The complexity of unknown scenarios and the dynamics involved in target entrapment make designing control strategies for swarm robots a formidable task,which in turn impacts their efficiency in complex and dynamic set...The complexity of unknown scenarios and the dynamics involved in target entrapment make designing control strategies for swarm robots a formidable task,which in turn impacts their efficiency in complex and dynamic settings.To address these challenges,this paper introduces an adaptive swarm robot entrapment control model grounded in the transformation of gene regulatory networks(AT-GRN).This innovative model enables swarm robots to dynamically adjust entrap-ment strategies by assessing current environmental conditions via real-time sensory data.Further-more,an improved motion control model for swarm robots is designed to dynamically shape the for-mation generated by the AT-GRN.Through two sets of rigorous experimental environments,the proposed model significantly enhances the trapping performance of swarm robots in complex envi-ronments,demonstrating remarkable adaptability and stability.展开更多
The application of single-cell RNA sequencing(scRNA-seq)in biomedical research has advanced our understanding of the pathogenesis of disease and provided valuable insights into new diagnostic and therapeutic strategie...The application of single-cell RNA sequencing(scRNA-seq)in biomedical research has advanced our understanding of the pathogenesis of disease and provided valuable insights into new diagnostic and therapeutic strategies.With the expansion of capacity for high-throughput scRNA-seq,including clinical samples,the analysis of these huge volumes of data has become a daunting prospect for researchers entering this field.Here,we review the workflow for typical scRNA-seq data analysis,covering raw data processing and quality control,basic data analysis applicable for almost all scRNA-seq data sets,and advanced data analysis that should be tailored to specific scientific questions.While summarizing the current methods for each analysis step,we also provide an online repository of software and wrapped-up scripts to support the implementation.Recommendations and caveats are pointed out for some specific analysis tasks and approaches.We hope this resource will be helpful to researchers engaging with scRNA-seq,in particular for emerging clinical applications.展开更多
Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them...Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them to retain spherical shapes, and the low adhesion of SHS facilitates easy droplet collection when tilting the substrate. These characteristics make SHS suitable for a wide range of applications. One particularly promising application is the fabrication of microsphere and supraparticle materials. SHS offers a distinct advantage as a universal platform capable of providing customized services for a variety of microspheres and supraparticles. In this review, an overview of the strategies for fabricating microspheres and supraparticles with the aid of SHS, including cross-linking process, polymer melting,and droplet template evaporation methods, is first presented. Then, the applications of microspheres and supraparticles formed onto SHS are discussed in detail, for example, fabricating photonic devices with controllable structures and tunable structural colors, acting as catalysts with emerging or synergetic properties, being integrated into the biomedical field to construct the devices with different medicinal purposes, being utilized for inducing protein crystallization and detecting trace amounts of analytes. Finally,the perspective on future developments involved with this research field is given, along with some obstacles and opportunities.展开更多
The use of redox-active organic electrode materials in energy storage is restricted due to their inferior solvent resistance,abysmal conductivity,and the resultant low practical capacity.To address these issues,a clas...The use of redox-active organic electrode materials in energy storage is restricted due to their inferior solvent resistance,abysmal conductivity,and the resultant low practical capacity.To address these issues,a class of bipolar p-phenylenediimidazole-based small-molecule compounds are designed and fabricated.Theπ-conjugated backbone of these small molecules allows for electron delocalization on a big conjugation plane,endowing them with good conductivity and reaction reversibility.Furthermore,when the para-positions of phenylene are occupied by hydroxyl groups,as-formed intramolecular hydrogen bonds(N-H...O)between phenolic hydroxyl groups and the–NH groups of imidazole rings further enhance the structural planarity,resulting in higherπ-conjugation degree and better conductivity,and thus higher utilization of active sites and electrode capacity,proved by both experimental results and theoretical calculations.The optimized composite electrode DBNQ@rGO-45 shows a high specific capacity(∼308 mA h g^(−1)at 100 mA g^(−1))and a long cycling stability(112.9 mA h g^(−1)after 6000 cycles at 2000 mA g^(−1)).The significantly better electrochemical properties for hydroxyl group-containing compounds than those without hydroxyl groups attributed to intramolecular hydrogen bond-induced conjugation enhancement will inspire the structure design of organic electrodes for better energy storage.展开更多
Strabismus significantly impacts human health as a prevalent ophthalmic condition.Early detection of strabismus is crucial for effective treatment and prognosis.Traditional deep learning models for strabismus detectio...Strabismus significantly impacts human health as a prevalent ophthalmic condition.Early detection of strabismus is crucial for effective treatment and prognosis.Traditional deep learning models for strabismus detection often fail to estimate prediction certainty precisely.This paper employed a Bayesian deep learning algorithm with knowledge distillation,improving the model's performance and uncertainty estimation ability.Trained on 6807 images from two tertiary hospitals,the model showed significantly higher diagnostic accuracy than traditional deep-learning models.Experimental results revealed that knowledge distillation enhanced the Bayesian model’s performance and uncertainty estimation ability.These findings underscore the combined benefits of using Bayesian deep learning algorithms and knowledge distillation,which improve the reliability and accuracy of strabismus diagnostic predictions.展开更多
