Purpose–The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail.The operating environment of the high-speed rail is complex,and the main factors affect...Purpose–The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail.The operating environment of the high-speed rail is complex,and the main factors affecting the safety of high-speed rail operating environment include meteorological disasters,perimeter intrusion and external environmental hazards.The purpose of the paper is to elaborate on the current research status and team research progress on the perception of safety situation in high-speed rail operation environment and to propose directions for further research in the future.Design/methodology/approach–In terms of the mechanism and spatio-temporal evolution law of the main influencing factors on the safety of high-speed rail operation environments,the research status is elaborated,and the latest research progress and achievements of the team are introduced.This paper elaborates on the research status and introduces the latest research progress and achievements of the team in terms of meteorological,perimeter and external environmental situation perception methods for high-speed rail operation.Findings–Based on the technical route of“situational awareness evaluation warning active control,”a technical system for monitoring the safety of high-speed train operation environments has been formed.Relevant theoretical and technical research and application have been carried out around the impact of meteorological disasters,perimeter intrusion and the external environment on high-speed rail safety.These works strongly support the improvement of China’s railway environmental safety guarantee technology.Originality/value–With the operation of CR450 high-speed trains with a speed of 400 kmper hour and the application of high-speed train autonomous driving technology in the future,new and higher requirements have been put forward for the safety of high-speed rail operation environments.The following five aspects of work are urgently needed:(1)Research the single factor disaster mechanism of wind,rain,snow,lightning,etc.for high-speed railways with a speed of 400 kms per hour,and based on this,study the evolution characteristics of multiple safety factors and the correlation between the high-speed driving safety environment,revealing the coupling disastermechanism ofmultiple influencing factors;(2)Research covers multi-source data fusion methods and associated features such as disaster monitoring data,meteorological information,route characteristics and terrain and landforms,studying the spatio-temporal evolution laws of meteorological disasters,perimeter intrusions and external environmental hazards;(3)In terms of meteorological disaster situation awareness,research high-precision prediction methods for meteorological information time series along high-speed rail lines and study the realization of small-scale real-time dynamic and accurate prediction of meteorological disasters along high-speed rail lines;(4)In terms of perimeter intrusion,research amulti-modal fusion perception method for typical scenarios of high-speed rail operation in all time,all weather and all coverage and combine artificial intelligence technology to achieve comprehensive and accurate perception of perimeter security risks along the high-speed rail line and(5)In terms of external environment,based on the existing general network framework for change detection,we will carry out research on change detection and algorithms in the surrounding environment of highspeed rail.展开更多
Unexpected delays in train operations can cause a cascade of negative consequences in a high-speed railway system.In such cases,train timetables need to be rescheduled.However,timely and efficient train timetable resc...Unexpected delays in train operations can cause a cascade of negative consequences in a high-speed railway system.In such cases,train timetables need to be rescheduled.However,timely and efficient train timetable rescheduling is still a challenging problem due to its modeling difficulties and low optimization efficiency.This paper presents a Transformer-based macroscopic regulation approach which consists of two stages including Transformer-based modeling and policy-based decisionmaking.Firstly,the relationship between various train schedules and operations is described by creating a macroscopic model with the Transformer,providing the better understanding of overall operation in the high-speed railway system.Then,a policy-based approach is used to solve a continuous decision problem after macro-modeling for fast convergence.Extensive experiments on various delay scenarios are conducted.The results demonstrate the effectiveness of the proposed method in comparison to other popular methods.展开更多
Earthquake has a significant impact on operation safety of the high speed railway,and for Jakarta-Bandung High Speed Railway(HSR)in Indonesia where it is earthquake-prone,it is necessary to establish an earthquake ear...Earthquake has a significant impact on operation safety of the high speed railway,and for Jakarta-Bandung High Speed Railway(HSR)in Indonesia where it is earthquake-prone,it is necessary to establish an earthquake early warning system to strengthen its earthquake resistance.Based on the principle and technical characteristics of China's high speed railway earthquake early warning system and combining the actual situations of Jakarta-Bandung HSR in Indonesia,this paper describes how to implement China's high speed railway earthquake early warning system in Jakarta-Bandung HSR.It focuses on optimizations in environmental adaptation design and seismic network interface design,earthquake attenuation model parameter adjustment and terminal software interface adjustment,so as to make the system better suit the local situations,and meet operation requirements and guarantee safe operation of Jakarta-Bandung HSR.展开更多
This paper looks at the heavy-haul combined train composed of different types of locomotives and its distributed power control system with a combination of 800 MHz and TD-LTE wireless communication.It analyses some ke...This paper looks at the heavy-haul combined train composed of different types of locomotives and its distributed power control system with a combination of 800 MHz and TD-LTE wireless communication.It analyses some key characteristic parameters that affect the synchronism and communication of the differential wireless multi-traction synchronous control systems for heavy-haul combined trains.At the same time,in order to reduce the latency of instruction and information transfer between different types of locomotives,improve the time-limit certainty of wireless transmission and optimize the control quality of multi-traction control systems for heavy-haul combined trains,a synchronism optimization strategy based on the Markov decision process on the basis of Petri networkconstruction is proposed.Relevant experiments and tests are carried out to verify the effectiveness of the synchronism optimization of the control system,which provides a guarantee for improving the differential wireless multi-traction synchronous control system for combined trains and optimizing train control.展开更多
