The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristi...The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristics of metallogenic period quartz veins were studied to reveal the ore-forming fluid features.Laser Raman analysis indicates that the ore-forming fluids is a H_(2)O-NaCl-CH_(4)(-CO_(2))system.Fluid inclusions microthermometry shows a homogenization temperature of 181-375°C and a salinity of 5.26%-16.99%for the disseminated-banded Cu-Zn mineralization;but a homogenization temperature of 142-343°C and a salinity of 5.41%-21.19%for the massive-veined Cu-Zn mineralization.These features suggest a medium-high temperature and a medium salinity for the ore-forming fluids.H-O isotopic data indicates that the ore-forming fluids were mainly from the metamorphic and magmatic water,plus minor formation water.And sulfur isotopic data indicates that sulfur was mainly derived from the formation and magmatic rocks.Metallogenesis of the disseminated-banded mineralization was mainly correlated with fluid mixing and water-rock reaction;whereas that of the massive-veined mineralization was mainly correlated with fluid boiling.The genetic type of the deposit is a medium-high temperature hydrothermal deposit related to magmatism and controlled by shear zones.This study is beneficial to understand the stratiform copper deposit.展开更多
The original online version of this article was revised.The first author is“ZHANG Weng-xiang”in the original article.The first author’s name has been corrected to“ZHANG Wen-xiang”.
The Dashuigou tellurium(Te) deposit in Shimian city, Sichuan Province is the only known independent Te ore deposit in China. Samples were collected by1/50,000 stream sediment survey and analyzed by inductively coupled...The Dashuigou tellurium(Te) deposit in Shimian city, Sichuan Province is the only known independent Te ore deposit in China. Samples were collected by1/50,000 stream sediment survey and analyzed by inductively coupled plasma–mass spectrometry, X-ray fluorescence spectrometry, emission spectrometry, and atomic absorption spectroscopy. An ore prospecting model for the Dashuigou Te deposit was then established. In the Dashuigou area, bismuth(Bi), Te, and gold(Au) concentrations in stream sediment samples displayed weak-positive anomalies, while silver(Ag) displayed a weaknegative anomaly. Bi, Te, Ag, and Au anomalies are regarded as indicators of Te deposits; the greater the ratio of Te+Bi/Au+Ag, the larger the possibility of an independent tellurobismuthite deposit. The ratio calculated from our samples is 7.288. Five locations were identified for prospecting for Te minerals by this model, including the northern part of the Dashuigou Te deposit, Majiagou,Tizigou, southeastern Miaoping, and northern Baishuihe.These five regions are within the Dashuigou dome anticline, the exposed strata of which are controlled by tracing the tensile shear fracture; the metallogenic geological conditions and geochemical characteristics are the same as those of the known Dashuigou Te deposit. Already, Te–Bi veins have been found in some of these areas.展开更多
A massive rock and ice avalanche occurred on the western slope of the Ronti Gad valley in the northern part of Chamoli,Indian Himalaya,on 7 February 7,2021.The avalanche on the high mountain slope at an elevation of 5...A massive rock and ice avalanche occurred on the western slope of the Ronti Gad valley in the northern part of Chamoli,Indian Himalaya,on 7 February 7,2021.The avalanche on the high mountain slope at an elevation of 5600 m above sea level triggered a long runout disaster chain,including rock mass avalanche,debris avalanche,and flood.The disaster chain had a horizontal travel distance of larger than 17,600 m and an elevation difference of 4300 m.In this study,the disaster characteristics and dynamic process were analyzed by multitemporal satellite imagery.The results show that the massive rock and ice avalanche was caused by four large expanding discontinuity planes.The disaster chain was divided into five zones by satellite images and field observation,including source zone,transition zone,dynamic entrainment zone,flow deposition zone,and flood zone.The entrainment effect and melting water were recognized as the main causes of the long-runout distance.Based on the seismic wave records and field videos,the time progress of the disaster was analyzed and the velocity of frontal debris at different stages was calculated.The total analyzed disaster duration was 1247 s,and the frontal debris velocity colliding with the second hydropower station was approximately 23 m/s.This study also carried out the numerical simulation of the disaster by rapid mass movement simulation(RAMMS).The numerical results reproduced the dynamic process of the debris avalanche,and the mechanism of long-runout avalanche was further verified by parametric study.Furthermore,this study discussed the potential causes of disaster and flood and the roles of satellite images and seismic networks in the monitoring and early-warning.展开更多
A large number of loose piles formed by mountain hazards are highly susceptible to hydraulic erosion under rainfall conditions.The use of ecological substrate materials for erosion control and ecological restoration o...A large number of loose piles formed by mountain hazards are highly susceptible to hydraulic erosion under rainfall conditions.The use of ecological substrate materials for erosion control and ecological restoration of gravel soil slopes has become a current research hotspot and the study difficulty.The post-earthquake slump accumulation gravel soil in Jiuzhaigou was selected as the research object,and the self-developed modified glutinous rice-based material was used to reinforce the gravel soil.The variable slope flume erosion test and rainfall simulation test were carried out to study the water erosion resistance of the material reconstructed soil under the influence of runoff erosion and raindrop splash erosion.The results show that:As the material content reached 12.5%,the reconstructed soil did not disintegrate after 24 hours of immersion,the internal friction angle was increased by 42.26%,and the cohesion was increased by 235.5%,which played a significant reinforcement effect.In the process of slope erosion,the soil rill erodibility parameter Kr was only 3‰ of the gravel soil control group,the critical shear force τ increased by 272%,and the soil erosion resistance was significantly improved.In the process of rainfall and rainfall on the slope,the runoff intensity of the reconstructed soil was stable,and the ability to resist runoff erosion and raindrop splash erosion was enhanced.The maximum value of soil loss rate on different slope slopes is 0.02-0.10 g·m^(-2)s^(-1),which is significantly lower than that of the control group and has better erosion reduction effect.展开更多
