Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite...Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.展开更多
Magnesium(Mg)and its alloys have recently gained increasing attention in the biomedical field as promising biodegradable materials with harmless degradation products.Magnesium-based alloys have a wide range of biomedi...Magnesium(Mg)and its alloys have recently gained increasing attention in the biomedical field as promising biodegradable materials with harmless degradation products.Magnesium-based alloys have a wide range of biomedical applications because of their outstanding biocompatibility and unique mechanical properties.Widespread use of Mg-based biomedical devices eliminates the need for post-healing biomaterial removal surgery and minimizes the negative consequences of the implantation of permanent biomaterials,including stress shielding and undesired metal ion release in the body.This paper provides a literature review on the properties and manufacturing methods of Mgbased alloys for biomedical applications,including orthopedic implants,cardiovascular applications,surgical wires and staplers,and antitumor activities.Each application of Mg-based biomaterials is investigated from a biological perspective,including matching functional properties,biocompatibility,host tissue responses,and anti-microbial strategies,along with potential additive manufacturing technologies for these applications.Finally,an outlook is presented to provide recommendations for Mg-based biomaterials in the future.展开更多
In this study, the flow characteristics and behaviors of virgin and recycled Inconel powder for powder-bed additive manufacturing (AM) were studied using different powder characterization techniques. The results rev...In this study, the flow characteristics and behaviors of virgin and recycled Inconel powder for powder-bed additive manufacturing (AM) were studied using different powder characterization techniques. The results revealed that the particle size distribution (PSD) for the selective laser melting (SLM) process is typically in the range from 15 μm to 63 μm. The flow rate of virgin Inconel powder is around 28 s·(50 g)^-1. In addition, the packing density was found to be 60%. The rheological test results indicate that the virgin powder has reasonably good flowability compared with the recycled powder. The inter-relation between the powder characteristics is discussed herein. A propeller was successfully printed using the powder. The results suggest that Inconel powder is suitable for AM and can be a good reference for researchers who attempt to pro- duce AM powders.展开更多
Magnesium alloys remain critical in the context of light-weighting and advanced devices. The increased utilisation of magnesium(Mg)each year reveals growing demand for its Mg-based alloys. Additive manufacturing(AM) p...Magnesium alloys remain critical in the context of light-weighting and advanced devices. The increased utilisation of magnesium(Mg)each year reveals growing demand for its Mg-based alloys. Additive manufacturing(AM) provides the possibility to directly manufacture components in net-shape, providing new possibilities and applications for the use of Mg-alloys, and new prospects in the utilisation of novel physical structures made possible from ‘3D printing’. The review herein seeks to holistically explore the additive manufacturing of Mg-alloys to date, including a synopsis of processes used and properties measured(with a comparison to conventionally prepared Mg-alloys). The challenges and possibilities of AM Mg-alloys are critically elaborated for the field of mechanical metallurgy.展开更多
Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea...Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.展开更多
Additive manufacturing(AM)is gaining traction in the manufacturing industry for the fabrication of components with complex geometries using a variety of materials.Selective laser melting(SLM)is a common AM technique t...Additive manufacturing(AM)is gaining traction in the manufacturing industry for the fabrication of components with complex geometries using a variety of materials.Selective laser melting(SLM)is a common AM technique that is based on powder-bed fusion(PBF)to process metals;however,it is currently focused only on the fabrication of macroscale and mesoscale components.This paper reviews the state of the art of the SLM of metallic materials at the microscale level.In comparison with the direct writing techniques that are commonly used for micro AM,micro SLM is attractive due to a number of factors,including a faster cycle time,process simplicity,and material versatility.A comprehensive evaluation of various research works and commercial systems for the fabrication of microscale parts using SLM and selective laser sintering(SLS)is conducted.In addition to identifying existing issues with SLM at the microscale,which include powder recoating,laser optics,and powder particle size,this paper details potential future directions.A detailed review of existing recoating methods in powder-bed techniques is conducted,along with a description of emerging efforts to implement dry powder dispensing methods in the AM domain.A number of secondary finishing techniques for AM components are reviewed,with a focus on implementation for microscale features and integration with micro SLM systems.展开更多