基金National Natural Science Foundation of China High Speed Rail Joint Fund(U2268217)。
文摘Purpose–The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail.The operating environment of the high-speed rail is complex,and the main factors affecting the safety of high-speed rail operating environment include meteorological disasters,perimeter intrusion and external environmental hazards.The purpose of the paper is to elaborate on the current research status and team research progress on the perception of safety situation in high-speed rail operation environment and to propose directions for further research in the future.Design/methodology/approach–In terms of the mechanism and spatio-temporal evolution law of the main influencing factors on the safety of high-speed rail operation environments,the research status is elaborated,and the latest research progress and achievements of the team are introduced.This paper elaborates on the research status and introduces the latest research progress and achievements of the team in terms of meteorological,perimeter and external environmental situation perception methods for high-speed rail operation.Findings–Based on the technical route of“situational awareness evaluation warning active control,”a technical system for monitoring the safety of high-speed train operation environments has been formed.Relevant theoretical and technical research and application have been carried out around the impact of meteorological disasters,perimeter intrusion and the external environment on high-speed rail safety.These works strongly support the improvement of China’s railway environmental safety guarantee technology.Originality/value–With the operation of CR450 high-speed trains with a speed of 400 kmper hour and the application of high-speed train autonomous driving technology in the future,new and higher requirements have been put forward for the safety of high-speed rail operation environments.The following five aspects of work are urgently needed:(1)Research the single factor disaster mechanism of wind,rain,snow,lightning,etc.for high-speed railways with a speed of 400 kms per hour,and based on this,study the evolution characteristics of multiple safety factors and the correlation between the high-speed driving safety environment,revealing the coupling disastermechanism ofmultiple influencing factors;(2)Research covers multi-source data fusion methods and associated features such as disaster monitoring data,meteorological information,route characteristics and terrain and landforms,studying the spatio-temporal evolution laws of meteorological disasters,perimeter intrusions and external environmental hazards;(3)In terms of meteorological disaster situation awareness,research high-precision prediction methods for meteorological information time series along high-speed rail lines and study the realization of small-scale real-time dynamic and accurate prediction of meteorological disasters along high-speed rail lines;(4)In terms of perimeter intrusion,research amulti-modal fusion perception method for typical scenarios of high-speed rail operation in all time,all weather and all coverage and combine artificial intelligence technology to achieve comprehensive and accurate perception of perimeter security risks along the high-speed rail line and(5)In terms of external environment,based on the existing general network framework for change detection,we will carry out research on change detection and algorithms in the surrounding environment of highspeed rail.
基金supported partially by the National Natural Science Foundation of China(61790573,61790575)the Center of National Railway Intelligent Transportation System Engineering and Technology(RITS2019KF03)+3 种基金China Academy of Railway Sciences Corporation LimitedChina Railway Project(N2019G020)China Railway Project(L2022X002)the Key Project of Science and Technology Research Plan of China Academy of Railway Sciences Group Co.Ltd.(2022YJ326)。
文摘Unexpected delays in train operations can cause a cascade of negative consequences in a high-speed railway system.In such cases,train timetables need to be rescheduled.However,timely and efficient train timetable rescheduling is still a challenging problem due to its modeling difficulties and low optimization efficiency.This paper presents a Transformer-based macroscopic regulation approach which consists of two stages including Transformer-based modeling and policy-based decisionmaking.Firstly,the relationship between various train schedules and operations is described by creating a macroscopic model with the Transformer,providing the better understanding of overall operation in the high-speed railway system.Then,a policy-based approach is used to solve a continuous decision problem after macro-modeling for fast convergence.Extensive experiments on various delay scenarios are conducted.The results demonstrate the effectiveness of the proposed method in comparison to other popular methods.
文摘Earthquake has a significant impact on operation safety of the high speed railway,and for Jakarta-Bandung High Speed Railway(HSR)in Indonesia where it is earthquake-prone,it is necessary to establish an earthquake early warning system to strengthen its earthquake resistance.Based on the principle and technical characteristics of China's high speed railway earthquake early warning system and combining the actual situations of Jakarta-Bandung HSR in Indonesia,this paper describes how to implement China's high speed railway earthquake early warning system in Jakarta-Bandung HSR.It focuses on optimizations in environmental adaptation design and seismic network interface design,earthquake attenuation model parameter adjustment and terminal software interface adjustment,so as to make the system better suit the local situations,and meet operation requirements and guarantee safe operation of Jakarta-Bandung HSR.
基金supported by National Key R&D Programof China(Grand No.2017YFB1201302-13).
文摘This paper looks at the heavy-haul combined train composed of different types of locomotives and its distributed power control system with a combination of 800 MHz and TD-LTE wireless communication.It analyses some key characteristic parameters that affect the synchronism and communication of the differential wireless multi-traction synchronous control systems for heavy-haul combined trains.At the same time,in order to reduce the latency of instruction and information transfer between different types of locomotives,improve the time-limit certainty of wireless transmission and optimize the control quality of multi-traction control systems for heavy-haul combined trains,a synchronism optimization strategy based on the Markov decision process on the basis of Petri networkconstruction is proposed.Relevant experiments and tests are carried out to verify the effectiveness of the synchronism optimization of the control system,which provides a guarantee for improving the differential wireless multi-traction synchronous control system for combined trains and optimizing train control.