Tibetan Plateau is known as the roof of the world.Due to the continuous uplift of the Tibetan Plateau,many active fault zones are present.These active fault zones such as the Anninghe fault zone have a significant inf...Tibetan Plateau is known as the roof of the world.Due to the continuous uplift of the Tibetan Plateau,many active fault zones are present.These active fault zones such as the Anninghe fault zone have a significant influence on the formation of special geomorphology and the distribution of geological hazards at the eastern edge of the Tibetan Plateau.The Anninghe fault zone is a key part of the Y-shaped fault pattern in the Sichuan-Yunnan block of China.In this paper,high-resolution topographic data,multitemporal remote sensing images,numerical calculations,seismic records,and comprehensive field investigations were employed to study the landslide distribution along the active part of the Anninghe.The influence of active faults on the lithology,rock mass structures and slope stress fields were also studied.The results show that the faults within the Anninghe fault zone have damaged the structure and integrity of the slope rock mass,reduced the mechanical strength of the rock mass and controlled the slope failure modes.The faults have also controlled the stress field,the distribution of the plastic strain zone and the maximum shear strain zone of the slope,thus have promoted the formation and evolution of landslides.We find that the studied landslides are linearly distributed along the Anninghe fault zone,and more than 80%of these landslides are within 2–3 km of the fault rupture zone.Moreover,the Anninghe fault zone provides abundant substance for landslides or debris flows.This paper presents four types of sliding mode control of the Anninghe fault zone,e.g.,constituting the whole landslide body,controlling the lateral boundary of the landslide,controlling the crown of the landslide,and constituting the toe of the landslide.The results presented merit close attention as a valuable reference source for local infrastructure planning and engineering projects.展开更多
Based on the 16 scenes GF-1 satellite multi-spectral remote sensing images,through the adoption of data processing methods including orthorectification,geometric rectification,data fusion and image mosaic,integrated w...Based on the 16 scenes GF-1 satellite multi-spectral remote sensing images,through the adoption of data processing methods including orthorectification,geometric rectification,data fusion and image mosaic,integrated with field surveys,the remote sensing interpretation signs for the inland wetland types have been built,and the remote sensing survey of inland wetlands in Yadong region has been initiated,with six types of inland wetlands recognized in Yadong region,namely permanent rivers,seasonal rivers,lakes,salt lakes,alpine meadows,and inundated land.The spatial distribution characteristics and the spreading rules of these wetlands have also been revealed.Based on full understanding of the overall characteristics of the inland wetlands in the Yadong region,using the three phases of TM images acquired in 1989,2003 and 2008 as well as the PMS2 data gathered by GF-1 in 2014,and the wide-range data(WFV3)gathered by GF-1 in 2020.As to the typical salt lakes,a long-time salt lakes transition study was carried out.The results show that the typical salt lakes in Yadong have been shrinking in the past three decades.The average annual shrinkage of Duoqing Co(Co means lake in Tibetan)was stronger than that of Gala Co,which are respective 87.30 hectares(usually short as ha;1 ha equals to 0.01 km^(2))/a and 24.20 ha/a;the shrinkage degree of Gala Co was higher than that of Duoqing Co,shrank by 59.27% and 35.73% respectively.Based on the remote sensing survey results and an integrated analysis of the predecessors’researchers,the reason for the shrinkage of the salt lakes is more inclined to geological factors.Geological process is manifested by a series of extensional faults at the bottom of the lake basin generated from tectonic activities,providing fluid infiltration channels,and inducing the eventual leakage of lake water to the lower strata.The result provides an important instance for understanding the evolution characteristics of wetlands and salt lakes in specific environment of the Tibetan Plateau.展开更多
Despite the presence of a large area of andesite in the Sayaburi Province of Laos, it has received very little attention. Based on a combination of detailed field investigations, geochronology and geochemical analysis...Despite the presence of a large area of andesite in the Sayaburi Province of Laos, it has received very little attention. Based on a combination of detailed field investigations, geochronology and geochemical analysis, this study aims to explore the geochemical, Sr-Nd isotopic, and source rock characteristics, as well as the genesis and tectonic setting of the andesite in this region. In the Sayaburi Province, the andesite zircon U-Pb age is(241.2±1.2) Ma. The andesite rock is classified in the metaluminous-weak peraluminous calc-alkaline series. The light rare-earth elements(LREEs) are enriched and characterized by clear fractionation, whereas heavy rare-earth elements(HREEs) are relatively depleted and have no signs of fractionation. The average δEu is 0.96 with weak-or-no Eu anomalies. It is enriched in large ion lithophile elements such as Rb and K, while depleted in high field-strength elements such as Nb, Ta, P and Ti. For andesites in the Sayaburi Province, the(87Rb/86Sr)t value ranges in 0.702849-0.704687, the εNd(t) value is between 3.53 and 4.77, the tDM(t) value ranges in 633-835 Ma, and the tDM2(t) ranges in 625–724 Ma. The results based on the synthesis of petrology, geochemistry, and regional tectonic background studies show that 1) the andesitic magma source in the study area is an enriched mantle, which is modified by subduction zone fluids;2) the geotectonic background environment of the andesite in Sayaburi area is the continental island arc environment and related to the tectonic evolution of Jinghong–Nan–Uttaradit back-arc basin, which reflects that the magmatic source is enriched with a mantle wedge component modified by a subduction zone fluid(or melt).展开更多
