity.展开更多
In this paper, a novel birefringent photonic crystal fiber (PCF) with the silver-coated and liquid-filled air-holes along the vertical plane is designed. Simulation results show that the thickness of silver layer, t...In this paper, a novel birefringent photonic crystal fiber (PCF) with the silver-coated and liquid-filled air-holes along the vertical plane is designed. Simulation results show that the thickness of silver layer, the sizes of holes, and the refractive index of liquid strongly strengthen the gaps between two polarized directions. The surface plasmon resonance peak along y axis can be up to 675.8 dB/cm at 1.33μB. The proposed PCF has important application in polarization devices, such as filters and beam splitters.展开更多
<div style="text-align:justify;"> STMV beamforming algorithm needs inversion operation of matrix, and its engineering application is limited due to its huge computational cost. This paper proposed bloc...<div style="text-align:justify;"> STMV beamforming algorithm needs inversion operation of matrix, and its engineering application is limited due to its huge computational cost. This paper proposed block iterative STMV algorithm based on one-phase regressive filter, matrix inversion lemma and inversion of block matrix. The computational cost is reduced approximately as 1/4 M times as original algorithm when array number is M. The simulation results show that this algorithm maintains high azimuth resolution and good performance of detecting multi-targets. Within 1 - 2 dB directional index and higher azimuth discrimination of block iterative STMV algorithm are achieved than STMV algorithm for sea trial data processing. And its good robustness lays the foundation of its engineering application. </div>展开更多
The presented study aims to reveal the effect of liquid temperature on cavitation-induced erosion of an Al-Mgalloy. An experimental work was conducted using a submerged cavitating waterjet to impact the specimen surfa...The presented study aims to reveal the effect of liquid temperature on cavitation-induced erosion of an Al-Mgalloy. An experimental work was conducted using a submerged cavitating waterjet to impact the specimen surface.For a certain cavitation number and a given standoff distance, different liquid temperatures were considered.Accordingly, a comprehensive comparison was implemented by inspecting the mass loss and surface morphologyof the tested specimens. The results show that the cumulative mass loss increases continuously with the liquidtemperature. A cavitation zone with an irregular profile becomes evident as the cavitation treatment proceeds.Increasing the temperature promotes the generation of cavitation bubbles. Large erosion pits are induced aftersevere material removal. The microhardness increases with the distance from the target surface. At a liquidtemperature of 50℃, the microhardness fluctuates apparently with increasing the depth of indentation.展开更多
During the low-pressure casting of extra-large size C95800 copper alloy components,traditional linear pressurization technique leads to a rapid surge of liquid metal inlet velocity at the regions where the mold cavity...During the low-pressure casting of extra-large size C95800 copper alloy components,traditional linear pressurization technique leads to a rapid surge of liquid metal inlet velocity at the regions where the mold cavity cross-section enlarges.This rapid increasement of liquid metal inlet velocity causes serious entrapment of gas and oxide films,and results in various casting defects such as the bifilm defects.These defects detrimentally deteriorate mechanical properties of the castings.To address this issue,an innovative nonlinear pressurization strategy timely matching to the casting structure was proposed.The pressurization rate decreases at sections where the cross-section widens,but it gradually increases as the liquid metal level rises.By this way,the inlet velocity remains below a critical threshold to prevent the entrapment of gas and oxide films.Comparative analyses involving numerical simulations and casting verification illustrate that the nonlinear pressurization technique,compared to the linear pressurization,effectively diminishes both the size and number of bifilm defects.Furthermore,the nonlinear pressurization method enhances the casting yield strength by 10%,tensile strength by 14%,and elongation by 10%.Examination through scanning electron microscopy highlights that the bifilm defects arising from the linear pressurization process result in the reduction of the castings’mechanical properties.These observations underscore the efficacy of nonlinear pressurization in enhancing the quality and reliability of gigantic castings,as exemplified by a 5.4-ton extra-large sized C95800 copper alloy propeller hub with complex structures in the current study.展开更多