It is well-known that grain refiners can tailor the microstructure and enhance the mechanical properties of titanium alloys fabricated by additive manufacturing(AM). However, the intrinsic mechanisms of Ni addition on...It is well-known that grain refiners can tailor the microstructure and enhance the mechanical properties of titanium alloys fabricated by additive manufacturing(AM). However, the intrinsic mechanisms of Ni addition on AM-built Ti–6Al–4V alloy is not well established. This limits its industrial applications. This work systematically investigated the influence of Ni additive on Ti–6Al–4V alloy fabricated by laser aided additive manufacturing(LAAM). The results showed that Ni addition yields three key effects on the microstructural evolution of LAAM-built Ti–6Al–4V alloy.(a) Ni additive remarkably refines the prior-β grains, which is due to the widened solidification range. As the Ni addition increased from 0 to 2.5 wt. %, the major-axis length and aspect ratio of the prior-β grains reduced from over 1500 μm and 7 to 97.7 μm and1.46, respectively.(b) Ni additive can discernibly induce the formation of globular α phase,which is attributed to the enhanced concentration gradient between the β and α phases. This is the driving force of globularization according to the termination mass transfer theory. The aspect ratio of the α laths decreased from 4.14 to 2.79 as the Ni addition increased from 0 to2.5 wt. %.(c) Ni as a well-known β-stabilizer and it can remarkably increase the volume fraction of β phase. Room-temperature tensile results demonstrated an increase in mechanical strength and an almost linearly decreasing elongation with increasing Ni addition. A modified mathematical model was used to quantitatively analyze the strengthening mechanism. It was evident from the results that the α lath phase and the solid solutes contribute the most to the overall yield strength of the LAAM-built Ti–6Al–4V–x Ni alloys in this work. Furthermore, the decrease in elongation with increasing Ni addition is due to the deterioration in deformability of the β phase caused by a large amount of solid-solution Ni atoms. These findings can accelerate the development of additively manufactured titanium alloys.展开更多
In this investigation,a picosecond laser was employed to fabricate surface textures on a Stavax steel substrate,which is a key material for mold fabrication in the manufacturing of various polymer products.Three main ...In this investigation,a picosecond laser was employed to fabricate surface textures on a Stavax steel substrate,which is a key material for mold fabrication in the manufacturing of various polymer products.Three main types of surface textures were fabricated on a Stavax steel substrate:periodic ripples,a two-scale hierarchical two-dimensional array of micro-bumps,and a micro-pits array with nanoripples.The wettability of the laser-textured Stavax steel surface was converted from its original hydrophilicity into hydrophobicity and even super-hydrophobicity after exposure to air.The results clearly show that this super-hydrophobicity is mainly due to the surface textures.The ultrafast laserinduced catalytic effect may play a secondary role in modifying the surface chemistry so as to lower the surface energy.The laser-induced surface textures on the metal mold substrates were then replicated onto polypropylene substrates via the polymer injection molding process.The surface wettability of the molded polypropylene was found to be changed from the original hydrophilicity to superhydrophobicity.This developed process holds the potential to improve the performance of fabricated plastic products in terms of wettability control and easy cleaning.展开更多
Inspired by the sophisticated artificial leather garment industry and toward enhancing wearability of energy storage devices, we demonstrate a polyurethane artificial leather supercapacitor with large sheet electrodes...Inspired by the sophisticated artificial leather garment industry and toward enhancing wearability of energy storage devices, we demonstrate a polyurethane artificial leather supercapacitor with large sheet electrodes embedded in theleather layer simultaneously working as a polyelectrolyte. This design totally reserves textiles underneath and thus addresses the well-known challenge of wearing comfortability. It provides a revolutionary configuration of wearable supercapacitors: the artificial leather on garment is also a supercapacitor.Unlike the polyvinyl alcohol-based acidic electrolytes, which are widely used, sodium chloride is used to modify the intrinsically fluorescent polyurethane leather for ionic transportation, which has no harm to human. The fluorescent leather supercapacitor is easily transferrable from any arbitrary substrates to form various patterns, enabling multifunctionalities of practical wearability, fashion, and energy storage.展开更多
With the concepts of Industry 4.0 and smart manufacturing gaining popularity,there is a growing notion that conventional manufacturing will witness a transition toward a new paradigm,targeting innovation,automation,be...With the concepts of Industry 4.0 and smart manufacturing gaining popularity,there is a growing notion that conventional manufacturing will witness a transition toward a new paradigm,targeting innovation,automation,better response to customer needs,and intelligent systems.Within this context,this review focuses on the concept of cyber–physical production system(CPPS)and presents a holistic perspective on the role of the CPPS in three key and essential drivers of this transformation:data-driven manufacturing,decentralized manufacturing,and integrated blockchains for data security.The paper aims to connect these three aspects of smart manufacturing and proposes that through the application of data-driven modeling,CPPS will aid in transforming manufacturing to become more intuitive and automated.In turn,automated manufacturing will pave the way for the decentralization of manufacturing.Layering blockchain technologies on top of CPPS will ensure the reliability and security of data sharing and integration across decentralized systems.Each of these claims is supported by relevant case studies recently published in the literature and from the industry;a brief on existing challenges and the way forward is also provided.展开更多