Purification of emerging heavy metal antimony contaminated water based on advanced ingenious strategies.An activated modified coconut shell charcoal(CSC)was synthesized and evaluated as a substrate-supported loaded or...Purification of emerging heavy metal antimony contaminated water based on advanced ingenious strategies.An activated modified coconut shell charcoal(CSC)was synthesized and evaluated as a substrate-supported loaded organic photovoltaic material,PM6:PYIT:PM6-b-PYIT,to prepare a surprisingly highly efficient,stable,environmentally friendly,and recyclable organic photocatalyst(CSC–N–P.P.P),which showed excellent effects on the simultaneous removal of Sb(Ⅲ)and Sb(Ⅴ).The removal efficiency of CSC-N-P.P.P on Sb(Ⅲ)and Sb(Ⅴ)reached an amazing 99.9%in quite a short duration of 15 min.At the same time,under ppb level and indoor visible light(~1 W m^(2)),it can be treated to meet the drinking water standards set by the European Union and the U.S.National Environmental Protection Agency in 5 min,and even after 25 cycles of recycling,the efficiency is still maintained at about 80%,in addition to the removal of As(Ⅲ),Cd(Ⅱ),Cr(Ⅵ),and Pb(Ⅱ)can also be realized.The catalyst not only solves the problems of low reuse rate,difficult structure adjustment and high energy consumption of traditional photocatalysts but also has strong applicability and practical significance.The pioneering approach provides a much-needed solution strategy for removing highly toxic heavy metal antimony pollution from the environment.展开更多
Lithium bis(trifluoromethanesulfonyl)imide(Li-TFSI)/4-tert-butylpyridine(tBP)is a classic doping system for the hole transport material Spiro-OMeTAD in typical n-i-p structure perovskite solar cells(PSCs),but this sys...Lithium bis(trifluoromethanesulfonyl)imide(Li-TFSI)/4-tert-butylpyridine(tBP)is a classic doping system for the hole transport material Spiro-OMeTAD in typical n-i-p structure perovskite solar cells(PSCs),but this system will cause many problems such as high hygroscopicity,Li+migration,pinholes and so on,which hinder PSC from maintaining high efficiency and stability for long-term.In this work,an effective strategy is demonstrated to improve the performance and stability of PSC by replacing t BP with 12-crown-4.The chelation of 12-crown-4 with Li+not only improves the doping effect of Li-TFSI,but also perfectly solves the problems caused by the Li-TFSI/tBP system.The PSC based on this strategy achieved a champion power conversion efficiency(PCE)over 21%,which is significantly better than the pristine device(19.37%).More importantly,the without encapsulated device based on Li-TFSI/12-crown-4 still maintains 87%of the initial PCE even after 60 days exposure in air,while the pristine device only maintains 22%of the initial PCE under the same aging conditions.This strategy paves a novel way for constructing efficient and stable PSCs.展开更多
Electrocatalytic nitrate reduction reaction(NO_(3)RR)offers a unique rationale for green NH_(3) synthesis,yet the lack of high-efficiency NO_(3)RR catalysts remains a great challenge.In this work,we show that Au nanoc...Electrocatalytic nitrate reduction reaction(NO_(3)RR)offers a unique rationale for green NH_(3) synthesis,yet the lack of high-efficiency NO_(3)RR catalysts remains a great challenge.In this work,we show that Au nanoclusters anchored on TiO_(2) nanosheets can efficiently catalyze the conversion of NO_(3)RR-to-NH_(3) under ambient conditions,achieving a maximal Faradic efficiency of 91%,a peak yield rate of 1923μg·h^(-1)·mgcat.-1,and high durability over 10 consecutive cycles,all of which are comparable to the recently reported metrics(including transition metal and noble metal-based catalysts)and exceed those of pristine TiO_(2).Moreover,a galvanic Zn-nitrate battery using the catalyst as the cathode was proposed,which shows a power density of 3.62 mW·cm^(-2) and a yield rate of 452μg·h^(-1)·mgcat.-1.Theoretical simulations further indicate that the atomically dispersed Au clusters can promote the adsorption and activation of NO_(3)-species,and reduce the NO_(3)RR-to-NH_(3) barrier,thus leading to an accelerated cathodic reaction.This work highlights the importance of metal clusters for the NH_(3) electrosynthesis and nitrate removal.展开更多
The coupling of energy-saving small molecule conversion reactions and hydrogen evolution reaction(HER)in seawater electrolytes can reduce the energy consumption of seawater electrolysis and mitigate chlorine corrosion...The coupling of energy-saving small molecule conversion reactions and hydrogen evolution reaction(HER)in seawater electrolytes can reduce the energy consumption of seawater electrolysis and mitigate chlorine corrosion issues.However,the fabrication of efficient multifunctional catalysts for this promising technology is of great challenge.Herein,a heterostructured catalyst comprising CoP and Ni_(2)P on nickel foam(CoP/Ni_(2)P@NF)is reported for hydrazine oxidation(HzOR)-assisted alkaline seawater splitting.The coupling of CoP and Ni_(2)P optimizes the electronic structure of the active sites and endows excellent electrocatalytic performance for HzOR and HER.Impressively,the two-electrode HzOR-assisted alkaline seawater splitting(OHzS)cell based on the CoP/Ni_(2)P@NF required only 0.108 V to deliver 100 mA·cm^(−2),much lower than 1.695 V for alkaline seawater electrolysis cells.Moreover,the OHzS cell exhibits satisfactory stability over 48 h at a high current density of 500 mA·cm^(−2).Furthermore,the CoP/Ni_(2)P@NF heterostructured catalyst also efficiently catalyzed glucose oxidation,methanol oxidation,and urea oxidation in alkaline seawater electrolytes.This work paves a path for high-performance heterostructured catalyst preparation for energy-saving seawater electrolysis for H_(2) production.展开更多
Chemical vapor deposition is considered as the most hopeful method for the synthesis of large-area high-quality hexagonal boron nitride on the substrate of catalytic metal. However, the size the hexagonal boron nitrid...Chemical vapor deposition is considered as the most hopeful method for the synthesis of large-area high-quality hexagonal boron nitride on the substrate of catalytic metal. However, the size the hexagonal boron nitride films are limited to the size of growth chamber, which indicates a lower production efficiency. In this paper, the utilization efficiency of growth chamber is highly improved by alternately stacking multiple pieces of Cu foils and carbon fiber surface felt with porous structure. Uniform and continuous hexagonal boron nitride films are prepared on Cu foils through chemical vapor deposition utilizing ammonia borane as the precursor. This work develops a simple and practicable method for high-throughput preparation of hexagonal boron nitride films, which could contribute to the industrial application of hexagonal boron nitride. .展开更多