The underwater counter-rotation propeller non-cavitation noise has an obvious mod- ulation characteristic which is due to the interaction of flow and blade. A modulation mecha- nism is presented in this paper. A sound...The underwater counter-rotation propeller non-cavitation noise has an obvious mod- ulation characteristic which is due to the interaction of flow and blade. A modulation mecha- nism is presented in this paper. A sound pressure spectrum model is presented to describe its non-cavitation noise with application of generalized acoustic analogy method, the modulation mechanism is expressed with the improvement of sound pressure model. The power spectrum and modulation spectrum are presented by numerical simulation. Theoretical analysis and nu- merical simulation results are verified by the cavitation tunnel experiment. The modulation model of counter-rotation propeller is beneficial to the prediction modulation characteristics and identification of underwater high-speed vehicles.展开更多
The conventional MVDR adaptive beamformer is a high-resolution narrowband beamformer which estimates the optimal beamforming weights using narrowband CSDM of real acoustic field. In practical applications, MVDR algori...The conventional MVDR adaptive beamformer is a high-resolution narrowband beamformer which estimates the optimal beamforming weights using narrowband CSDM of real acoustic field. In practical applications, MVDR algorithm needs long observation time to estimate the covariance matrix. This inherent property makes it difficult to localize fast-moving targets. For wideband signals, MVDR algorithm needs inverting every CSDM which increases the computational demands. For correlated sources, the performance of MVDR will degrade dramatically because the signals will cancel each other. A fast-convergent MVDR algorithm based on subband subarray processing is proposed. The full frequency band is divided into sets of subbands and the line array is divided into sets of subarrays. For every subband the STCM of reduced dimensions is calculated. Then adaptive beamforming weight of fast-convergent MVDR algorithm and spatial spectrum estimation are obtained. At the same time, spatial spectrum estimation can be made for correlated sources using the two-sided spatial smoothing method. Results of simulation and trial data show that the proposed method has high-resolution and near-instantaneous convergence property, two-sided spatial smoothing has satisfactory validity of decorrelation.展开更多
A transformation-induced plasticity (TRIP) steel was applied to test its mechanical properties in quenching and partitioning (Q&P) process. A series of Q&P experiments followed by tensile tests, Charpy impact ...A transformation-induced plasticity (TRIP) steel was applied to test its mechanical properties in quenching and partitioning (Q&P) process. A series of Q&P experiments followed by tensile tests, Charpy impact tests, fracture morphology analyses and microstructure observations were conducted. The experimental results showed that the Q&P treatment could increase the mechanical properties of TRIP steel evidently. The strength of tested TRIP780 after Q&P process reaches more than 1500 MPa with elongation of 17.8%, which is obviously greater than that of 22MnB5 after hot stamping. The microstructure observations indicate that the good combination of high strength and plasticity of TRIP steel after Q&P process is attributed to the multi-phase microstructure of hard martensite matrix and soft retained austenite.展开更多
The nonlinear hybrid RANS/LES method has been developed considering the simulation efficiency and accuracy to simulate the hydraulic dynamic characteristics of the centrifugal pump. It has been proved that the nonline...The nonlinear hybrid RANS/LES method has been developed considering the simulation efficiency and accuracy to simulate the hydraulic dynamic characteristics of the centrifugal pump. It has been proved that the nonlinear hybrid RANS/LES method could effectively capture the unsteady flow structure and pressure pulsation in 2?D centrifugal pumps. To further investigate the hydraulic dynamic performance of a redesigned 3-D-gap drainage centrifugal pump, the nonlinear hybrid RANS/LES method is employed. Both numerical simulation and experimental results show that the hydraulic performance and pressure pulsation characteristics of the 3-D-gap drainage impeller centrifugal pump are significantly enhanced.展开更多
Well-designed surface textures can improve the tribological properties and the efficiency of the electro-hydrostatic actuator(EHA)pump under high-speed and high-pressure conditions.This study proposes a multi-objectiv...Well-designed surface textures can improve the tribological properties and the efficiency of the electro-hydrostatic actuator(EHA)pump under high-speed and high-pressure conditions.This study proposes a multi-objective optimization model to obtain the arbitrarily surface textures design of the slipper/swash plate interface for improving the mechanical and volumetric efficiency of the EHA pump.The model is composed of the lubrication film model,the component dynamic model considering the spinning motion,and the multi-objective optimization model.In this way,the arbitrary-shaped surface texture with the best comprehensive effect in the EHA pump is achieved and its positive effects in the EHA pump prototype are verified.Experimental results show a reduction in wear and an improvement in mechanical and volumetric efficiency by 1.4%and 0.8%,respectively,with the textured swash plate compared with the untextured one.展开更多