Ultra-precision machining is an effective approach to achieve high dimension accuracy and surface finish required in optical and laser components. An extensive study using a two-axis diamond turning machine is conduct...Ultra-precision machining is an effective approach to achieve high dimension accuracy and surface finish required in optical and laser components. An extensive study using a two-axis diamond turning machine is conducted to machine the reflector arrays used for laser diode beam shaping. To position the workpiece precisely, theoretical analysis is made so that the dimensional accuracy can be achieved. Investigations into machining burr reduction are carried out. With the process developed, reflectors with optical surface finish of 8 nm in Ra and minimized burr size of less than 0.5 μm have been achieved.展开更多
Binder jet printing(BJP)is a state-of-the-art additive manufacturing technique for producing porous magnesium structures.Porous MgZn-Zr based BJP samples were assessed for corrosion performance in simulated body fluid...Binder jet printing(BJP)is a state-of-the-art additive manufacturing technique for producing porous magnesium structures.Porous MgZn-Zr based BJP samples were assessed for corrosion performance in simulated body fluids by electrochemical and hydrogen evolution measurements.The corrosion rates of the BJP specimens were significantly higher than solid controls,even after accounting for their larger surface areas,suggesting that the BJP microstructure is detrimental to corrosion performance.X-ray computed tomography revealed nonuniform corrosion within the porous structure,with corrosion products forming on the pore walls.Impregnating the pores with hydroxyapatite or polymers greatly improved the corrosion resistance of the BJP samples.展开更多
Metallic biomaterials have been widely used in the field of medical implants for replacement purposes and/or for regeneration of tissue.Metals such as stainless steel(316 L),cobalt-chromium alloys and titanium alloys(...Metallic biomaterials have been widely used in the field of medical implants for replacement purposes and/or for regeneration of tissue.Metals such as stainless steel(316 L),cobalt-chromium alloys and titanium alloys(Ti-6Al-4 V)are widely used as metallic implants today.However,they often exhibit unsatisfactory results such as stress shielding,the release of toxic ions and are often permanent and invasive–where a second surgery is required to remove the implant once the bone is fully healed.Magnesium as a biomaterial have attracted much attention recently due to its excellent biocompatibility,similar mechanical properties to bone and biodegradability.Unlike other metals and bio ceramics,the ability for magnesium alloys to undergo biodegradation eliminates the requirement for a second surgery to remove the implant.Additionally,the degradation of magnesium releases Mg2+ions,which stimulates metabolism as they are a cofactor in numerous numbers of enzymes.Despite the advantages of magnesium alloys,the rapid degradation of magnesium proved to be challenging as the implant is unable to retain its structural integrity sufficiently enough to act as an implant.To improve the corrosion resistance of magnesium alloys,researchers have been working on the synthesis and characterization of Mg-based bulk metallic glasses,which can significantly improve the corrosion resistance of Mg-based alloys.This paper is a comprehensive review that compiles,analyzes and critically discusses the recent literature on the latest understanding of the processing,mechanical and biological characteristics of Mg-based bulk metallic glasses.展开更多
Human beings have witnessed unprecedented developments since the 1760s using precision tools and manufacturing methods that have led to ever-increasing precision,from millimeter to micrometer,to single nanometer,and t...Human beings have witnessed unprecedented developments since the 1760s using precision tools and manufacturing methods that have led to ever-increasing precision,from millimeter to micrometer,to single nanometer,and to atomic levels.The modes of manufacturing have also advanced from craft-based manufacturing in the Stone,Bronze,and Iron Ages to precisioncontrollable manufacturing using automatic machinery.In the past 30 years,since the invention of the scanning tunneling microscope,humans have become capable of manipulating single atoms,laying the groundwork for the coming era of atomic and close-to-atomic scale manufacturing(ACSM).Close-to-atomic scale manufacturing includes all necessary steps to convert raw materials,components,or parts into products designed to meet the user’s specifications.The processes involved in ACSM are not only atomically precise but also remove,add,or transform work material at the atomic and close-to-atomic scales.This review discusses the history of the development of ACSM and the current state-of-the-art processes to achieve atomically precise and/or atomic-scale manufacturing.Existing and future applications of ACSM in quantum computing,molecular circuitry,and the life and material sciences are also described.To further develop ACSM,it is critical to understand the underlying mechanisms of atomic-scale and atomically precise manufacturing;develop functional devices,materials,and processes for ACSM;and promote high throughput manufacturing.展开更多