Yttrium iron garnet(YIG)is a promising material for various terahertz applications due to its special optical properties.At present,a high-quality YIG wafer is the desire of terahertz communities and it is still chall...Yttrium iron garnet(YIG)is a promising material for various terahertz applications due to its special optical properties.At present,a high-quality YIG wafer is the desire of terahertz communities and it is still challenging to prepare substrate-free YIG single crystal films.In this work,we prepared wafer-level substrate-free La:YIG single crystal films,for the first time,to our knowledge.Terahertz optical and magneto-optical properties of La:YIG films were characterized by terahertz time domain spectroscopy(THz-TDS).Results show that the as-prepared La:YIG film has an insertion loss of less than 3 dB and a low absorption coefficient of less than10 cm-1below 1.6 THz.Benefitting from the thickness of the substrate-free YIG films and low insertion loss,their terahertz properties could be further manipulated by simply using a wafer-stacking technique.When four La:YIG films were stacked,there was an insertion loss of less than 10 dB in the range of 0.1-1.2 THz.The Faraday rotation angle of the four-layer-stacked La:YIG films reached 19°,and the isolation could reach17 dB.By further increasing the stacking number to eight pieces,a remarkable Faraday rotation angle of45°was achieved with an isolation of 23 dB,which is important for practical application in the THz band.This material may provide a milestone opportunity to make various non-reciprocal devices,such as isolators and phase shifters.展开更多
Chemical vapor deposition(CVD)is the most promising method for the preparation of high-quality and large-area graphene films,especially the epitaxial growth of graphene on large-area single-crystal Cu foils.While sing...Chemical vapor deposition(CVD)is the most promising method for the preparation of high-quality and large-area graphene films,especially the epitaxial growth of graphene on large-area single-crystal Cu foils.While single-crystal Cu foils are normally achieved by thermally annealing the commercial poly-crystalline Cu foils,their size and therefore the size of graphene films grown on them are limited to the size of the reaction chamber.We report a simple and feasible method to prepare large-area Cu foils with decimeter grains by thermally annealing the rolled-up Cu foils,where the Cu layers are separated by thin porous carbon fiber cloths.The carbon fiber cloths prevent Cu layers from sticking to each other at high temperatures while do not block the gas transportation.In such a way,the utilization efficiency of the reaction chamber is significantly improved,e.g.,0.2 m×(1e2)m Cu foils can be processed even in a 5 cm diameter quartz tube chamber.High-quality graphene films grown on such Cu foils are then demon-strated.This method may be suitable for the annealing of other metal foils to enlarge grain size and the synthesis of other two-dimensional materials on them such as h-BN.展开更多
Currently,edge Artificial Intelligence(AI)systems have significantly facilitated the functionalities of intelligent devices such as smartphones and smart cars,and supported diverse applications and services.This funda...Currently,edge Artificial Intelligence(AI)systems have significantly facilitated the functionalities of intelligent devices such as smartphones and smart cars,and supported diverse applications and services.This fundamental supports come from continuous data analysis and computation over these devices.Considering the resource constraints of terminal devices,multi-layer edge artificial intelligence systems improve the overall computing power of the system by scheduling computing tasks to edge and cloud servers for execution.Previous efforts tend to ignore the nature of strong pipelined characteristics of processing tasks in edge AI systems,such as the encryption,decryption and consensus algorithm supporting the implementation of Blockchain techniques.Therefore,this paper proposes a new pipelined task scheduling algorithm(referred to as PTS-RDQN),which utilizes the system representation ability of deep reinforcement learning and integrates multiple dimensional information to achieve global task scheduling.Specifically,a co-optimization strategy based on Rainbow Deep Q-Learning(RainbowDQN)is proposed to allocate computation tasks for mobile devices,edge and cloud servers,which is able to comprehensively consider the balance of task turnaround time,link quality,and other factors,thus effectively improving system performance and user experience.In addition,a task scheduling strategy based on PTS-RDQN is proposed,which is capable of realizing dynamic task allocation according to device load.The results based on many simulation experiments show that the proposed method can effectively improve the resource utilization,and provide an effective task scheduling strategy for the edge computing system with cloud-edge-end architecture.展开更多
Federated Learning(FL)is a new computing paradigm in privacy-preserving Machine Learning(ML),where the ML model is trained in a decentralized manner by the clients,preventing the server from directly accessing privacy...Federated Learning(FL)is a new computing paradigm in privacy-preserving Machine Learning(ML),where the ML model is trained in a decentralized manner by the clients,preventing the server from directly accessing privacy-sensitive data from the clients.Unfortunately,recent advances have shown potential risks for user-level privacy breaches under the cross-silo FL framework.In this paper,we propose addressing the issue by using a three-plane framework to secure the cross-silo FL,taking advantage of the Local Differential Privacy(LDP)mechanism.The key insight here is that LDP can provide strong data privacy protection while still retaining user data statistics to preserve its high utility.Experimental results on three real-world datasets demonstrate the effectiveness of our framework.展开更多
Academic and industrial communities have been paying significant attention to the 6th Generation (6G) wireless communication systems after the commercial deployment of 5G cellular communications. Among the emerging te...Academic and industrial communities have been paying significant attention to the 6th Generation (6G) wireless communication systems after the commercial deployment of 5G cellular communications. Among the emerging technologies, Vehicular Edge Computing (VEC) can provide essential assurance for the robustness of Artificial Intelligence (AI) algorithms to be used in the 6G systems. Therefore, in this paper, a strategy for enhancing the robustness of AI model deployment using 6G-VEC is proposed, taking the object detection task as an example. This strategy includes two stages: model stabilization and model adaptation. In the former, the state-of-the-art methods are appended to the model to improve its robustness. In the latter, two targeted compression methods are implemented, namely model parameter pruning and knowledge distillation, which result in a trade-off between model performance and runtime resources. Numerical results indicate that the proposed strategy can be smoothly deployed in the onboard edge terminals, where the introduced trade-off outperforms the other strategies available.展开更多