The steered covariance matrix(STCM) and its inverse matrix should be calculated in each beam for steered minimum variance(STMV) . The inverse matrix needs complex computation and restricts its application in engineeri...The steered covariance matrix(STCM) and its inverse matrix should be calculated in each beam for steered minimum variance(STMV) . The inverse matrix needs complex computation and restricts its application in engineering. Combining the integration character of one-phase regressive filter with the iterative formula of inverse matrix,an STMV iterative algorithm is proposed. The computational cost of the iterative algorithm is reduced approximately to be 2/M times of the original one when there are M sensors,and is more advantaged for the realization of the algorithm in real time. Simulation results show that the STMV iterative algorithm can preserve the characters of STMV on high azimuth resolution and weak target detection while the computational cost reduced sharply. The analysis on sea trial data proves that the proposed algorithm can estimate each target's azimuth even when the source powers differ in large scales or their bearings are very approximate.展开更多
To improve the acoustic radiation performance of the spherical transducer,a prestressed layer is formed in the transducer through fiber winding.The influence of the prestressed layer on the transducer is studied from ...To improve the acoustic radiation performance of the spherical transducer,a prestressed layer is formed in the transducer through fiber winding.The influence of the prestressed layer on the transducer is studied from the effects of the radial prestress(Tr)and acoustic impedance,respectively.First,a theoretical estimation of Tr is established with a thin shell approximation of the prestressed layer.Then,the acoustic impedance is measured to evaluate the efficiency of sound energy transmission within the prestressed layer.Further,the ideal effects of Tr on the sound radiation performances of the transducer are analyzed through finite element analysis(FEA).Finally,four spherical transducers are fabricated and tested to investigate their dependence of actual properties on the prestressed layer.The results show that with the growth of Tr,the acoustic impedance of the prestressed layer grows,mitigating the enormous impedance mismatch between the piezoelectric ceramic and water,while increasing attenuation of the acoustic energy,resulting in a peak value of the maximum transmitting voltage response(TVRmax)at 1.18 MPa.The maximum drive voltage increases with Tr,leading to a steady growth of the maximum transmitting sound level(SLmax),with a noticeable ascend of 3.9 dB at a 3.44 MPa Tr.This is a strong credibility that the prestressed layer could improve the sound radiation performance of the spherical transducer.展开更多
Structural design optimization has always been a topic of concern in industry because good design can improve the safety and economic efficiency of structures during their service periods.Selecting the appropriate opt...Structural design optimization has always been a topic of concern in industry because good design can improve the safety and economic efficiency of structures during their service periods.Selecting the appropriate optimization algorithm is the key to solving structural optimal design problems.In this study,a new global optimization idea is proposed and named the moving baseline strategy.A baseline is initially set and will be repeatedly moving upward or downward to approach the optimal value.The proposed strategy is a simple but effective,general,and stable algorithm that can be used to solve constrained and unconstrained structural optimization problems.Different from traditional gradient-based,stochastic and heuristic algorithms,the developed algorithm provides a completely new idea to solve global or local optimization problems.Some unconstrained and constrained numerical benchmark examples are used to test the proposed methodology.In addition,structural optimal design problems of a ten-bar planar truss structure and a hypersonic wing structure(X-37B)are utilized to verify the effectiveness of the developed strategy in addressing structural design optimization problems in engineering.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51775123,52075111)the Fundamental Research Funds for the Central Universities(Grant No.3072021CF0702).
