In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to in...In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to individually present their laptops for inspection. The paper introduced a method for laptop removal. By combining projection algorithms with the YOLOv7-Seg model, a laptop’s three views were generated through projection, and instance segmentation of these views was achieved using YOLOv7-Seg. The resulting 2D masks from instance segmentation at different angles were employed to reconstruct a 3D mask through angle restoration. Ultimately, the intersection of this 3D mask with the original 3D data enabled the successful extraction of the laptop’s 3D information. Experimental results demonstrated that the fusion of projection and instance segmentation facilitated the automatic removal of laptops from CT data. Moreover, higher instance segmentation model accuracy leads to more precise removal outcomes. By implementing the laptop removal functionality, the civil aviation security screening process becomes more efficient and convenient. Passengers will no longer be required to individually handle their laptops, effectively enhancing the efficiency and accuracy of security screening.展开更多
X-ray security equipment is currently a more commonly used dangerous goods detection tool, due to the increasing security work tasks, the use of target detection technology to assist security personnel to carry out wo...X-ray security equipment is currently a more commonly used dangerous goods detection tool, due to the increasing security work tasks, the use of target detection technology to assist security personnel to carry out work has become an inevitable trend. With the development of deep learning, object detection technology is becoming more and more mature, and object detection framework based on convolutional neural networks has been widely used in industrial, medical and military fields. In order to improve the efficiency of security staff, reduce the risk of dangerous goods missed detection. Based on the data collected in X-ray security equipment, this paper uses a method of inserting dangerous goods into an empty package to balance all kinds of dangerous goods data and expand the data set. The high-low energy images are combined using the high-low energy feature fusion method. Finally, the dangerous goods target detection technology based on the YOLOv7 model is used for model training. After the introduction of the above method, the detection accuracy is improved by 6% compared with the direct use of the original data set for detection, and the speed is 93FPS, which can meet the requirements of the online security system, greatly improve the work efficiency of security personnel, and eliminate the security risks caused by missed detection.展开更多
文摘In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to individually present their laptops for inspection. The paper introduced a method for laptop removal. By combining projection algorithms with the YOLOv7-Seg model, a laptop’s three views were generated through projection, and instance segmentation of these views was achieved using YOLOv7-Seg. The resulting 2D masks from instance segmentation at different angles were employed to reconstruct a 3D mask through angle restoration. Ultimately, the intersection of this 3D mask with the original 3D data enabled the successful extraction of the laptop’s 3D information. Experimental results demonstrated that the fusion of projection and instance segmentation facilitated the automatic removal of laptops from CT data. Moreover, higher instance segmentation model accuracy leads to more precise removal outcomes. By implementing the laptop removal functionality, the civil aviation security screening process becomes more efficient and convenient. Passengers will no longer be required to individually handle their laptops, effectively enhancing the efficiency and accuracy of security screening.
文摘X-ray security equipment is currently a more commonly used dangerous goods detection tool, due to the increasing security work tasks, the use of target detection technology to assist security personnel to carry out work has become an inevitable trend. With the development of deep learning, object detection technology is becoming more and more mature, and object detection framework based on convolutional neural networks has been widely used in industrial, medical and military fields. In order to improve the efficiency of security staff, reduce the risk of dangerous goods missed detection. Based on the data collected in X-ray security equipment, this paper uses a method of inserting dangerous goods into an empty package to balance all kinds of dangerous goods data and expand the data set. The high-low energy images are combined using the high-low energy feature fusion method. Finally, the dangerous goods target detection technology based on the YOLOv7 model is used for model training. After the introduction of the above method, the detection accuracy is improved by 6% compared with the direct use of the original data set for detection, and the speed is 93FPS, which can meet the requirements of the online security system, greatly improve the work efficiency of security personnel, and eliminate the security risks caused by missed detection.