Transition metal sulfides demonstrate attractive potential for sodium storage owing to their high theoretical specific capacity and high reserve.However,the low conductivity and volume expansion deteriorate their high...Transition metal sulfides demonstrate attractive potential for sodium storage owing to their high theoretical specific capacity and high reserve.However,the low conductivity and volume expansion deteriorate their high-rate performance and cycling stability.In this work,we construct NiS_(2)/FeS heterostructure by growing Ni-based layered double hydroxide nanosheets on Fe-based Prussian Blue nanocrystals followed by gaseous sulfurization,giving rise to flower-like NiS_(2)/FeS nanoparticles.The as-prepared nanocomposite exhibits good rate performance of 156 mAh g^(−1) at 50 A g^(-1) and long cycle life of 606 mAh g^(−1) at 5 A g^(−1) after 1,000 cycles,which are superior to the heterostructure-free counterpart of NiS_(2) and FeS.Density functional theory calculation further verifies that the enhanced electrochemical performance of NiS_(2)/FeS is due to the existence of interface derived from the heterostructure.展开更多
As an ideal carbon-free energy carrier,ammonia plays an indispensable role in modern society.The conventional industrial synthesis of NH3 by the Haber-Bosch technique under harsh reaction conditions results in serious...As an ideal carbon-free energy carrier,ammonia plays an indispensable role in modern society.The conventional industrial synthesis of NH3 by the Haber-Bosch technique under harsh reaction conditions results in serious energy consumption and environmental pollution.Therefore,it is essential to develop NH3 synthesis tactics under benign conditions.Electrochemical synthesis of NH_(3) has the advantages of mild reaction conditions and environmental friendliness,and has become a hotspot for research in recent years.It has been reported that zinc-nitrogen batteries(ZNBs),such as Zn-N_(2),Zn-NO,Zn-NO_(3)^(-),and Zn-NO_(2)^(-)batteries,can not only reduce nitrogenous species to ammonia but also have concomitant power output.However,the common drawbacks of these battery systems are unsatisfactory power density and ammonia production.In this review,the latest progress of ZNBs including the reaction mechanism of the battery and reactor design principles is systematically summarized.Subsequently,active site engineering of cathode catalysts is discussed,including vacancy defects,chemical doping,and heterostructure engineering.Finally,some insights are provided to improve the performance of ZNBs from a practical perspective of view.展开更多
1|INTRODUCTION With the rapid developments in intelligent medical care and interdisciplinary science,innovative flexible bioelectronics(FBEs)are emerging for monitoring health,diagnosing and treating diseases,and even...1|INTRODUCTION With the rapid developments in intelligent medical care and interdisciplinary science,innovative flexible bioelectronics(FBEs)are emerging for monitoring health,diagnosing and treating diseases,and even cancer therapy.FBEs subvert physical form and break through the bottleneck of traditional rigid electronics.展开更多
Li4Ti5O12 is considered as a safe and stable anode material for high-power lithium-ion batteries due to its“zero-strain”characteristic during the charge/discharge.However,the intrinsically low electronic conductivit...Li4Ti5O12 is considered as a safe and stable anode material for high-power lithium-ion batteries due to its“zero-strain”characteristic during the charge/discharge.However,the intrinsically low electronic conductivity leads to a deterioration in highrate performance,impeding its intensive application.Herein,the Li4Ti5O12/rutile TiO2(LTO/RT)heterostructured nanorods with tunable oxide phases have been in-situ fabricated by annealing the electrospun nanofiber precursor.By constructing such a heterostructured interface,the as-prepared sample delivers a high capacity of 160.3 mAh·g–1 at 1 C after 200 cycles,125.5 mAh·g–1 at 10 C after 500 cycles and a superior capacity retention of 90.3%after 1,000 cycles at 30 C,outperforming the heterostructure-free counterparts of pure LTO,RT and the commercial LTO product.Density Functional Theory calculation suggests a possible synergistic effect of the LTO/RT interface that would improve the electronic conductivity and Li-ion diffusion.展开更多
One-dimensional(1D)nanomaterials easily bend due to perturbations from their surroundings or their own behaviors.This phenomenon not only impacts the performances of various devices but has also been employed to devel...One-dimensional(1D)nanomaterials easily bend due to perturbations from their surroundings or their own behaviors.This phenomenon not only impacts the performances of various devices but has also been employed to develop a variety of new functional devices,in which the bending energies of the nanomaterials determine the device performances.However,measuring the energies of such nanomaterials is extremely difficult.Herein,pseudo-break imaging of 1D nanomaterials has been proposed and realized on individual carbon nanotubes(CNTs),in which a CNT appears to break and has a fracture but is actually intact.This imaging approach provides the values of the bending energies of the CNTs with an accuracy of 1–50 eV.Furthermore,this imaging approach can manipulate the bending shapes and energies of CNTs.This work presents a protocol for bending analysis and manipulation,which are vital to fundamental and applied studies of 1D nanomaterials.展开更多
基金supported in part by the National Science and Technol-ogy Major Project(No.2021ZD0111502)the National Nat-ural Science Foundation of China(Nos.62176147,62476163)+2 种基金the Science and Technology Planning Project of Guangdong Province of China(Nos.2022A1515110660,2021JC06X549)the STU Scientific Research Foundation for Talents(No.NTF21001)Guangdong Basic and Applied Basic Research Foundation(No.2023B1515120020)。
文摘The complexity of unknown scenarios and the dynamics involved in target entrapment make designing control strategies for swarm robots a formidable task,which in turn impacts their efficiency in complex and dynamic settings.To address these challenges,this paper introduces an adaptive swarm robot entrapment control model grounded in the transformation of gene regulatory networks(AT-GRN).This innovative model enables swarm robots to dynamically adjust entrap-ment strategies by assessing current environmental conditions via real-time sensory data.Further-more,an improved motion control model for swarm robots is designed to dynamically shape the for-mation generated by the AT-GRN.Through two sets of rigorous experimental environments,the proposed model significantly enhances the trapping performance of swarm robots in complex envi-ronments,demonstrating remarkable adaptability and stability.