We report the generation of high energy 2μm picosecond pulses from a thulium-doped fiber master oscillator power amplifier system.The all-fiber configuration was realized by a flexible large-mode area photonic crysta...We report the generation of high energy 2μm picosecond pulses from a thulium-doped fiber master oscillator power amplifier system.The all-fiber configuration was realized by a flexible large-mode area photonic crystal fiber(LMA-PCF).The amplifier output is a linearly-polarized 1.5 ns,100 kHz pulse train with a pulse energy of up to 250μJ.Pulse compression was achieved with(2+2)-pass chirped volume Bragg grating(CVBG)to obtain a 2.8 ps pulse width with a total pulse energy of 46μJ.The overall system compactness was enabled by the all-fiber amplifier design and the multi-pass CVBG-based compressor.The laser output was then used to demonstrate high-speed direct-writing capability on a temperature-sensitive biomaterial to change its topography(i.e.fabricate microchannels,foams and pores).The topographical modifications of biomaterials are known to influence cell behavior and fate which is potentially useful in many cell and tissue engineering applications.展开更多
Wind energy witnessed tremendous growth in the past decade and emerged as the most sought renewable energy source after solar energy. Though the Horizontal Axis Wind Turbines (HAWT) is preferred for multi-megawatt pow...Wind energy witnessed tremendous growth in the past decade and emerged as the most sought renewable energy source after solar energy. Though the Horizontal Axis Wind Turbines (HAWT) is preferred for multi-megawatt power generation, Vertical Axis Wind Turbines (VAWT) is as competitive as HAWT. The current study aims to summarize the development of VAWT, in particular, Darrieus turbine from the past to the project that is underway. The reason for the technical challenges and past failures are discussed. Various configurations of VAWT have been assessed in terms of reliability, components and low wind speed performance. Innovative concepts and the feasibility to scale up for megawatt electricity generation, especially in offshore environments are investigated. This paper is a modest attempt to highlight the state-of-the-art information on the ongoing developments focusing on decentralized power generation. This review is envisioned as an information hub for the major developments in VAWT and its technical advancements so far.展开更多
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci...The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.展开更多
We investigate the phthalocyanine derivative organic field-effect transistors (OFETs) using a novel para - quaterphenyl (p-4p) as the inducing layer. Compared to the devices without the p-4p inducing layer, the pe...We investigate the phthalocyanine derivative organic field-effect transistors (OFETs) using a novel para - quaterphenyl (p-4p) as the inducing layer. Compared to the devices without the p-4p inducing layer, the performances of p-type (copper phthalocyanine) and n-type (fluorinated copper phthaloeyanine) OFETs with optimized thickness of p-4p thin films are greatly enhanced. Both the field-effect mobility and the on/off ratio of the two-type devices are improved by one order of magnitude compared to those of the control devices. This re- markable improvement is attributed to the introduction of p-4p, which can form a highly oriented and continuous phthalocyanine derivative film with the molecular π - π stack direction parallel to the substrate.展开更多
Atmospheric-pressure(AP)plasma etching provides an alternative method for mechanical grinding to realize wafer thinning of Si wafer.It can avoid the damages and micro-cracks that would be introduced by mechanical stre...Atmospheric-pressure(AP)plasma etching provides an alternative method for mechanical grinding to realize wafer thinning of Si wafer.It can avoid the damages and micro-cracks that would be introduced by mechanical stress during the grinding process.In this study,the material removal characteristics of Si(100)wafer processed by linear field AP plasma generated using carbon tetrafluoride(CF4)as the reactive source were analyzed.This linear field plasma etching tool has a typical removal profile and the depth removal rate that can reach up to 1.082μm/min.The effect ofO2 concentration on the removal ratewas discussed and the surfacemorphology during the process was characterized using scanning electron microscopy.It is shown that the subsurface damage layer was gradually removed during the etching process and the surface was observed to be smoothened with the increase of the etching depth.This present work contributes a basic understanding of the linear field AP plasma etching performance with different gas composition and the typical characteristics would be further applied to damage-free precision removal of Si.展开更多
基金financially supported by the Young Individual Research Grants(Grant No:M22K3c0097)Singapore RIE 2025 plan and Singapore Aerospace Programme Cycle 16(Grant No:M2215a0073)led by C Tan+2 种基金supported by the Singapore A*STAR Career Development Funds(Grant No:C210812047)the National Natural Science Foundation of China(52174361 and 52374385)the support by US NSF DMR-2104933。
文摘Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.
