A three-lumping Langmuir-Hinshelwood kinetic model was established based on the structures and reactivities of sulfur compounds.This model described the ultra-deep hydrodesulfurization(UDHDS)performance of diesel,redu...A three-lumping Langmuir-Hinshelwood kinetic model was established based on the structures and reactivities of sulfur compounds.This model described the ultra-deep hydrodesulfurization(UDHDS)performance of diesel,reducing sulfur content from 10000μg/g to less than 10μg/g,with experimental and predicted data showing a discrepancy of less than 10%.The diesel UDHDS reaction was simulated by combining the mass transfer,reaction kinetics model,and physical properties of diesel.The results showed how the concentrations of H2S,hydrogen,and sulfur in the gas,liquid,and solid phases varied along the reactor length.Moreover,the study discussed the effects of each process parameter and impurity concentrations(H2S,basic nitrogen and,non-basic nitrogen)on diesel UDHDS.展开更多
In Kiruna,nearly all the residents support the migration plan in order to make LKAB able to continue the mining process.Based on current condition,a larger part of this town will be demolished by the sinking land caus...In Kiruna,nearly all the residents support the migration plan in order to make LKAB able to continue the mining process.Based on current condition,a larger part of this town will be demolished by the sinking land caused by iron ore mining processing operated by LKAB.Since then,most of the buildings in the sinking district will be relocated in another district.However,the situation in Kiruna is not quite the same as when this kind of migration happens in another place.In other place,while migration happens,even if not most,a large part of the local residents will resist and fight for their house and properties.Concentrated on the ownership of different buildings and tried find the relationship between the public and private buildings to discover some issue that will help to work on the computational urban design.展开更多
This article sums up the energy consumption of process units and the overall energy consumption of 10 Mt/a class refineries constructed or revamped in recent years. The energy saving measures adopted in design of thes...This article sums up the energy consumption of process units and the overall energy consumption of 10 Mt/a class refineries constructed or revamped in recent years. The energy saving measures adopted in design of these refineries are analyzed and discussed. Finally, this article also makes comments and puts forward recommendations on the objectives for energy conservation at refineries in the future.展开更多
With the increase in the complexity of industrial system, simply detecting and diagnosing a fault may be insufficient in some cases, and prognosing the fault ahead of time could have a certain necessity. Accurate pred...With the increase in the complexity of industrial system, simply detecting and diagnosing a fault may be insufficient in some cases, and prognosing the fault ahead of time could have a certain necessity. Accurate prediction of key alarm variables in chemical process can indicate the possible change to reduce the probability of abnormal conditions. According to the characteristics of chemical process data, this work proposed a key alarm variables prediction model in chemical process based on dynamic-inner principal component analysis(DiPCA) and long short-term memory(LSTM). DiPCA is used to extract the most dynamic components for prediction. While LSTM is used to learn the relationship and predict the key alarm variables. This work used a simulation data set and a real hydrogenation process data set for applications and explained the model validity from the essential characteristics. Comparison of results with different models shows that our model has better prediction accuracy and performance, which can provide the basis for fault prognosis and health management.展开更多
A novel vapor-liquid distributor was developed on the basis of sufficient study on the existing distributors applied in hydroprocessing reactors. The cold model test data showed that the fluid distribution performance...A novel vapor-liquid distributor was developed on the basis of sufficient study on the existing distributors applied in hydroprocessing reactors. The cold model test data showed that the fluid distribution performance of the novel vapor-liquid distributor was evidently better than the traditional one. Com- mercial tests of the new distributor were carded out in the 300 kt/a gas oil hydrotreating reactor at SINOPEC Changling Branch Company, showing that the new vapor-liquid distributor could improve the fluid distribution, promote the hydrotreating efficiency and lead to better performance than the traditional one.展开更多
In order to utilize petroleum resources efficiently and greenly,and solve the problems of high coke yield,highsulfur coke utilization,and environmental protection concerns in China’s refineries,a resid contact cracki...In order to utilize petroleum resources efficiently and greenly,and solve the problems of high coke yield,highsulfur coke utilization,and environmental protection concerns in China’s refineries,a resid contact cracking and coke gasification integrated technology is being developed by the Research Institute of Petroleum Processing(RIPP).Based on the three technical characteristics including thin films cracking,partial oxidation,and rapid cracking,this technology not only can reduce the production rate of coke and dry gas formed during the process,but also can increase the liquid yield.Moreover,the in-situ low-temperature gasification technology is used to solve the clean utilization of high-sulfur petroleum coke,which can play the role of“Utility Island”and is a green and low-carbon technology for low-quality heavy oil upgrading.展开更多