基金suppor ted by the National Key Research and Development Program of China (2022YFC2702502)the National Natural Science Foundation of China (32170742, 31970646, and 32060152)+7 种基金the Start Fund for Specially Appointed Professor of Jiangsu ProvinceHainan Province Science and Technology Special Fund (ZDYF2021SHFZ051)the Natural Science Foundation of Hainan Province (820MS053)the Start Fund for High-level Talents of Nanjing Medical University (NMUR2020009)the Marshal Initiative Funding of Hainan Medical University (JBGS202103)the Hainan Province Clinical Medical Center (QWYH202175)the Bioinformatics for Major Diseases Science Innovation Group of Hainan Medical Universitythe Shenzhen Science and Technology Program (JCYJ20210324140407021)
文摘The application of single-cell RNA sequencing(scRNA-seq)in biomedical research has advanced our understanding of the pathogenesis of disease and provided valuable insights into new diagnostic and therapeutic strategies.With the expansion of capacity for high-throughput scRNA-seq,including clinical samples,the analysis of these huge volumes of data has become a daunting prospect for researchers entering this field.Here,we review the workflow for typical scRNA-seq data analysis,covering raw data processing and quality control,basic data analysis applicable for almost all scRNA-seq data sets,and advanced data analysis that should be tailored to specific scientific questions.While summarizing the current methods for each analysis step,we also provide an online repository of software and wrapped-up scripts to support the implementation.Recommendations and caveats are pointed out for some specific analysis tasks and approaches.We hope this resource will be helpful to researchers engaging with scRNA-seq,in particular for emerging clinical applications.
基金the financial support from Shenzhen Science and Technology Program (JCYJ20210324142210027, X.D.)the National Natural Science Foundation of China (52103136, 22275028, U22A20153, 22102017, 22302033, and 52106194)+5 种基金the Sichuan Outstanding Young Scholars Foundation (2021JDJQ0013)Natural Science Foundation of Sichuan Province (2022NSFSC1271)Sichuan Science and Technology Program (2023JDRC0082)“Oncology Medical Engineering Innovation Foundation” project of University of Electronic Science and Technology of China and Sichuan Cancer Hospital (ZYGX2021YGCX009)“Medical and Industrial Cross Foundation” of University of Electronic Science and Technology of China and Sichuan Provincial People’s Hospital (ZYGX2021YGLH207)Shandong Key R&D grant (2022CXGC010509)。
文摘Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them to retain spherical shapes, and the low adhesion of SHS facilitates easy droplet collection when tilting the substrate. These characteristics make SHS suitable for a wide range of applications. One particularly promising application is the fabrication of microsphere and supraparticle materials. SHS offers a distinct advantage as a universal platform capable of providing customized services for a variety of microspheres and supraparticles. In this review, an overview of the strategies for fabricating microspheres and supraparticles with the aid of SHS, including cross-linking process, polymer melting,and droplet template evaporation methods, is first presented. Then, the applications of microspheres and supraparticles formed onto SHS are discussed in detail, for example, fabricating photonic devices with controllable structures and tunable structural colors, acting as catalysts with emerging or synergetic properties, being integrated into the biomedical field to construct the devices with different medicinal purposes, being utilized for inducing protein crystallization and detecting trace amounts of analytes. Finally,the perspective on future developments involved with this research field is given, along with some obstacles and opportunities.
基金the financial support by the National Natural Science Foundation of China (22371010, 21771017, and 51702009)the "Hundred Talents Program" of the Chinese Academy of Sciences, the Fundamental Research Funds for the Central Universities+1 种基金the Shenzhen Science and Technology Program (JCYJ20210324115412035, JCYJ2021-0324123202008, JCYJ20210 324122803009 and ZDSYS20210813095534001)the Guangdong Basic and Applied Basic Research Foundation (2021A1515110880)
文摘The use of redox-active organic electrode materials in energy storage is restricted due to their inferior solvent resistance,abysmal conductivity,and the resultant low practical capacity.To address these issues,a class of bipolar p-phenylenediimidazole-based small-molecule compounds are designed and fabricated.Theπ-conjugated backbone of these small molecules allows for electron delocalization on a big conjugation plane,endowing them with good conductivity and reaction reversibility.Furthermore,when the para-positions of phenylene are occupied by hydroxyl groups,as-formed intramolecular hydrogen bonds(N-H...O)between phenolic hydroxyl groups and the–NH groups of imidazole rings further enhance the structural planarity,resulting in higherπ-conjugation degree and better conductivity,and thus higher utilization of active sites and electrode capacity,proved by both experimental results and theoretical calculations.The optimized composite electrode DBNQ@rGO-45 shows a high specific capacity(∼308 mA h g^(−1)at 100 mA g^(−1))and a long cycling stability(112.9 mA h g^(−1)after 6000 cycles at 2000 mA g^(−1)).The significantly better electrochemical properties for hydroxyl group-containing compounds than those without hydroxyl groups attributed to intramolecular hydrogen bond-induced conjugation enhancement will inspire the structure design of organic electrodes for better energy storage.
基金supported in part by the Guangdong Natu-ral Science Foundation(No.2022A1515011396)in part by the National Key R and D Program of China(No.2021ZD0111502)in part by the Science Research Startup Foundation of Shantou University(No.NTF20021)。
文摘Strabismus significantly impacts human health as a prevalent ophthalmic condition.Early detection of strabismus is crucial for effective treatment and prognosis.Traditional deep learning models for strabismus detection often fail to estimate prediction certainty precisely.This paper employed a Bayesian deep learning algorithm with knowledge distillation,improving the model's performance and uncertainty estimation ability.Trained on 6807 images from two tertiary hospitals,the model showed significantly higher diagnostic accuracy than traditional deep-learning models.Experimental results revealed that knowledge distillation enhanced the Bayesian model’s performance and uncertainty estimation ability.These findings underscore the combined benefits of using Bayesian deep learning algorithms and knowledge distillation,which improve the reliability and accuracy of strabismus diagnostic predictions.
基金support from the Scientific and Technological Bases and Talents of Guangxi(Guike AD21238027)support from Doctoral and master's degree innovation projects+1 种基金T.Liu thanks the Training Project of High-level Professional and Technical Talents of Guangxi University and Natural Science and Technology Innovation Development Multiplication Program of Guangxi University(2022BZRC006)D.Xue thanks the support from International(regional)Cooperation and Exchange Projects of the National Natural Science Foundation of China(52220105010).