The Xiuwacu deposit is a large magmatic hydrothermal Mo-W-Cu deposit, and also a typical representative of the late Triassic mineralization in Geza Arc (Lai AQ et al., 2016;Liu XL et al., 2017). The Xiuwacu pluton int...The Xiuwacu deposit is a large magmatic hydrothermal Mo-W-Cu deposit, and also a typical representative of the late Triassic mineralization in Geza Arc (Lai AQ et al., 2016;Liu XL et al., 2017). The Xiuwacu pluton intruded into the Lamaya Formation, and contains two periods of rocks bounded by intrusive contact. Nonetheless, most of the intrusive boundaries were superposed by later fault structures.展开更多
Through the study of the geological conditions of potash deposits in China from recent years,a new understanding of potash theories has arisen that appropriate Chinese geological features.Important progress and substa...Through the study of the geological conditions of potash deposits in China from recent years,a new understanding of potash theories has arisen that appropriate Chinese geological features.Important progress and substantial breakthroughs have been gained in the direction and management of potash prospecting: (1) Important breakthroughs in continental potassium prospecting:The "Quaternary gravel type deep potassium rich brine metallogenic model in western Qaidam" ensures Quaternary deep potassium rich brine prospecting will grow new KCl resources by 350 Mt,providing a resource guarantee for meeting the Chinese demand for sylvite.(2) The Marine facies potash prospecting shows good prospects: the determination of the new type of Triassic polyhalite potash ore deposits in Sichuan provide an important scientific basis for the establishment of exploration planning and the selection of exploration target areas for polyhalite minerals in the Sichuan Basin;The "two-storey potash deposits model" in southwestern Yunnan has been confirmed,which indicates prospects for the exploration of potash in the deeper Marine facies in southwestern Yunnan are likely to be successful.The discovery of a high concentration of rich bromite salt and potash salt in the Paleogene of the Kuqa depression and the southwestern Tarim region provides strong support for the likelihood large-scale potash deposits exist in these regions.展开更多
Objective The giant Nyainqentanglha granitic batholith, located in the Lhasa Terrane, is the youngest granite pluton emplaced at 18.3–11.0 Ma during the Miocene epoch. A series of NE-striking sinistral normal ductile...Objective The giant Nyainqentanglha granitic batholith, located in the Lhasa Terrane, is the youngest granite pluton emplaced at 18.3–11.0 Ma during the Miocene epoch. A series of NE-striking sinistral normal ductile shear zones developed on its north and south sides. The ductile shear zones are considered to be the western boundary faults of the Yadong-Gulu rift system and have the potential to provide critical temporal constraints for the large-scale East–West extension event in the Tibetan Plateau.展开更多
The dynamic effect is a very important issue widely debated by scholars when studying the genetic and disaster-causing mechanisms of earthquake-triggered landslides.First,the dynamic effect mechanism and phenomena of ...The dynamic effect is a very important issue widely debated by scholars when studying the genetic and disaster-causing mechanisms of earthquake-triggered landslides.First,the dynamic effect mechanism and phenomena of earthquake-triggered landslides were summarized in this paper.Then,the primary types of dynamic effects were further used to interpret the Mogangling landslide in Moxi Town of Luding County,China.A field investigation,remote sensing,numerical calculation and theoretical analysis were carried out to illustrate the failure mechanism of slope rock masses affected by earthquakes.The interaction between seismic waves and slope rock masses and the induced dynamic effect of slope rock masses were primarily accounted for in the analysis.The slope topography,rock mass weathering and unloading characteristics,river erosion,regional seismogenic structure,and rock mass structure characteristics were also discussed.The results showed that the formation of the Mogangling landslide was mainly related to the high amplification effect of seismic acceleration and back slope effects,interface dynamic stress effects,and double-sided slope effects of seismic waves caused by the catastrophic Ms 7.75 Moxi Earthquake in 1786.The principles for the site and route selection of large-scale infrastructure in the planning stage and the scientific prevention of seismic geological disasters were proposed on the basis of the dynamic effect of earthquake-induced landslides.展开更多