文摘To reduce the vibration and sound radiation of underwater cylindrical shells,a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper.A vibroacoustic coupling model of a finite cylindrical shell covered with this skin for the case of turbulence excitation is established based on the shell theories of Donnell.The model is solved with the modal superposition method to investigate the effects of the structural parameters of micro floating raft elements on the performance of reducing vibration and sound radiation of the cylindrical shell of this skin.The results indicate that increasing the stiffness ratio,damping ratio,mass ratio,or decreasing the interval betweenmicro floating raft elements can improve the vibration and sound radiation reduction performance of this skin over the frequency range 0∼2000 Hz.Moreover,the mean quadratic velocity level and sound radiation power level of the finite cylindrical shell with this skin can be reduced by 12.00 dB and 9.65 dB respectively compared to the finite cylindrical shell with homogeneous viscoelastic coating in the frequency range from0∼2000Hz,implying a favorable performance of this skin for reducing the vibration and sound radiation of cylindrical shells.
基金financially supported by the Science and Technology Plan Project of State Administration for Market Regulation of China (Grant No. 2021MK060)the National Key Research and Development Program of China (Grant No. 2021YFC2801600)+1 种基金the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX20_3082)the Science and Technology Innovation Project from China State Shipbuilding Corporation Limited。
文摘The present study aims to plumb blockage of the deep-sea mining pump transporting large particles with different shapes. A numerical work was performed through combining the computational fluid dynamics(CFD) technique and the discrete element method(DEM). Six particle shapes with sphericity ranging from 0.67 to 1.0 were selected. A velocity triangle is built with the absolute, relative, and circumferential velocities of particles. Velocity triangles with absolute velocity angles ranging from 90° to 180° prevail in the first-stage impeller. With declining sphericity, more particles follow the velocity triangle with absolute velocity angles ranging from 0° to 90°, which weakens the ability of particles to pass through the flow passage. Furthermore, the forces acting on the particles traveling in the impeller passage are analyzed. Large particles, especially non-spherical ones, suffer from high centrifugal force and therefore move along the suction surface of the impeller blades. Non-spherical particles undergo great drag force as a result of large surface area. The distribution of drag force angles is featured by two peaks, and one vanishes due to blockage.As particle sphericity declines, both magnitude and angle of the pressure gradient force decrease. Variation of the drag force and the pressure gradient force causes clockwise deflection of the centripetal force, resulting in deflection and elongation of particle trajectory, which increases the possibility of blockage.
文摘This study aimed to investigate the effect of fatigue characteristics on the static and dynamic performance of Eucommia ulmoides gum isolators, and to explore the performance changes of Eucommia ulmoides gum isolators with different formulations. For this purpose, we used five formulations of Eucommia ulmoides gum isolators and set different fatigue test methods to study the static and dynamic performance changes of Eucommia ulmoides gum isolators with different formulations by changing the amplitude. The experimental results showed that the addition of Eucommia ulmoides gum had an impact on the performance of the isolator, and the number of fatigue cycles would lead to the hardening of the Eucommia ulmoides gum isolator and changes in its static and dynamic performance. In the range of two million vibrations, the performance change of the isolator was significant in the early stage and then tended to be flat, indicating that the impact of fatigue on the performance of the isolator would not continue to persist. It is worth noting that the study found that the addition of 30% Eucommia ulmoides gum had the least impact on the performance of the isolator under fatigue. Therefore, for long-term use of Eucommia ulmoides gum isolators, attention should be paid to their fatigue characteristics to ensure their stability and reliability. Additionally, this study provides a reference for the design and application of Eucommia ulmoides gum isolators. In summary, this study provides important reference value for a deeper understanding of the fatigue characteristics of Eucommia ulmoides gum isolators and for ensuring their stable and reliable performance. .