文摘Purification of emerging heavy metal antimony contaminated water based on advanced ingenious strategies.An activated modified coconut shell charcoal(CSC)was synthesized and evaluated as a substrate-supported loaded organic photovoltaic material,PM6:PYIT:PM6-b-PYIT,to prepare a surprisingly highly efficient,stable,environmentally friendly,and recyclable organic photocatalyst(CSC–N–P.P.P),which showed excellent effects on the simultaneous removal of Sb(Ⅲ)and Sb(Ⅴ).The removal efficiency of CSC-N-P.P.P on Sb(Ⅲ)and Sb(Ⅴ)reached an amazing 99.9%in quite a short duration of 15 min.At the same time,under ppb level and indoor visible light(~1 W m^(2)),it can be treated to meet the drinking water standards set by the European Union and the U.S.National Environmental Protection Agency in 5 min,and even after 25 cycles of recycling,the efficiency is still maintained at about 80%,in addition to the removal of As(Ⅲ),Cd(Ⅱ),Cr(Ⅵ),and Pb(Ⅱ)can also be realized.The catalyst not only solves the problems of low reuse rate,difficult structure adjustment and high energy consumption of traditional photocatalysts but also has strong applicability and practical significance.The pioneering approach provides a much-needed solution strategy for removing highly toxic heavy metal antimony pollution from the environment.
基金the National Natural Science Foundation of China(22175029 and 62104031)the Sichuan Science and Technology Program(2019YJ0162)+3 种基金the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices(KFJJ202109)the Natural Science Foundation of Shenzhen Innovation Committee(JCYJ20210324135614040)the Technical Field Funds of 173 Project(2021-JCJQ-JJ-0663)the Fundamental Research Funds for the Central Universities of China(ZYGX2021J010 and Y030202059018023)for financial support。
文摘Lithium bis(trifluoromethanesulfonyl)imide(Li-TFSI)/4-tert-butylpyridine(tBP)is a classic doping system for the hole transport material Spiro-OMeTAD in typical n-i-p structure perovskite solar cells(PSCs),but this system will cause many problems such as high hygroscopicity,Li+migration,pinholes and so on,which hinder PSC from maintaining high efficiency and stability for long-term.In this work,an effective strategy is demonstrated to improve the performance and stability of PSC by replacing t BP with 12-crown-4.The chelation of 12-crown-4 with Li+not only improves the doping effect of Li-TFSI,but also perfectly solves the problems caused by the Li-TFSI/tBP system.The PSC based on this strategy achieved a champion power conversion efficiency(PCE)over 21%,which is significantly better than the pristine device(19.37%).More importantly,the without encapsulated device based on Li-TFSI/12-crown-4 still maintains 87%of the initial PCE even after 60 days exposure in air,while the pristine device only maintains 22%of the initial PCE under the same aging conditions.This strategy paves a novel way for constructing efficient and stable PSCs.
基金supported by the National Natural Science Foundation of China(Nos.22075211 and 51971157)the Guangzhou Basic&Applied Basic Research Project(No.202201011853)+2 种基金the Shenzhen Science and Technology Program(Nos.JCYJ20210324115412035,JCYJ20210324123202008,JCYJ20210324122803009,and ZDSYS20210813095534001)the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110880)the Tianjin Science Fund for Distinguished Young Scholars(No.19JCJQJC61800).
文摘Electrocatalytic nitrate reduction reaction(NO_(3)RR)offers a unique rationale for green NH_(3) synthesis,yet the lack of high-efficiency NO_(3)RR catalysts remains a great challenge.In this work,we show that Au nanoclusters anchored on TiO_(2) nanosheets can efficiently catalyze the conversion of NO_(3)RR-to-NH_(3) under ambient conditions,achieving a maximal Faradic efficiency of 91%,a peak yield rate of 1923μg·h^(-1)·mgcat.-1,and high durability over 10 consecutive cycles,all of which are comparable to the recently reported metrics(including transition metal and noble metal-based catalysts)and exceed those of pristine TiO_(2).Moreover,a galvanic Zn-nitrate battery using the catalyst as the cathode was proposed,which shows a power density of 3.62 mW·cm^(-2) and a yield rate of 452μg·h^(-1)·mgcat.-1.Theoretical simulations further indicate that the atomically dispersed Au clusters can promote the adsorption and activation of NO_(3)-species,and reduce the NO_(3)RR-to-NH_(3) barrier,thus leading to an accelerated cathodic reaction.This work highlights the importance of metal clusters for the NH_(3) electrosynthesis and nitrate removal.
基金the National Natural Science Foundation of China(Nos.22075211 and 22275166)the Zhejiang Provincial Natural Science Foundation of China(No.LZ21E020003).
文摘The coupling of energy-saving small molecule conversion reactions and hydrogen evolution reaction(HER)in seawater electrolytes can reduce the energy consumption of seawater electrolysis and mitigate chlorine corrosion issues.However,the fabrication of efficient multifunctional catalysts for this promising technology is of great challenge.Herein,a heterostructured catalyst comprising CoP and Ni_(2)P on nickel foam(CoP/Ni_(2)P@NF)is reported for hydrazine oxidation(HzOR)-assisted alkaline seawater splitting.The coupling of CoP and Ni_(2)P optimizes the electronic structure of the active sites and endows excellent electrocatalytic performance for HzOR and HER.Impressively,the two-electrode HzOR-assisted alkaline seawater splitting(OHzS)cell based on the CoP/Ni_(2)P@NF required only 0.108 V to deliver 100 mA·cm^(−2),much lower than 1.695 V for alkaline seawater electrolysis cells.Moreover,the OHzS cell exhibits satisfactory stability over 48 h at a high current density of 500 mA·cm^(−2).Furthermore,the CoP/Ni_(2)P@NF heterostructured catalyst also efficiently catalyzed glucose oxidation,methanol oxidation,and urea oxidation in alkaline seawater electrolytes.This work paves a path for high-performance heterostructured catalyst preparation for energy-saving seawater electrolysis for H_(2) production.