Column setup has been widely utilized in the petroleum and chemistry industries. However, with the fast progress of industries and the increasingly serious energy shortage, designing a new column setup with better per...Column setup has been widely utilized in the petroleum and chemistry industries. However, with the fast progress of industries and the increasingly serious energy shortage, designing a new column setup with better performance and higher capacity becomes more urgent. In order to improve column's capacity and expand operating condition, a new type of column tray named novel vertical spray packing(NVSP) tray was designed and experimented. The performances of the novel tray, including pressure drop, weeping, entrainment and tray efficiency, were tested in a plexiglass column. In addition, performances of the novel tray were compared with that of the sieve tray and the Glitsch V1 valve tray. Based on the experiment data, the mathematical correlations of pressure drop, weeping and entrainment for the novel tray were established by regression analysis method. A fundamental model of dry pressure drop of the novel tray was promoted at the form of sum mode. The results indicate that the novel tray has wider operating condition and better performance.展开更多
Ethanol-water near-azeotropic mixture dehydration was investigated by formulated compound starchbased adsorbent(CSA), which consists of corn, sweet potato and foaming agent. The net retention time and separation facto...Ethanol-water near-azeotropic mixture dehydration was investigated by formulated compound starchbased adsorbent(CSA), which consists of corn, sweet potato and foaming agent. The net retention time and separation factor of water over ethanol were measured by inverse gas chromatography(IGC). Results indicated that water has a longer net retention time than ethanol and that low temperature is beneficial to this dehydration process. Orthogonal test was conducted under different vapor feed flow rates, bed temperatures and bed heights, to obtain optimal fixed-bed dehydration condition. Dynamic saturated adsorbance was also studied. It was found that CSA has the same water adsorption capacity(0.15 g/g)as some commercial molecular sieves. Besides, this biosorptive dehydration process was found to be the most energy-efficient compared with other ethanol purification processes.展开更多
1 Introduction
China has enforced a new gasoline standard starting 2003 to limit the olefins, aromatics and benzene contents in gasoline.The isomerate is the cleanest gasoline component because it does not contain the...1 Introduction
China has enforced a new gasoline standard starting 2003 to limit the olefins, aromatics and benzene contents in gasoline.The isomerate is the cleanest gasoline component because it does not contain the above-mentioned components, and is also an excellent gasoline blending component because of its higher RON and MON ratings.展开更多
The performance of heat transfer is a key issue for reactor design in petrochemical industry. Since the heat transfer in reactors is a complicated process and depends on multiple parameters, the evaluation of the heat...The performance of heat transfer is a key issue for reactor design in petrochemical industry. Since the heat transfer in reactors is a complicated process and depends on multiple parameters, the evaluation of the heat transfer performance is usually challenging, and few previous studies gave an overall view of heat exchange performance of different types of reactors. In this review, heat transfer coefficients of two types of petrochemical reactors, including the packed bed and the fluidized bed, were systematically analyzed and compared based on a number of reported correlations. The relationship between heat transfer coefficients and fluid flow velocity in different reactors has been well established, which clearly demonstrates the varying range of their heat transfer coefficients. Heat transfer coefficients of gas-phase packed bed can exceed 200 W/m^2·K, rather than the suggested values(17—89 W/m^2·K) mentioned in the literature. The fluidized bed shows better performance for both two-phase and three-phase beds as compared to the packed bed. Systems with liquid phase also show better heat transfer performance than other phases because of the larger heat capacity of liquid. Thus the industrial three-phase fluidized beds have the best heat transfer performance with an overall heat transfer coefficient of greater than 1 000 W/m^2·K. The heat transfer results provided by this review can afford not only new insights into the heat transfer in typical reactors, but also the basis and guidelines for reactor design and selection.展开更多
Based on a typical gas composition from a methanol-to-propylene (MTP) reactor, and guided by a requirement to recover both propylene and ethylene, three separation strategies are studied and simulated by using PROI1 p...Based on a typical gas composition from a methanol-to-propylene (MTP) reactor, and guided by a requirement to recover both propylene and ethylene, three separation strategies are studied and simulated by using PROI1 package. These strategies are sequential separation, front-end dethanization, and front-end depropanization. The process does not involve an ethylene refrigeration system, using the separated stream as absorbent, and absorbing further the medium-pressure demethanization, and a proprietary technology by combining intercooling oil absorption and throttle expansio n. In fluences of different process streams as absorbent are studied on energy consumptions, propylene and ethylene recovery percentages, and other key-performance indicators of the separation strategies. Based on a commercial MTP plant with a methanol capacity