The large-scale management of ditches and implementation of land projects in loess areas have increased the arable land area but have caused considerable engineering issues, resulting in severe soil erosion. In this s...The large-scale management of ditches and implementation of land projects in loess areas have increased the arable land area but have caused considerable engineering issues, resulting in severe soil erosion. In this study, field tests were performed at different time scales, a control group was established, organic material–plant joint restoration technology was proposed as an optimized management measure, and the erosion control mechanism and restoration mode of organic material–plant joint restoration technology were analyzed. Based on the obtained experimental data, a Water Erosion Prediction Project(WEPP)-based hydraulic erosion model was constructed, sensitivity parameters were calibrated, and the soil erosion intensity and corresponding spatial distribution in the watershed of the study area were simulated via the geo-spatial interface for WEPP(GeoWEPP) after organic material–plant joint restoration technology was adopted to predict the effect of optimized management measures. The results showed that among the slopes with different restoration measures, organic material–plant joint restoration technology effectively controlled loess slope erosion, and the average erosion modulus of the organic material–grass and shrub transplantation slope reached only 23.37 t/km^(2), which is a decrease of 97.68% relative to the traditional grass–shrub protection slope. Moreover, the sand content of the joint restoration slope was reduced by 392.41 g/L relative to the bare slope, reaching only 0.29 g/L, and the runoff yield was reduced by 8.88 L/min. The GeoWEPP modeling results revealed that the total runoff yield and average annual erosion modulus of the watershed were lower after joint restoration than during the prerestoration period. Similarly, the total runoff yield of the watershed was 4.6%, the simulated 10-year average annual total sand production reached 2048.3 t,and the average annual erosion modulus was 582.75 t/km^(2), which is 52.15% lower than that under untreated conditions. This study provides a new strategy for solving soil erosion problems and restoring the ecology of slopes after managing ditches and implementing land projects.展开更多
The Ms8.0 Wenchuan earthquake of 2008 dramatically changed the terrain surface and caused long-term increases in the scale and frequency of landslides and debris flows.The changing trend of landslides in the earthquak...The Ms8.0 Wenchuan earthquake of 2008 dramatically changed the terrain surface and caused long-term increases in the scale and frequency of landslides and debris flows.The changing trend of landslides in the earthquake-affected area over the decade since the earthquake remains largely unknown.In this study,we were able to address this issue using supervised classification methods and multitemporal remote sensing images to study landslide evolution in the worst-affected area(Mianyuan River Basin)over a period of ten years.Satellite images were processed using the maximum likelihood method and random forest algorithm to automatically map landslide occurrence from 2007 to 2018.The principal findings are as follows:(1)when compared with visual image analysis,the random forest algorithm had a good average accuracy rate of 87%for landslide identification;(2)postevent landslide occurrence has generally decreased with time,but heavy monsoonal seasons have caused temporary spikes in activity;and(3)the postearthquake landslide activity in the Mianyuan River Basin can be divided into a strong activity period(2008 to 2011),medium activity period(2012 to 2016),and weak activity period(post 2017).Landslide activity remains above the prequake level,with damaging events being rare but continuing to occur.Long-term remote sensing and on-site monitoring are required to understand the evolution of landslide activity after strong earthquakes.展开更多
The Qushenla Formation volcanic rocks are widely exposed in the northern margin of the Bangong-Nujiang suture zone(BNSZ).Research on these rocks is of great significance for understanding the tectonic evolution of the...The Qushenla Formation volcanic rocks are widely exposed in the northern margin of the Bangong-Nujiang suture zone(BNSZ).Research on these rocks is of great significance for understanding the tectonic evolution of the Bangong-Nujiang Tethys Ocean(BNTO).In this study,a systematic geological survey was conducted on the Qushenla Formation volcanic rocks that are widely exposed in the Nawucuo area,in the northern margin of the western segment along the BNSZ.The whole-rock geochemistry,zircon U-Pb dating,and in situ zircon Lu-Hf isotopes were carried out in this study,aiming to constrain the formation age,rock genesis,magma source and tectonic setting of the volcanic rocks.The zircon U-Pb dating shows that the Qushenla Formation volcanic rocks in the western BNSZ erupted during the period of 120–108 Ma,i.e.,Early Cretaceous.The Qushenla Formation volcanic rocks are a suite of intermediate-basic volcanic and pyroclastic rocks belonging to the medium-K calc-alkaline series.They are relatively enriched in light rare earth elements(LREEs)and incompatible elements such as Rb,K,La,Th,Sm,and Hf,whereas depleted in heavy REEs(HREEs)and high field strength elements(HFSEs)such as Nb,P,Zr,and Ti.The in situ zirconεHf(t)values of the volcanic rocks range from 8.95 to 12.57,with an average of 10.40.The Mg#,Th/La and Th/Ce values are between those of the mantle-derived magma and the continental crust.The formation of the Qushenla Formation volcanic rocks can be explained through the following process:(1)As the nospheric materials that upwelled during the rollback of the subducting Tethys Ocean slab induced the large-scale partial melting of the mantle wedge and the formation of the initial basaltic magma.(2)These mantle-derived magmas ascended and induced the partial melting of the lower crust to generate peraluminous melts.(3)The mixing of the peraluminous melts and mantle-derived melts generated the initial magma with homogeneous Sr-Nd isotope compositions.(4)Last,the eruption of the magma produced the widespread Qushenla Formation volcanic rocks at the surface.When combining this information with the regional geological background,it is believed that the Qushenla Formation volcanic rocks,the Meiriqicuo Formation volcanic rocks and the Late Jurassic–Early Cretaceous intrusive rocks together constitute the tectonic magmatic arc of the active continental margin on the southern margin of Qiangtang,which was formed in the tectonic setting of the northward subduction of the Bangong-Nujiang oceanic crust beneath the Qiangtang Block.展开更多
基金financially supported by National Natural Science Foundation of China(42272106,41202067)Open Fund of State Key Laboratory for Mineral Deposits Research,Nanjing University(2019-LAMD-K12)China Geological Survey(DD20211386,DD20211392,DD20179603).