基金supported by National Research Foundation of Korea(NRF)grants funded by the Korean Government(MSIT)[grant numbers RS-2023-00207763 and NRF-2022R1A2C2010350].
文摘Magnesium(Mg)and its alloys have recently gained increasing attention in the biomedical field as promising biodegradable materials with harmless degradation products.Magnesium-based alloys have a wide range of biomedical applications because of their outstanding biocompatibility and unique mechanical properties.Widespread use of Mg-based biomedical devices eliminates the need for post-healing biomaterial removal surgery and minimizes the negative consequences of the implantation of permanent biomaterials,including stress shielding and undesired metal ion release in the body.This paper provides a literature review on the properties and manufacturing methods of Mgbased alloys for biomedical applications,including orthopedic implants,cardiovascular applications,surgical wires and staplers,and antitumor activities.Each application of Mg-based biomaterials is investigated from a biological perspective,including matching functional properties,biocompatibility,host tissue responses,and anti-microbial strategies,along with potential additive manufacturing technologies for these applications.Finally,an outlook is presented to provide recommendations for Mg-based biomaterials in the future.
基金financial support provided by A*STAR Additive Manufacturing Centre (AMC) Initiative: Work package 1-High temperature materials development for 3D additive manufacturing (142680088)
文摘In this study, the flow characteristics and behaviors of virgin and recycled Inconel powder for powder-bed additive manufacturing (AM) were studied using different powder characterization techniques. The results revealed that the particle size distribution (PSD) for the selective laser melting (SLM) process is typically in the range from 15 μm to 63 μm. The flow rate of virgin Inconel powder is around 28 s·(50 g)^-1. In addition, the packing density was found to be 60%. The rheological test results indicate that the virgin powder has reasonably good flowability compared with the recycled powder. The inter-relation between the powder characteristics is discussed herein. A propeller was successfully printed using the powder. The results suggest that Inconel powder is suitable for AM and can be a good reference for researchers who attempt to pro- duce AM powders.
基金support from Australian National University Futures Schemethe support from the first Singapore-Germany Academic-Industry (2 + 2) international collaboration grant (Grant No.: A1890b0050)。
文摘Magnesium alloys remain critical in the context of light-weighting and advanced devices. The increased utilisation of magnesium(Mg)each year reveals growing demand for its Mg-based alloys. Additive manufacturing(AM) provides the possibility to directly manufacture components in net-shape, providing new possibilities and applications for the use of Mg-alloys, and new prospects in the utilisation of novel physical structures made possible from ‘3D printing’. The review herein seeks to holistically explore the additive manufacturing of Mg-alloys to date, including a synopsis of processes used and properties measured(with a comparison to conventionally prepared Mg-alloys). The challenges and possibilities of AM Mg-alloys are critically elaborated for the field of mechanical metallurgy.
基金supported by the 2022 MTC Young Individual Research Grants(Grant No.M22K3c0097)the Singapore Research,Innovation and Enterprise(RIE)2025 PlanSingapore Aerospace Programme Cycle 16(Grant No.M2215a0073)。
文摘Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.
基金financial support from the Science and Engineering Research Council,Agency for Science,Technology and Research(A*STAR),Singapore(142 68 00088)
文摘Additive manufacturing(AM)is gaining traction in the manufacturing industry for the fabrication of components with complex geometries using a variety of materials.Selective laser melting(SLM)is a common AM technique that is based on powder-bed fusion(PBF)to process metals;however,it is currently focused only on the fabrication of macroscale and mesoscale components.This paper reviews the state of the art of the SLM of metallic materials at the microscale level.In comparison with the direct writing techniques that are commonly used for micro AM,micro SLM is attractive due to a number of factors,including a faster cycle time,process simplicity,and material versatility.A comprehensive evaluation of various research works and commercial systems for the fabrication of microscale parts using SLM and selective laser sintering(SLS)is conducted.In addition to identifying existing issues with SLM at the microscale,which include powder recoating,laser optics,and powder particle size,this paper details potential future directions.A detailed review of existing recoating methods in powder-bed techniques is conducted,along with a description of emerging efforts to implement dry powder dispensing methods in the AM domain.A number of secondary finishing techniques for AM components are reviewed,with a focus on implementation for microscale features and integration with micro SLM systems.