文摘Chemical vapor deposition is considered as the most hopeful method for the synthesis of large-area high-quality hexagonal boron nitride on the substrate of catalytic metal. However, the size the hexagonal boron nitride films are limited to the size of growth chamber, which indicates a lower production efficiency. In this paper, the utilization efficiency of growth chamber is highly improved by alternately stacking multiple pieces of Cu foils and carbon fiber surface felt with porous structure. Uniform and continuous hexagonal boron nitride films are prepared on Cu foils through chemical vapor deposition utilizing ammonia borane as the precursor. This work develops a simple and practicable method for high-throughput preparation of hexagonal boron nitride films, which could contribute to the industrial application of hexagonal boron nitride. .
基金National Key Research and Development Program of China(2023YFB3811300,2023YFB3811305)National Natural Science Foundation of China(62235004,61831012,62371258,62311530115)+1 种基金Sichuan Province Science and Technology Support Program(2021JDTD0026,2023JDGD0012)Shenzhen Science and Technology Program((2021)105)。
文摘Yttrium iron garnet(YIG)is a promising material for various terahertz applications due to its special optical properties.At present,a high-quality YIG wafer is the desire of terahertz communities and it is still challenging to prepare substrate-free YIG single crystal films.In this work,we prepared wafer-level substrate-free La:YIG single crystal films,for the first time,to our knowledge.Terahertz optical and magneto-optical properties of La:YIG films were characterized by terahertz time domain spectroscopy(THz-TDS).Results show that the as-prepared La:YIG film has an insertion loss of less than 3 dB and a low absorption coefficient of less than10 cm-1below 1.6 THz.Benefitting from the thickness of the substrate-free YIG films and low insertion loss,their terahertz properties could be further manipulated by simply using a wafer-stacking technique.When four La:YIG films were stacked,there was an insertion loss of less than 10 dB in the range of 0.1-1.2 THz.The Faraday rotation angle of the four-layer-stacked La:YIG films reached 19°,and the isolation could reach17 dB.By further increasing the stacking number to eight pieces,a remarkable Faraday rotation angle of45°was achieved with an isolation of 23 dB,which is important for practical application in the THz band.This material may provide a milestone opportunity to make various non-reciprocal devices,such as isolators and phase shifters.
基金supported by National Natural Science Founda-tion of China(No.52172138)Shenzhen Science and Technology Program(No.(2021)105).
文摘Chemical vapor deposition(CVD)is the most promising method for the preparation of high-quality and large-area graphene films,especially the epitaxial growth of graphene on large-area single-crystal Cu foils.While single-crystal Cu foils are normally achieved by thermally annealing the commercial poly-crystalline Cu foils,their size and therefore the size of graphene films grown on them are limited to the size of the reaction chamber.We report a simple and feasible method to prepare large-area Cu foils with decimeter grains by thermally annealing the rolled-up Cu foils,where the Cu layers are separated by thin porous carbon fiber cloths.The carbon fiber cloths prevent Cu layers from sticking to each other at high temperatures while do not block the gas transportation.In such a way,the utilization efficiency of the reaction chamber is significantly improved,e.g.,0.2 m×(1e2)m Cu foils can be processed even in a 5 cm diameter quartz tube chamber.High-quality graphene films grown on such Cu foils are then demon-strated.This method may be suitable for the annealing of other metal foils to enlarge grain size and the synthesis of other two-dimensional materials on them such as h-BN.
文摘Currently,edge Artificial Intelligence(AI)systems have significantly facilitated the functionalities of intelligent devices such as smartphones and smart cars,and supported diverse applications and services.This fundamental supports come from continuous data analysis and computation over these devices.Considering the resource constraints of terminal devices,multi-layer edge artificial intelligence systems improve the overall computing power of the system by scheduling computing tasks to edge and cloud servers for execution.Previous efforts tend to ignore the nature of strong pipelined characteristics of processing tasks in edge AI systems,such as the encryption,decryption and consensus algorithm supporting the implementation of Blockchain techniques.Therefore,this paper proposes a new pipelined task scheduling algorithm(referred to as PTS-RDQN),which utilizes the system representation ability of deep reinforcement learning and integrates multiple dimensional information to achieve global task scheduling.Specifically,a co-optimization strategy based on Rainbow Deep Q-Learning(RainbowDQN)is proposed to allocate computation tasks for mobile devices,edge and cloud servers,which is able to comprehensively consider the balance of task turnaround time,link quality,and other factors,thus effectively improving system performance and user experience.In addition,a task scheduling strategy based on PTS-RDQN is proposed,which is capable of realizing dynamic task allocation according to device load.The results based on many simulation experiments show that the proposed method can effectively improve the resource utilization,and provide an effective task scheduling strategy for the edge computing system with cloud-edge-end architecture.
基金supported by the National Key R&D Program of China under Grant 2020YFB1806904by the National Natural Science Foundation of China under Grants 61872416,62171189,62172438 and 62071192+1 种基金by the Fundamental Research Funds for the Central Universities of China under Grant 2019kfyXJJS017,31732111303,31512111310by the special fund for Wuhan Yellow Crane Talents(Excellent Young Scholar).
文摘Federated Learning(FL)is a new computing paradigm in privacy-preserving Machine Learning(ML),where the ML model is trained in a decentralized manner by the clients,preventing the server from directly accessing privacy-sensitive data from the clients.Unfortunately,recent advances have shown potential risks for user-level privacy breaches under the cross-silo FL framework.In this paper,we propose addressing the issue by using a three-plane framework to secure the cross-silo FL,taking advantage of the Local Differential Privacy(LDP)mechanism.The key insight here is that LDP can provide strong data privacy protection while still retaining user data statistics to preserve its high utility.Experimental results on three real-world datasets demonstrate the effectiveness of our framework.
基金supported by the National Key Research and Development Program of China(2020YFB1807500), the National Natural Science Foundation of China (62072360, 62001357, 62172438,61901367), the key research and development plan of Shaanxi province(2021ZDLGY02-09, 2020JQ-844)the Natural Science Foundation of Guangdong Province of China(2022A1515010988)+2 种基金Key Project on Artificial Intelligence of Xi'an Science and Technology Plan(2022JH-RGZN-0003)Xi'an Science and Technology Plan(20RGZN0005)the Xi'an Key Laboratory of Mobile Edge Computing and Security (201805052-ZD3CG36).