文摘The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristics of metallogenic period quartz veins were studied to reveal the ore-forming fluid features.Laser Raman analysis indicates that the ore-forming fluids is a H_(2)O-NaCl-CH_(4)(-CO_(2))system.Fluid inclusions microthermometry shows a homogenization temperature of 181-375°C and a salinity of 5.26%-16.99%for the disseminated-banded Cu-Zn mineralization;but a homogenization temperature of 142-343°C and a salinity of 5.41%-21.19%for the massive-veined Cu-Zn mineralization.These features suggest a medium-high temperature and a medium salinity for the ore-forming fluids.H-O isotopic data indicates that the ore-forming fluids were mainly from the metamorphic and magmatic water,plus minor formation water.And sulfur isotopic data indicates that sulfur was mainly derived from the formation and magmatic rocks.Metallogenesis of the disseminated-banded mineralization was mainly correlated with fluid mixing and water-rock reaction;whereas that of the massive-veined mineralization was mainly correlated with fluid boiling.The genetic type of the deposit is a medium-high temperature hydrothermal deposit related to magmatism and controlled by shear zones.This study is beneficial to understand the stratiform copper deposit.
文摘The original online version of this article was revised.The first author is“ZHANG Weng-xiang”in the original article.The first author’s name has been corrected to“ZHANG Wen-xiang”.
基金supported by the Institute of Geochemistry, Chinese Academy of Sciences (03JY029-027-1)Sichuan Geological Survey (12120113051400)the State Key Laboratory of Ore Deposit Geochemistry, Chinese Academy of Sciences for its open program funding
文摘The Dashuigou tellurium(Te) deposit in Shimian city, Sichuan Province is the only known independent Te ore deposit in China. Samples were collected by1/50,000 stream sediment survey and analyzed by inductively coupled plasma–mass spectrometry, X-ray fluorescence spectrometry, emission spectrometry, and atomic absorption spectroscopy. An ore prospecting model for the Dashuigou Te deposit was then established. In the Dashuigou area, bismuth(Bi), Te, and gold(Au) concentrations in stream sediment samples displayed weak-positive anomalies, while silver(Ag) displayed a weaknegative anomaly. Bi, Te, Ag, and Au anomalies are regarded as indicators of Te deposits; the greater the ratio of Te+Bi/Au+Ag, the larger the possibility of an independent tellurobismuthite deposit. The ratio calculated from our samples is 7.288. Five locations were identified for prospecting for Te minerals by this model, including the northern part of the Dashuigou Te deposit, Majiagou,Tizigou, southeastern Miaoping, and northern Baishuihe.These five regions are within the Dashuigou dome anticline, the exposed strata of which are controlled by tracing the tensile shear fracture; the metallogenic geological conditions and geochemical characteristics are the same as those of the known Dashuigou Te deposit. Already, Te–Bi veins have been found in some of these areas.
文摘A massive rock and ice avalanche occurred on the western slope of the Ronti Gad valley in the northern part of Chamoli,Indian Himalaya,on 7 February 7,2021.The avalanche on the high mountain slope at an elevation of 5600 m above sea level triggered a long runout disaster chain,including rock mass avalanche,debris avalanche,and flood.The disaster chain had a horizontal travel distance of larger than 17,600 m and an elevation difference of 4300 m.In this study,the disaster characteristics and dynamic process were analyzed by multitemporal satellite imagery.The results show that the massive rock and ice avalanche was caused by four large expanding discontinuity planes.The disaster chain was divided into five zones by satellite images and field observation,including source zone,transition zone,dynamic entrainment zone,flow deposition zone,and flood zone.The entrainment effect and melting water were recognized as the main causes of the long-runout distance.Based on the seismic wave records and field videos,the time progress of the disaster was analyzed and the velocity of frontal debris at different stages was calculated.The total analyzed disaster duration was 1247 s,and the frontal debris velocity colliding with the second hydropower station was approximately 23 m/s.This study also carried out the numerical simulation of the disaster by rapid mass movement simulation(RAMMS).The numerical results reproduced the dynamic process of the debris avalanche,and the mechanism of long-runout avalanche was further verified by parametric study.Furthermore,this study discussed the potential causes of disaster and flood and the roles of satellite images and seismic networks in the monitoring and early-warning.
基金jointly funded by the Sichuan Provincial Natural Science Foundation of China (Grant No.2023NSFSC0378)the Jiuzhaigou Lake Swamp and River Ecological Restoration Research Project (N5132112022000246)。
文摘A large number of loose piles formed by mountain hazards are highly susceptible to hydraulic erosion under rainfall conditions.The use of ecological substrate materials for erosion control and ecological restoration of gravel soil slopes has become a current research hotspot and the study difficulty.The post-earthquake slump accumulation gravel soil in Jiuzhaigou was selected as the research object,and the self-developed modified glutinous rice-based material was used to reinforce the gravel soil.The variable slope flume erosion test and rainfall simulation test were carried out to study the water erosion resistance of the material reconstructed soil under the influence of runoff erosion and raindrop splash erosion.The results show that:As the material content reached 12.5%,the reconstructed soil did not disintegrate after 24 hours of immersion,the internal friction angle was increased by 42.26%,and the cohesion was increased by 235.5%,which played a significant reinforcement effect.In the process of slope erosion,the soil rill erodibility parameter Kr was only 3‰ of the gravel soil control group,the critical shear force τ increased by 272%,and the soil erosion resistance was significantly improved.In the process of rainfall and rainfall on the slope,the runoff intensity of the reconstructed soil was stable,and the ability to resist runoff erosion and raindrop splash erosion was enhanced.The maximum value of soil loss rate on different slope slopes is 0.02-0.10 g·m^(-2)s^(-1),which is significantly lower than that of the control group and has better erosion reduction effect.