基金supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore under the IAF-PP program‘Integrated large format hybrid manufacturing using wire-fed and powder-blown technology for LAAM process’,Grant No.A1893a0031the Academy of Sciences Project of Guangdong Province,Grant No.2016GDASRC-0105。
文摘It is well-known that grain refiners can tailor the microstructure and enhance the mechanical properties of titanium alloys fabricated by additive manufacturing(AM). However, the intrinsic mechanisms of Ni addition on AM-built Ti–6Al–4V alloy is not well established. This limits its industrial applications. This work systematically investigated the influence of Ni additive on Ti–6Al–4V alloy fabricated by laser aided additive manufacturing(LAAM). The results showed that Ni addition yields three key effects on the microstructural evolution of LAAM-built Ti–6Al–4V alloy.(a) Ni additive remarkably refines the prior-β grains, which is due to the widened solidification range. As the Ni addition increased from 0 to 2.5 wt. %, the major-axis length and aspect ratio of the prior-β grains reduced from over 1500 μm and 7 to 97.7 μm and1.46, respectively.(b) Ni additive can discernibly induce the formation of globular α phase,which is attributed to the enhanced concentration gradient between the β and α phases. This is the driving force of globularization according to the termination mass transfer theory. The aspect ratio of the α laths decreased from 4.14 to 2.79 as the Ni addition increased from 0 to2.5 wt. %.(c) Ni as a well-known β-stabilizer and it can remarkably increase the volume fraction of β phase. Room-temperature tensile results demonstrated an increase in mechanical strength and an almost linearly decreasing elongation with increasing Ni addition. A modified mathematical model was used to quantitatively analyze the strengthening mechanism. It was evident from the results that the α lath phase and the solid solutes contribute the most to the overall yield strength of the LAAM-built Ti–6Al–4V–x Ni alloys in this work. Furthermore, the decrease in elongation with increasing Ni addition is due to the deterioration in deformability of the β phase caused by a large amount of solid-solution Ni atoms. These findings can accelerate the development of additively manufactured titanium alloys.
基金the Agency for Science Technology and Research (A*STAR) of Singapore for financial support
文摘In this investigation,a picosecond laser was employed to fabricate surface textures on a Stavax steel substrate,which is a key material for mold fabrication in the manufacturing of various polymer products.Three main types of surface textures were fabricated on a Stavax steel substrate:periodic ripples,a two-scale hierarchical two-dimensional array of micro-bumps,and a micro-pits array with nanoripples.The wettability of the laser-textured Stavax steel surface was converted from its original hydrophilicity into hydrophobicity and even super-hydrophobicity after exposure to air.The results clearly show that this super-hydrophobicity is mainly due to the surface textures.The ultrafast laserinduced catalytic effect may play a secondary role in modifying the surface chemistry so as to lower the surface energy.The laser-induced surface textures on the metal mold substrates were then replicated onto polypropylene substrates via the polymer injection molding process.The surface wettability of the molded polypropylene was found to be changed from the original hydrophilicity to superhydrophobicity.This developed process holds the potential to improve the performance of fabricated plastic products in terms of wettability control and easy cleaning.
基金Funding of Harbin Institute of Technology (Shenzhen) (DD45001015)NSFC/RGC Joint Research Scheme (Project N_City U123/15)+2 种基金the Science Technology and Innovation Committee of Shenzhen Municipality (JCYJ20130401145617276 and R-IND4903)City University of Hong Kong (PJ7004645)the Hong Kong Polytechnic University (1-BBA3) supported this work
文摘Inspired by the sophisticated artificial leather garment industry and toward enhancing wearability of energy storage devices, we demonstrate a polyurethane artificial leather supercapacitor with large sheet electrodes embedded in theleather layer simultaneously working as a polyelectrolyte. This design totally reserves textiles underneath and thus addresses the well-known challenge of wearing comfortability. It provides a revolutionary configuration of wearable supercapacitors: the artificial leather on garment is also a supercapacitor.Unlike the polyvinyl alcohol-based acidic electrolytes, which are widely used, sodium chloride is used to modify the intrinsically fluorescent polyurethane leather for ionic transportation, which has no harm to human. The fluorescent leather supercapacitor is easily transferrable from any arbitrary substrates to form various patterns, enabling multifunctionalities of practical wearability, fashion, and energy storage.