文摘Academic and industrial communities have been paying significant attention to the 6th Generation (6G) wireless communication systems after the commercial deployment of 5G cellular communications. Among the emerging technologies, Vehicular Edge Computing (VEC) can provide essential assurance for the robustness of Artificial Intelligence (AI) algorithms to be used in the 6G systems. Therefore, in this paper, a strategy for enhancing the robustness of AI model deployment using 6G-VEC is proposed, taking the object detection task as an example. This strategy includes two stages: model stabilization and model adaptation. In the former, the state-of-the-art methods are appended to the model to improve its robustness. In the latter, two targeted compression methods are implemented, namely model parameter pruning and knowledge distillation, which result in a trade-off between model performance and runtime resources. Numerical results indicate that the proposed strategy can be smoothly deployed in the onboard edge terminals, where the introduced trade-off outperforms the other strategies available.
基金National Key R&D Program of China(No.2021YFB2401900).
文摘Transition metal sulfides demonstrate attractive potential for sodium storage owing to their high theoretical specific capacity and high reserve.However,the low conductivity and volume expansion deteriorate their high-rate performance and cycling stability.In this work,we construct NiS_(2)/FeS heterostructure by growing Ni-based layered double hydroxide nanosheets on Fe-based Prussian Blue nanocrystals followed by gaseous sulfurization,giving rise to flower-like NiS_(2)/FeS nanoparticles.The as-prepared nanocomposite exhibits good rate performance of 156 mAh g^(−1) at 50 A g^(-1) and long cycle life of 606 mAh g^(−1) at 5 A g^(−1) after 1,000 cycles,which are superior to the heterostructure-free counterpart of NiS_(2) and FeS.Density functional theory calculation further verifies that the enhanced electrochemical performance of NiS_(2)/FeS is due to the existence of interface derived from the heterostructure.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.22075211,22109118,22275166,21601136,and 51971157)Tianjin Science Fund for Distinguished Young Scholars(No.19JCJQJC61800)+1 种基金Shenzhen Science and Technology Program(Nos.JCYJ20210324123202008,JCYJ20210324115412035,and ZDSYS20210813095534001)Guangdong Foundation for Basic and Applied Basic Research Program(No.2021A1515110880).
文摘As an ideal carbon-free energy carrier,ammonia plays an indispensable role in modern society.The conventional industrial synthesis of NH3 by the Haber-Bosch technique under harsh reaction conditions results in serious energy consumption and environmental pollution.Therefore,it is essential to develop NH3 synthesis tactics under benign conditions.Electrochemical synthesis of NH_(3) has the advantages of mild reaction conditions and environmental friendliness,and has become a hotspot for research in recent years.It has been reported that zinc-nitrogen batteries(ZNBs),such as Zn-N_(2),Zn-NO,Zn-NO_(3)^(-),and Zn-NO_(2)^(-)batteries,can not only reduce nitrogenous species to ammonia but also have concomitant power output.However,the common drawbacks of these battery systems are unsatisfactory power density and ammonia production.In this review,the latest progress of ZNBs including the reaction mechanism of the battery and reactor design principles is systematically summarized.Subsequently,active site engineering of cathode catalysts is discussed,including vacancy defects,chemical doping,and heterostructure engineering.Finally,some insights are provided to improve the performance of ZNBs from a practical perspective of view.
基金National Natural Science Foundation of China,Grant/Award Numbers:52021001,61825102,62001096,U21A20460Science and Technology Department of Sichuan Province,Grant/Award Number:2021YJ0362+1 种基金UESTC,Grant/Award Numbers:ZYGX2020ZB041,ZYGX2021YGLH002,ZYGX2021YGLH007Science and Technology Major Project of Tibetan Autonomous Region of China,Grant/Award Number:XZ202201ZD0001G。
文摘1|INTRODUCTION With the rapid developments in intelligent medical care and interdisciplinary science,innovative flexible bioelectronics(FBEs)are emerging for monitoring health,diagnosing and treating diseases,and even cancer therapy.FBEs subvert physical form and break through the bottleneck of traditional rigid electronics.
基金This work was financially supported by the National Key R&D Program of China(No.2021YFB2401900).
文摘Li4Ti5O12 is considered as a safe and stable anode material for high-power lithium-ion batteries due to its“zero-strain”characteristic during the charge/discharge.However,the intrinsically low electronic conductivity leads to a deterioration in highrate performance,impeding its intensive application.Herein,the Li4Ti5O12/rutile TiO2(LTO/RT)heterostructured nanorods with tunable oxide phases have been in-situ fabricated by annealing the electrospun nanofiber precursor.By constructing such a heterostructured interface,the as-prepared sample delivers a high capacity of 160.3 mAh·g–1 at 1 C after 200 cycles,125.5 mAh·g–1 at 10 C after 500 cycles and a superior capacity retention of 90.3%after 1,000 cycles at 30 C,outperforming the heterostructure-free counterparts of pure LTO,RT and the commercial LTO product.Density Functional Theory calculation suggests a possible synergistic effect of the LTO/RT interface that would improve the electronic conductivity and Li-ion diffusion.
基金the National Natural Science Foundation of China(Nos.51971157 and 12102307)Shenzhen Science and Technology Program(Nos.JCYJ20210324115412035 and ZDSYS20210813095534001)+1 种基金Tianjin Science Fund for Distinguished Young Scholars(No.19JCJQJC61800)the Natural Science Foundation of Hubei Province,China(No.2021CFB138).
文摘One-dimensional(1D)nanomaterials easily bend due to perturbations from their surroundings or their own behaviors.This phenomenon not only impacts the performances of various devices but has also been employed to develop a variety of new functional devices,in which the bending energies of the nanomaterials determine the device performances.However,measuring the energies of such nanomaterials is extremely difficult.Herein,pseudo-break imaging of 1D nanomaterials has been proposed and realized on individual carbon nanotubes(CNTs),in which a CNT appears to break and has a fracture but is actually intact.This imaging approach provides the values of the bending energies of the CNTs with an accuracy of 1–50 eV.Furthermore,this imaging approach can manipulate the bending shapes and energies of CNTs.This work presents a protocol for bending analysis and manipulation,which are vital to fundamental and applied studies of 1D nanomaterials.