基金supported by China Geological Survey Projects(Grant No.20160272,20211379)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0904)Sichuan Science and Technology Program of China(Grant No.2020YFS0296).
文摘Tibetan Plateau is known as the roof of the world.Due to the continuous uplift of the Tibetan Plateau,many active fault zones are present.These active fault zones such as the Anninghe fault zone have a significant influence on the formation of special geomorphology and the distribution of geological hazards at the eastern edge of the Tibetan Plateau.The Anninghe fault zone is a key part of the Y-shaped fault pattern in the Sichuan-Yunnan block of China.In this paper,high-resolution topographic data,multitemporal remote sensing images,numerical calculations,seismic records,and comprehensive field investigations were employed to study the landslide distribution along the active part of the Anninghe.The influence of active faults on the lithology,rock mass structures and slope stress fields were also studied.The results show that the faults within the Anninghe fault zone have damaged the structure and integrity of the slope rock mass,reduced the mechanical strength of the rock mass and controlled the slope failure modes.The faults have also controlled the stress field,the distribution of the plastic strain zone and the maximum shear strain zone of the slope,thus have promoted the formation and evolution of landslides.We find that the studied landslides are linearly distributed along the Anninghe fault zone,and more than 80%of these landslides are within 2–3 km of the fault rupture zone.Moreover,the Anninghe fault zone provides abundant substance for landslides or debris flows.This paper presents four types of sliding mode control of the Anninghe fault zone,e.g.,constituting the whole landslide body,controlling the lateral boundary of the landslide,controlling the crown of the landslide,and constituting the toe of the landslide.The results presented merit close attention as a valuable reference source for local infrastructure planning and engineering projects.
基金funded by the China Geological Survey Project(DD20190545 and DD20221824).
文摘Based on the 16 scenes GF-1 satellite multi-spectral remote sensing images,through the adoption of data processing methods including orthorectification,geometric rectification,data fusion and image mosaic,integrated with field surveys,the remote sensing interpretation signs for the inland wetland types have been built,and the remote sensing survey of inland wetlands in Yadong region has been initiated,with six types of inland wetlands recognized in Yadong region,namely permanent rivers,seasonal rivers,lakes,salt lakes,alpine meadows,and inundated land.The spatial distribution characteristics and the spreading rules of these wetlands have also been revealed.Based on full understanding of the overall characteristics of the inland wetlands in the Yadong region,using the three phases of TM images acquired in 1989,2003 and 2008 as well as the PMS2 data gathered by GF-1 in 2014,and the wide-range data(WFV3)gathered by GF-1 in 2020.As to the typical salt lakes,a long-time salt lakes transition study was carried out.The results show that the typical salt lakes in Yadong have been shrinking in the past three decades.The average annual shrinkage of Duoqing Co(Co means lake in Tibetan)was stronger than that of Gala Co,which are respective 87.30 hectares(usually short as ha;1 ha equals to 0.01 km^(2))/a and 24.20 ha/a;the shrinkage degree of Gala Co was higher than that of Duoqing Co,shrank by 59.27% and 35.73% respectively.Based on the remote sensing survey results and an integrated analysis of the predecessors’researchers,the reason for the shrinkage of the salt lakes is more inclined to geological factors.Geological process is manifested by a series of extensional faults at the bottom of the lake basin generated from tectonic activities,providing fluid infiltration channels,and inducing the eventual leakage of lake water to the lower strata.The result provides an important instance for understanding the evolution characteristics of wetlands and salt lakes in specific environment of the Tibetan Plateau.
基金Projects(DD20160107,DD20150742)supported by the China Geological SurveyProject supported by the International Scientific Plan of the Qinghai-Xizang(Tibet)Plateau of Chengdu Center,China Geological Survey
文摘Despite the presence of a large area of andesite in the Sayaburi Province of Laos, it has received very little attention. Based on a combination of detailed field investigations, geochronology and geochemical analysis, this study aims to explore the geochemical, Sr-Nd isotopic, and source rock characteristics, as well as the genesis and tectonic setting of the andesite in this region. In the Sayaburi Province, the andesite zircon U-Pb age is(241.2±1.2) Ma. The andesite rock is classified in the metaluminous-weak peraluminous calc-alkaline series. The light rare-earth elements(LREEs) are enriched and characterized by clear fractionation, whereas heavy rare-earth elements(HREEs) are relatively depleted and have no signs of fractionation. The average δEu is 0.96 with weak-or-no Eu anomalies. It is enriched in large ion lithophile elements such as Rb and K, while depleted in high field-strength elements such as Nb, Ta, P and Ti. For andesites in the Sayaburi Province, the(87Rb/86Sr)t value ranges in 0.702849-0.704687, the εNd(t) value is between 3.53 and 4.77, the tDM(t) value ranges in 633-835 Ma, and the tDM2(t) ranges in 625–724 Ma. The results based on the synthesis of petrology, geochemistry, and regional tectonic background studies show that 1) the andesitic magma source in the study area is an enriched mantle, which is modified by subduction zone fluids;2) the geotectonic background environment of the andesite in Sayaburi area is the continental island arc environment and related to the tectonic evolution of Jinghong–Nan–Uttaradit back-arc basin, which reflects that the magmatic source is enriched with a mantle wedge component modified by a subduction zone fluid(or melt).