基金Supported by National Natural Science Foundation of China(Grant No51406148)National Science Technology Support Program of China(Grant No.2012BAA08B06)Postdoctoral Science Foundation o China(Grant No.2014M552444)
文摘Up to present, there have been no studies concerning the application of fluid-structure interaction(FSI) analysis to the lifetime estimation of multi-stage centrifugal compressors under dangerous unsteady aerodynamic excitations. In this paper, computational fluid dynamics(CFD) simulations of a three-stage natural gas pipeline centrifugal compressor are performed under near-choke and near-surge conditions, and the unsteady aerodynamic pressure acting on impeller blades are obtained. Then computational structural dynamics(CSD) analysis is conducted through a one-way coupling FSI model to predict alternating stresses in impeller blades. Finally, the compressor lifetime is estimated using the nominal stress approach. The FSI results show that the impellers of latter stages suffer larger fluctuation stresses but smaller mean stresses than those at preceding stages under near-choke and near-surge conditions. The most dangerous position in the compressor is found to be located near the leading edge of the last-stage impeller blade. Compressor lifetime estimation shows that the investigated compressor can run up to 102.7 h under the near-choke condition and 200.2 h under the near-surge condition. This study is expected to provide a scientific guidance for the operation safety of natural gas pipeline centrifugal compressors.
基金financially supported by the National Natural Science Foundation of China(Grant No.51639004)
文摘In order to analyze the ice-going ship’s performance under the pack ice conditions, synthetic ice was introduced into a towing tank. A barrier using floating cylinder in the towing tank was designed to carry out the resistance experiment. The test results indicated that the encountering frequency between the ship model and the pack ice shifts towards a high-velocity point as the concentration of the pack ice increases, and this encountering frequency creates an unstable region of the resistance, and the unstable region shifts to the higher speed with the increasing concentration. The results also showed that for the same speed points, the ratio of the pack ice resistance to the open water resistance increases with the increasing concentration, and for the same concentrations, this ratio decreases as the speed increases. Motion characteristics showed that the mean value of the heave motion increases as the speed increases, and the pitch motion tends to increase with the increasing speed. In addition, the total resistance of the fullscale was predicted.
基金National Natural Science Foundation of China(Grant No.51922093)Scientific Research Fund of Zhejiang Provincial Education Department of China(Grant No.Y202148352)Major Science and Technology Projects in Ningbo of China(Grant No.2019B10054).
文摘As a type of hydraulic rotary actuator,a helical hydraulic rotary actuator exhibits a large angle,high torque,and compact structure;hence,it has been widely used in various fields.However,its core technology is proprietary to several companies and thus has not been disclosed.Furthermore,the relevant reports are primarily limited to the component level.The dynamic characteristics of the output when a helical rotary actuator is applied to a closed-loop system are investigated from the perspective of driving system design.Two main aspects are considered:one is to establish a reliable mathematical model and the other is to consider the effect of system parameter perturbation on the output.In this study,a detailed mechanical analysis of a helical rotary hydraulic cylinder is first performed,factors such as friction and load are considered,and an accurate dynamic model of the actuator is established.Subsequently,considering the nonlinear characteristics of pressure flow and the dynamic characteristics of the valve,a dynamic model of a valve-controlled helical rotary actuator angle closed-loop system is described based on sixth-order nonlinear state equations,which has never been reported previously.After deriving the system model,a sensitivity analysis of 23 main parameters in the model with a perturbation of 10%is performed under nine operating conditions.Finally,the system dynamics model and sensitivity analysis results are verified via a prototype experiment and co-simulation,which demonstrate the reliability of the theoretical results obtained in this study.The results provide an accurate mathematical model and analysis basis for the structural optimization or control compensation of similar systems.
基金National Natural Science Foundation of China(51705152)Jiangxi Provincial Natural Science Foundation(20161BAB206150+2 种基金20161BAB216133)Jiangxi Provincial Key R&D Program(20171BBG70040)Innovation Fund Designated for Graduate Students of Jiangxi Province(YC2018-S246)。
文摘An inside-cushion structure with sidestep and taper-shaped plungers is studied to address the problems of high impact and vibration in high-speed hydraulic cylinders.First,the three stages of cushion processes are discussed according to the varying flow area as the piston moves.Then,to establish a precise mathematical model,the states of the flow field are estimated in terms of the Reynolds number.Accordingly,the simulation model parameterized against measured data is developed and verified by experiment.Last,the average velocity,peak cushion pressure,and terminal velocity are defined to evaluate cushion performance.According to these optimized objectives,the non-linear programming by quadratic Lagrange(NLPQL)algorithm is applied to optimize the structure parameters.The optimization results indicate that the peak cushion pressure is reduced by 28%and terminal velocity is reduced by 21%without reduction of average velocity.