文摘With the concepts of Industry 4.0 and smart manufacturing gaining popularity,there is a growing notion that conventional manufacturing will witness a transition toward a new paradigm,targeting innovation,automation,better response to customer needs,and intelligent systems.Within this context,this review focuses on the concept of cyber–physical production system(CPPS)and presents a holistic perspective on the role of the CPPS in three key and essential drivers of this transformation:data-driven manufacturing,decentralized manufacturing,and integrated blockchains for data security.The paper aims to connect these three aspects of smart manufacturing and proposes that through the application of data-driven modeling,CPPS will aid in transforming manufacturing to become more intuitive and automated.In turn,automated manufacturing will pave the way for the decentralization of manufacturing.Layering blockchain technologies on top of CPPS will ensure the reliability and security of data sharing and integration across decentralized systems.Each of these claims is supported by relevant case studies recently published in the literature and from the industry;a brief on existing challenges and the way forward is also provided.
文摘Ultra-precision machining is an effective approach to achieve high dimension accuracy and surface finish required in optical and laser components. An extensive study using a two-axis diamond turning machine is conducted to machine the reflector arrays used for laser diode beam shaping. To position the workpiece precisely, theoretical analysis is made so that the dimensional accuracy can be achieved. Investigations into machining burr reduction are carried out. With the process developed, reflectors with optical surface finish of 8 nm in Ra and minimized burr size of less than 0.5 μm have been achieved.
基金the first Singapore-Germany Academic-Industry(2+2)international collaboration grant(Grant No.:A1890b0050)Agency for Science,Technology and Research(A^(*)STAR),under the RIE2020 Advanced Manufacturing and Engineering(AME)Programmatic Grant No.A1881b0061support of a scholarship from the A^(*)STAR Graduate Academy。
文摘Binder jet printing(BJP)is a state-of-the-art additive manufacturing technique for producing porous magnesium structures.Porous MgZn-Zr based BJP samples were assessed for corrosion performance in simulated body fluids by electrochemical and hydrogen evolution measurements.The corrosion rates of the BJP specimens were significantly higher than solid controls,even after accounting for their larger surface areas,suggesting that the BJP microstructure is detrimental to corrosion performance.X-ray computed tomography revealed nonuniform corrosion within the porous structure,with corrosion products forming on the pore walls.Impregnating the pores with hydroxyapatite or polymers greatly improved the corrosion resistance of the BJP samples.
文摘Metallic biomaterials have been widely used in the field of medical implants for replacement purposes and/or for regeneration of tissue.Metals such as stainless steel(316 L),cobalt-chromium alloys and titanium alloys(Ti-6Al-4 V)are widely used as metallic implants today.However,they often exhibit unsatisfactory results such as stress shielding,the release of toxic ions and are often permanent and invasive–where a second surgery is required to remove the implant once the bone is fully healed.Magnesium as a biomaterial have attracted much attention recently due to its excellent biocompatibility,similar mechanical properties to bone and biodegradability.Unlike other metals and bio ceramics,the ability for magnesium alloys to undergo biodegradation eliminates the requirement for a second surgery to remove the implant.Additionally,the degradation of magnesium releases Mg2+ions,which stimulates metabolism as they are a cofactor in numerous numbers of enzymes.Despite the advantages of magnesium alloys,the rapid degradation of magnesium proved to be challenging as the implant is unable to retain its structural integrity sufficiently enough to act as an implant.To improve the corrosion resistance of magnesium alloys,researchers have been working on the synthesis and characterization of Mg-based bulk metallic glasses,which can significantly improve the corrosion resistance of Mg-based alloys.This paper is a comprehensive review that compiles,analyzes and critically discusses the recent literature on the latest understanding of the processing,mechanical and biological characteristics of Mg-based bulk metallic glasses.
基金The authors gratefully acknowledge the support from the National Science Foundation of China(Grant Nos.51320105009,61635008,and 61675149)and the Science Foundation Ireland(SFI)(Grant Nos.15/RP/B3208 and 18/FIP/3555).
文摘Human beings have witnessed unprecedented developments since the 1760s using precision tools and manufacturing methods that have led to ever-increasing precision,from millimeter to micrometer,to single nanometer,and to atomic levels.The modes of manufacturing have also advanced from craft-based manufacturing in the Stone,Bronze,and Iron Ages to precisioncontrollable manufacturing using automatic machinery.In the past 30 years,since the invention of the scanning tunneling microscope,humans have become capable of manipulating single atoms,laying the groundwork for the coming era of atomic and close-to-atomic scale manufacturing(ACSM).Close-to-atomic scale manufacturing includes all necessary steps to convert raw materials,components,or parts into products designed to meet the user’s specifications.The processes involved in ACSM are not only atomically precise but also remove,add,or transform work material at the atomic and close-to-atomic scales.This review discusses the history of the development of ACSM and the current state-of-the-art processes to achieve atomically precise and/or atomic-scale manufacturing.Existing and future applications of ACSM in quantum computing,molecular circuitry,and the life and material sciences are also described.To further develop ACSM,it is critical to understand the underlying mechanisms of atomic-scale and atomically precise manufacturing;develop functional devices,materials,and processes for ACSM;and promote high throughput manufacturing.