文摘The Xiuwacu deposit is a large magmatic hydrothermal Mo-W-Cu deposit, and also a typical representative of the late Triassic mineralization in Geza Arc (Lai AQ et al., 2016;Liu XL et al., 2017). The Xiuwacu pluton intruded into the Lamaya Formation, and contains two periods of rocks bounded by intrusive contact. Nonetheless, most of the intrusive boundaries were superposed by later fault structures.
基金the geological surveys secondary project of CGS of MNR, "Survey and evaluation of potash mineral prospect in western regions of China"(DD20160054)the national Science Foundation of China and Joint foundation (U1407207)+1 种基金Task of "Potash-rich law,strategic constituency and deep detection technology demonstration in key potash bearing basins"(2017YFC0602806)belonging to the National key research and development plan "Deep land resources exploration and exploitation".
文摘Through the study of the geological conditions of potash deposits in China from recent years,a new understanding of potash theories has arisen that appropriate Chinese geological features.Important progress and substantial breakthroughs have been gained in the direction and management of potash prospecting: (1) Important breakthroughs in continental potassium prospecting:The "Quaternary gravel type deep potassium rich brine metallogenic model in western Qaidam" ensures Quaternary deep potassium rich brine prospecting will grow new KCl resources by 350 Mt,providing a resource guarantee for meeting the Chinese demand for sylvite.(2) The Marine facies potash prospecting shows good prospects: the determination of the new type of Triassic polyhalite potash ore deposits in Sichuan provide an important scientific basis for the establishment of exploration planning and the selection of exploration target areas for polyhalite minerals in the Sichuan Basin;The "two-storey potash deposits model" in southwestern Yunnan has been confirmed,which indicates prospects for the exploration of potash in the deeper Marine facies in southwestern Yunnan are likely to be successful.The discovery of a high concentration of rich bromite salt and potash salt in the Paleogene of the Kuqa depression and the southwestern Tarim region provides strong support for the likelihood large-scale potash deposits exist in these regions.
基金financially supported by the China Geological Survey(grant No.DD20190147)the National Natural Science Foundation of China(grant No.41863005)the Guangxi Natural Science Foundation(grant No.2017GXNSFBA198203)。
文摘Objective The giant Nyainqentanglha granitic batholith, located in the Lhasa Terrane, is the youngest granite pluton emplaced at 18.3–11.0 Ma during the Miocene epoch. A series of NE-striking sinistral normal ductile shear zones developed on its north and south sides. The ductile shear zones are considered to be the western boundary faults of the Yadong-Gulu rift system and have the potential to provide critical temporal constraints for the large-scale East–West extension event in the Tibetan Plateau.
基金supported by the China Geological Survey Projects(Nos.20160272,20211379)the Second Tibetan Plateau Scientific Expedition and Research Program(No.2019QZKK0904)。
文摘The dynamic effect is a very important issue widely debated by scholars when studying the genetic and disaster-causing mechanisms of earthquake-triggered landslides.First,the dynamic effect mechanism and phenomena of earthquake-triggered landslides were summarized in this paper.Then,the primary types of dynamic effects were further used to interpret the Mogangling landslide in Moxi Town of Luding County,China.A field investigation,remote sensing,numerical calculation and theoretical analysis were carried out to illustrate the failure mechanism of slope rock masses affected by earthquakes.The interaction between seismic waves and slope rock masses and the induced dynamic effect of slope rock masses were primarily accounted for in the analysis.The slope topography,rock mass weathering and unloading characteristics,river erosion,regional seismogenic structure,and rock mass structure characteristics were also discussed.The results showed that the formation of the Mogangling landslide was mainly related to the high amplification effect of seismic acceleration and back slope effects,interface dynamic stress effects,and double-sided slope effects of seismic waves caused by the catastrophic Ms 7.75 Moxi Earthquake in 1786.The principles for the site and route selection of large-scale infrastructure in the planning stage and the scientific prevention of seismic geological disasters were proposed on the basis of the dynamic effect of earthquake-induced landslides.