基金Project partly supported by the National Basic Research Development Program of China(Grant No.2010CB327604)the National Natural Science Foundation of China(Grant No.61377100)the Natural Science Foundation of Guangdong Province,China(Grant No.S2013040015665)
文摘In this paper, a novel birefringent photonic crystal fiber (PCF) with the silver-coated and liquid-filled air-holes along the vertical plane is designed. Simulation results show that the thickness of silver layer, the sizes of holes, and the refractive index of liquid strongly strengthen the gaps between two polarized directions. The surface plasmon resonance peak along y axis can be up to 675.8 dB/cm at 1.33μB. The proposed PCF has important application in polarization devices, such as filters and beam splitters.
文摘<div style="text-align:justify;"> STMV beamforming algorithm needs inversion operation of matrix, and its engineering application is limited due to its huge computational cost. This paper proposed block iterative STMV algorithm based on one-phase regressive filter, matrix inversion lemma and inversion of block matrix. The computational cost is reduced approximately as 1/4 M times as original algorithm when array number is M. The simulation results show that this algorithm maintains high azimuth resolution and good performance of detecting multi-targets. Within 1 - 2 dB directional index and higher azimuth discrimination of block iterative STMV algorithm are achieved than STMV algorithm for sea trial data processing. And its good robustness lays the foundation of its engineering application. </div>
基金grateful for thefinancial support of National Natural Science Foundation of China(Grant Nos.52311540154 and 52175410).
文摘The presented study aims to reveal the effect of liquid temperature on cavitation-induced erosion of an Al-Mgalloy. An experimental work was conducted using a submerged cavitating waterjet to impact the specimen surface.For a certain cavitation number and a given standoff distance, different liquid temperatures were considered.Accordingly, a comprehensive comparison was implemented by inspecting the mass loss and surface morphologyof the tested specimens. The results show that the cumulative mass loss increases continuously with the liquidtemperature. A cavitation zone with an irregular profile becomes evident as the cavitation treatment proceeds.Increasing the temperature promotes the generation of cavitation bubbles. Large erosion pits are induced aftersevere material removal. The microhardness increases with the distance from the target surface. At a liquidtemperature of 50℃, the microhardness fluctuates apparently with increasing the depth of indentation.
基金supported by the National Natural Science Foundation of China(Granted Nos.51827801,52371152)the Foundation of National Key Laboratory of Precision Hot Processing of Metals(Granted No.DCQQ2790100724).
文摘During the low-pressure casting of extra-large size C95800 copper alloy components,traditional linear pressurization technique leads to a rapid surge of liquid metal inlet velocity at the regions where the mold cavity cross-section enlarges.This rapid increasement of liquid metal inlet velocity causes serious entrapment of gas and oxide films,and results in various casting defects such as the bifilm defects.These defects detrimentally deteriorate mechanical properties of the castings.To address this issue,an innovative nonlinear pressurization strategy timely matching to the casting structure was proposed.The pressurization rate decreases at sections where the cross-section widens,but it gradually increases as the liquid metal level rises.By this way,the inlet velocity remains below a critical threshold to prevent the entrapment of gas and oxide films.Comparative analyses involving numerical simulations and casting verification illustrate that the nonlinear pressurization technique,compared to the linear pressurization,effectively diminishes both the size and number of bifilm defects.Furthermore,the nonlinear pressurization method enhances the casting yield strength by 10%,tensile strength by 14%,and elongation by 10%.Examination through scanning electron microscopy highlights that the bifilm defects arising from the linear pressurization process result in the reduction of the castings’mechanical properties.These observations underscore the efficacy of nonlinear pressurization in enhancing the quality and reliability of gigantic castings,as exemplified by a 5.4-ton extra-large sized C95800 copper alloy propeller hub with complex structures in the current study.