基金Agency for Science,Technology and Research(A^*STAR)Singapore through the X-ray Photonics Programme(1426500052)A^*STAR Graduate Academy through the A^*STAR Graduate Scholarship.
文摘We report the generation of high energy 2μm picosecond pulses from a thulium-doped fiber master oscillator power amplifier system.The all-fiber configuration was realized by a flexible large-mode area photonic crystal fiber(LMA-PCF).The amplifier output is a linearly-polarized 1.5 ns,100 kHz pulse train with a pulse energy of up to 250μJ.Pulse compression was achieved with(2+2)-pass chirped volume Bragg grating(CVBG)to obtain a 2.8 ps pulse width with a total pulse energy of 46μJ.The overall system compactness was enabled by the all-fiber amplifier design and the multi-pass CVBG-based compressor.The laser output was then used to demonstrate high-speed direct-writing capability on a temperature-sensitive biomaterial to change its topography(i.e.fabricate microchannels,foams and pores).The topographical modifications of biomaterials are known to influence cell behavior and fate which is potentially useful in many cell and tissue engineering applications.
文摘Wind energy witnessed tremendous growth in the past decade and emerged as the most sought renewable energy source after solar energy. Though the Horizontal Axis Wind Turbines (HAWT) is preferred for multi-megawatt power generation, Vertical Axis Wind Turbines (VAWT) is as competitive as HAWT. The current study aims to summarize the development of VAWT, in particular, Darrieus turbine from the past to the project that is underway. The reason for the technical challenges and past failures are discussed. Various configurations of VAWT have been assessed in terms of reliability, components and low wind speed performance. Innovative concepts and the feasibility to scale up for megawatt electricity generation, especially in offshore environments are investigated. This paper is a modest attempt to highlight the state-of-the-art information on the ongoing developments focusing on decentralized power generation. This review is envisioned as an information hub for the major developments in VAWT and its technical advancements so far.
基金financially supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore,under the Aerospace Consortium Cycle 12“Characterization of the Effect of Wire and Powder Deposited Materials”(No.A1815a0078)。
文摘The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.
基金Supported by the National Natural Science Foundation of China under Grant No 60676051, the Natural Science Foundation of Tianjin under Grant No 07JCYBJC12700, the Foundation of Key Discipline of Material Physics and Chemistry of Tianjin, and the Key Program for Science and Technology in Tianjin under Grant No 14ZCZDGX00600.
文摘We investigate the phthalocyanine derivative organic field-effect transistors (OFETs) using a novel para - quaterphenyl (p-4p) as the inducing layer. Compared to the devices without the p-4p inducing layer, the performances of p-type (copper phthalocyanine) and n-type (fluorinated copper phthaloeyanine) OFETs with optimized thickness of p-4p thin films are greatly enhanced. Both the field-effect mobility and the on/off ratio of the two-type devices are improved by one order of magnitude compared to those of the control devices. This re- markable improvement is attributed to the introduction of p-4p, which can form a highly oriented and continuous phthalocyanine derivative film with the molecular π - π stack direction parallel to the substrate.
文摘Atmospheric-pressure(AP)plasma etching provides an alternative method for mechanical grinding to realize wafer thinning of Si wafer.It can avoid the damages and micro-cracks that would be introduced by mechanical stress during the grinding process.In this study,the material removal characteristics of Si(100)wafer processed by linear field AP plasma generated using carbon tetrafluoride(CF4)as the reactive source were analyzed.This linear field plasma etching tool has a typical removal profile and the depth removal rate that can reach up to 1.082μm/min.The effect ofO2 concentration on the removal ratewas discussed and the surfacemorphology during the process was characterized using scanning electron microscopy.It is shown that the subsurface damage layer was gradually removed during the etching process and the surface was observed to be smoothened with the increase of the etching depth.This present work contributes a basic understanding of the linear field AP plasma etching performance with different gas composition and the typical characteristics would be further applied to damage-free precision removal of Si.