基金National Natural Science Foundation of China,No.42107179, No.41702335The State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project,No.SKLGP2021Z021, No.SKLGP2022Z005。
文摘The large-scale management of ditches and implementation of land projects in loess areas have increased the arable land area but have caused considerable engineering issues, resulting in severe soil erosion. In this study, field tests were performed at different time scales, a control group was established, organic material–plant joint restoration technology was proposed as an optimized management measure, and the erosion control mechanism and restoration mode of organic material–plant joint restoration technology were analyzed. Based on the obtained experimental data, a Water Erosion Prediction Project(WEPP)-based hydraulic erosion model was constructed, sensitivity parameters were calibrated, and the soil erosion intensity and corresponding spatial distribution in the watershed of the study area were simulated via the geo-spatial interface for WEPP(GeoWEPP) after organic material–plant joint restoration technology was adopted to predict the effect of optimized management measures. The results showed that among the slopes with different restoration measures, organic material–plant joint restoration technology effectively controlled loess slope erosion, and the average erosion modulus of the organic material–grass and shrub transplantation slope reached only 23.37 t/km^(2), which is a decrease of 97.68% relative to the traditional grass–shrub protection slope. Moreover, the sand content of the joint restoration slope was reduced by 392.41 g/L relative to the bare slope, reaching only 0.29 g/L, and the runoff yield was reduced by 8.88 L/min. The GeoWEPP modeling results revealed that the total runoff yield and average annual erosion modulus of the watershed were lower after joint restoration than during the prerestoration period. Similarly, the total runoff yield of the watershed was 4.6%, the simulated 10-year average annual total sand production reached 2048.3 t,and the average annual erosion modulus was 582.75 t/km^(2), which is 52.15% lower than that under untreated conditions. This study provides a new strategy for solving soil erosion problems and restoring the ecology of slopes after managing ditches and implementing land projects.
基金financially supported by the National Key R&D Program(No.2018YFC1505402)the Key Research and Development Program of Sichuan Province(No.2023YFS0435)+1 种基金the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(No.SKLGP2014Z004)the Science and Technology Innovation Fund of Sichuan Earthquake Agency(No.201901)。
文摘The Ms8.0 Wenchuan earthquake of 2008 dramatically changed the terrain surface and caused long-term increases in the scale and frequency of landslides and debris flows.The changing trend of landslides in the earthquake-affected area over the decade since the earthquake remains largely unknown.In this study,we were able to address this issue using supervised classification methods and multitemporal remote sensing images to study landslide evolution in the worst-affected area(Mianyuan River Basin)over a period of ten years.Satellite images were processed using the maximum likelihood method and random forest algorithm to automatically map landslide occurrence from 2007 to 2018.The principal findings are as follows:(1)when compared with visual image analysis,the random forest algorithm had a good average accuracy rate of 87%for landslide identification;(2)postevent landslide occurrence has generally decreased with time,but heavy monsoonal seasons have caused temporary spikes in activity;and(3)the postearthquake landslide activity in the Mianyuan River Basin can be divided into a strong activity period(2008 to 2011),medium activity period(2012 to 2016),and weak activity period(post 2017).Landslide activity remains above the prequake level,with damaging events being rare but continuing to occur.Long-term remote sensing and on-site monitoring are required to understand the evolution of landslide activity after strong earthquakes.
基金financially supported by the National Key R&D Program Project(No.2022YFC2905001)the National Natural Science Foundation of China(Nos.42230813,42272093)+1 种基金the Basal Research Fund of Chinese Academy of Geological Sciences(Nos.KJ2102,KK2116,KK2017)the Geological Survey Program of China(No.DD20221684)。
文摘The Qushenla Formation volcanic rocks are widely exposed in the northern margin of the Bangong-Nujiang suture zone(BNSZ).Research on these rocks is of great significance for understanding the tectonic evolution of the Bangong-Nujiang Tethys Ocean(BNTO).In this study,a systematic geological survey was conducted on the Qushenla Formation volcanic rocks that are widely exposed in the Nawucuo area,in the northern margin of the western segment along the BNSZ.The whole-rock geochemistry,zircon U-Pb dating,and in situ zircon Lu-Hf isotopes were carried out in this study,aiming to constrain the formation age,rock genesis,magma source and tectonic setting of the volcanic rocks.The zircon U-Pb dating shows that the Qushenla Formation volcanic rocks in the western BNSZ erupted during the period of 120–108 Ma,i.e.,Early Cretaceous.The Qushenla Formation volcanic rocks are a suite of intermediate-basic volcanic and pyroclastic rocks belonging to the medium-K calc-alkaline series.They are relatively enriched in light rare earth elements(LREEs)and incompatible elements such as Rb,K,La,Th,Sm,and Hf,whereas depleted in heavy REEs(HREEs)and high field strength elements(HFSEs)such as Nb,P,Zr,and Ti.The in situ zirconεHf(t)values of the volcanic rocks range from 8.95 to 12.57,with an average of 10.40.The Mg#,Th/La and Th/Ce values are between those of the mantle-derived magma and the continental crust.The formation of the Qushenla Formation volcanic rocks can be explained through the following process:(1)As the nospheric materials that upwelled during the rollback of the subducting Tethys Ocean slab induced the large-scale partial melting of the mantle wedge and the formation of the initial basaltic magma.(2)These mantle-derived magmas ascended and induced the partial melting of the lower crust to generate peraluminous melts.(3)The mixing of the peraluminous melts and mantle-derived melts generated the initial magma with homogeneous Sr-Nd isotope compositions.(4)Last,the eruption of the magma produced the widespread Qushenla Formation volcanic rocks at the surface.When combining this information with the regional geological background,it is believed that the Qushenla Formation volcanic rocks,the Meiriqicuo Formation volcanic rocks and the Late Jurassic–Early Cretaceous intrusive rocks together constitute the tectonic magmatic arc of the active continental margin on the southern margin of Qiangtang,which was formed in the tectonic setting of the northward subduction of the Bangong-Nujiang oceanic crust beneath the Qiangtang Block.