基金supported by the National Natural Science Foundation of China(11704345)the Key Laboratory of Science and Technology for National Defence Foundation(9140C290304140C29133)
文摘The underwater counter-rotation propeller non-cavitation noise has an obvious mod- ulation characteristic which is due to the interaction of flow and blade. A modulation mecha- nism is presented in this paper. A sound pressure spectrum model is presented to describe its non-cavitation noise with application of generalized acoustic analogy method, the modulation mechanism is expressed with the improvement of sound pressure model. The power spectrum and modulation spectrum are presented by numerical simulation. Theoretical analysis and nu- merical simulation results are verified by the cavitation tunnel experiment. The modulation model of counter-rotation propeller is beneficial to the prediction modulation characteristics and identification of underwater high-speed vehicles.
文摘The conventional MVDR adaptive beamformer is a high-resolution narrowband beamformer which estimates the optimal beamforming weights using narrowband CSDM of real acoustic field. In practical applications, MVDR algorithm needs long observation time to estimate the covariance matrix. This inherent property makes it difficult to localize fast-moving targets. For wideband signals, MVDR algorithm needs inverting every CSDM which increases the computational demands. For correlated sources, the performance of MVDR will degrade dramatically because the signals will cancel each other. A fast-convergent MVDR algorithm based on subband subarray processing is proposed. The full frequency band is divided into sets of subbands and the line array is divided into sets of subarrays. For every subband the STCM of reduced dimensions is calculated. Then adaptive beamforming weight of fast-convergent MVDR algorithm and spatial spectrum estimation are obtained. At the same time, spatial spectrum estimation can be made for correlated sources using the two-sided spatial smoothing method. Results of simulation and trial data show that the proposed method has high-resolution and near-instantaneous convergence property, two-sided spatial smoothing has satisfactory validity of decorrelation.
基金supported by the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization(No.U1509204),Chinathe National Natural Science Foundation of China(Nos.91748210 and 51375431)the Strengthening Industrial Base Project(No.TC150B5C0-29),China
基金The authors would like to acknowledge the support by the National Natural Science Foundation of China under grant Nos. 51775336, U1564203Shanghai Pujiang Program under Grant No. 17PJD019.
文摘A transformation-induced plasticity (TRIP) steel was applied to test its mechanical properties in quenching and partitioning (Q&P) process. A series of Q&P experiments followed by tensile tests, Charpy impact tests, fracture morphology analyses and microstructure observations were conducted. The experimental results showed that the Q&P treatment could increase the mechanical properties of TRIP steel evidently. The strength of tested TRIP780 after Q&P process reaches more than 1500 MPa with elongation of 17.8%, which is obviously greater than that of 22MnB5 after hot stamping. The microstructure observations indicate that the good combination of high strength and plasticity of TRIP steel after Q&P process is attributed to the multi-phase microstructure of hard martensite matrix and soft retained austenite.
基金the National Natural Science Foundation of China (Grant Nos. 51379120, 51179100).
文摘The nonlinear hybrid RANS/LES method has been developed considering the simulation efficiency and accuracy to simulate the hydraulic dynamic characteristics of the centrifugal pump. It has been proved that the nonlinear hybrid RANS/LES method could effectively capture the unsteady flow structure and pressure pulsation in 2?D centrifugal pumps. To further investigate the hydraulic dynamic performance of a redesigned 3-D-gap drainage centrifugal pump, the nonlinear hybrid RANS/LES method is employed. Both numerical simulation and experimental results show that the hydraulic performance and pressure pulsation characteristics of the 3-D-gap drainage impeller centrifugal pump are significantly enhanced.
基金supported by the National Key R&D Program of China(Grant No.2018YFB2001101)the National Outstanding Youth Science Foundation of China(Grant No.51922093)+2 种基金the National Science Foundation for Young Scientists of China(Grant No.51905473)the Major Science and Technology Projects in Ningbo,China(Grant No.2019B10054)the Open Foundation of the State Key Laboratory of Mechanical Transmissions,China(Grant No.SKLMT-ZDKFKT-202001)。
文摘Well-designed surface textures can improve the tribological properties and the efficiency of the electro-hydrostatic actuator(EHA)pump under high-speed and high-pressure conditions.This study proposes a multi-objective optimization model to obtain the arbitrarily surface textures design of the slipper/swash plate interface for improving the mechanical and volumetric efficiency of the EHA pump.The model is composed of the lubrication film model,the component dynamic model considering the spinning motion,and the multi-objective optimization model.In this way,the arbitrary-shaped surface texture with the best comprehensive effect in the EHA pump is achieved and its positive effects in the EHA pump prototype are verified.Experimental results show a reduction in wear and an improvement in mechanical and volumetric efficiency by 1.4%and 0.8%,respectively,with the textured swash plate compared with the untextured one.
文摘The steered covariance matrix(STCM) and its inverse matrix should be calculated in each beam for steered minimum variance(STMV) . The inverse matrix needs complex computation and restricts its application in engineering. Combining the integration character of one-phase regressive filter with the iterative formula of inverse matrix,an STMV iterative algorithm is proposed. The computational cost of the iterative algorithm is reduced approximately to be 2/M times of the original one when there are M sensors,and is more advantaged for the realization of the algorithm in real time. Simulation results show that the STMV iterative algorithm can preserve the characters of STMV on high azimuth resolution and weak target detection while the computational cost reduced sharply. The analysis on sea trial data proves that the proposed algorithm can estimate each target's azimuth even when the source powers differ in large scales or their bearings are very approximate.
基金supported by the National Natural Science Foundation of China(Nos.U1806221 and U2006218)Shandong Provincial Natural Science Foundation(Grant No.ZR2020KA003)Taishan Scholars Program and case-by-case project for Top Outstanding Talents of Jinan,the Project of“20 Items of University”of Jinan(Grant Nos.T202009 and T201907).
文摘To improve the acoustic radiation performance of the spherical transducer,a prestressed layer is formed in the transducer through fiber winding.The influence of the prestressed layer on the transducer is studied from the effects of the radial prestress(Tr)and acoustic impedance,respectively.First,a theoretical estimation of Tr is established with a thin shell approximation of the prestressed layer.Then,the acoustic impedance is measured to evaluate the efficiency of sound energy transmission within the prestressed layer.Further,the ideal effects of Tr on the sound radiation performances of the transducer are analyzed through finite element analysis(FEA).Finally,four spherical transducers are fabricated and tested to investigate their dependence of actual properties on the prestressed layer.The results show that with the growth of Tr,the acoustic impedance of the prestressed layer grows,mitigating the enormous impedance mismatch between the piezoelectric ceramic and water,while increasing attenuation of the acoustic energy,resulting in a peak value of the maximum transmitting voltage response(TVRmax)at 1.18 MPa.The maximum drive voltage increases with Tr,leading to a steady growth of the maximum transmitting sound level(SLmax),with a noticeable ascend of 3.9 dB at a 3.44 MPa Tr.This is a strong credibility that the prestressed layer could improve the sound radiation performance of the spherical transducer.
基金the National Nature Science Foundation of China(Nos.11872089,11572024,11432002)the Defense Industrial Technology Development Programs(Nos.JCK Y2016204B101,JCKY2017601B001,JCKY2018601B001)。
文摘Structural design optimization has always been a topic of concern in industry because good design can improve the safety and economic efficiency of structures during their service periods.Selecting the appropriate optimization algorithm is the key to solving structural optimal design problems.In this study,a new global optimization idea is proposed and named the moving baseline strategy.A baseline is initially set and will be repeatedly moving upward or downward to approach the optimal value.The proposed strategy is a simple but effective,general,and stable algorithm that can be used to solve constrained and unconstrained structural optimization problems.Different from traditional gradient-based,stochastic and heuristic algorithms,the developed algorithm provides a completely new idea to solve global or local optimization problems.Some unconstrained and constrained numerical benchmark examples are used to test the proposed methodology.In addition,structural optimal design problems of a ten-bar planar truss structure and a hypersonic wing structure(X-37B)are utilized to verify the effectiveness of the developed strategy in addressing structural design optimization problems in engineering.