of 1700 kt·a^-1, the simulated results show that the front-end dethanization using the C4 mixture as absorbent is the optimal separation strategy, in which the standard fuel oil consumption (a key-performance in dicator of energy con sumption) is 18.97 kt·h^-1, the total power consumption of two compressors is 22.4 MW, the propylene recovery percentage is 99.70%, and the ethylene recovery percentage is 99.70%. For a further improvement, the pre-dethanization and thermal coupling methods are applied. By using front-end pre-dethanization (partial cutting) with debutanizeroverhead, i.e. the C4 mixture, as absorbent, the power consumption of the compressors decreases to 19.9 MW, an 11% reduction compared with the clear-cutting method. The energy consumption for the dual compressors for crude gaseous product mixture and main product propylene refrigeration is 16.69 MW, 16.55% lower than that of the present MTP industrial plant with the same scale, and a total energy consumption of 20 MW for the triple compressors including product gas mixture compression, and ethylene and propylene refrigeration.展开更多
Oil resources are non- renewable and the utilization of oil resources should be sustainable andrational. Oil processing industry must, to the maximum extent, produce liquid transportation fuel and chemi-cal feedstocks...Oil resources are non- renewable and the utilization of oil resources should be sustainable andrational. Oil processing industry must, to the maximum extent, produce liquid transportation fuel and chemi-cal feedstocks, which can hardly be replaced by other forms of energy. Restructuring oil refineries in China,developing hydrocracking technologies and improving light oil yield are the significant means to achievethe sustainable development of petroleum processing industry.展开更多
This article has analyzed the environment and tasks confronting China's petroleum refining industry, and has referred to principles for selecting the resid processing technologies and viability of various combinat...This article has analyzed the environment and tasks confronting China's petroleum refining industry, and has referred to principles for selecting the resid processing technologies and viability of various combination technologies for resid processing. Taking into account the actual commercial practice of resid hydrogenation units, this article has also discussed methods for processing high-sulfur inferior crudes as well as the suitability of resid hydrogenation technology.展开更多
This article summarizes the block process flow scheme for the 8.0 Mt/a refining project at Hainan Refining and Chemical Company, Ltd., highlighting a green route for processing sour heavy oils, and the enlarged scale ...This article summarizes the block process flow scheme for the 8.0 Mt/a refining project at Hainan Refining and Chemical Company, Ltd., highlighting a green route for processing sour heavy oils, and the enlarged scale of production with Chinese content. The refinery is targeted at hydrotreating of process streams, integration and intensified design of process units, clean gasoline and diesel production, centralized recovery and utilization of light ends and optimization of sulphur recovery systems.展开更多
The operating circumstances of refinery industry in China in 2005 were referred to in this paper, along with the processes for development of petrochemical industry aimed at regionalization, concentrated disposition o...The operating circumstances of refinery industry in China in 2005 were referred to in this paper, along with the processes for development of petrochemical industry aimed at regionalization, concentrated disposition of enterprises and construction of industrial bases. The pressure faced currently by the oil refining industry in terms of resources avalibility and environmental regulations was analyzed. The key elements associated with the refining industry restructuring to economize on all kinds of resources were discussed and presented. It is stated that the key for building an energy and materials saving oil refining industry should rely on the adoption of advanced process and engineering technology, adjustment of refinery configuration, improving the energy and resources utilization efficiency, deep processing of crude oils, optimizing all kinds of resources, reducing effluents by saving water, as well as boosting the integration of oil refining with chemical production, concentrated disposition and realization of large scale of process units.展开更多
The catalytic desulfurization of a model organic sulfurous compound n-butyl-sulfide in a fixed bed microreactor is studied in the presence of catalyst and a hydrogen provider. The experimental results show that the ap...The catalytic desulfurization of a model organic sulfurous compound n-butyl-sulfide in a fixed bed microreactor is studied in the presence of catalyst and a hydrogen provider. The experimental results show that the appropriate reaction conditions are: a mixed catalyst of HZSM-5 zeolite and Co-Mo/Al2O3-TiO2, a reaction temperature of 300℃, atmosphere pressure, a feed speed of 50 mL/h and a mass hourly space velocity of 3.0 h^-1 A higher catalytic property and desulfurization efficiency of the mixed catalyst of HZSM-5 zeolite and Co-Mo/Al2O3-TiO2 is achieved. The adsorption and desulfurization efficiency of the FCC gasoline from Shenghua Refinery, which is affiliated to China University of Petroleum (East China), is 53.0 %.展开更多
Aiming at acute characteristics of flammability,explosibility,causticity and leakiness of high sour natural gas,giving full consideration to local natural conditions in Sichuan Province and starting with purification ...Aiming at acute characteristics of flammability,explosibility,causticity and leakiness of high sour natural gas,giving full consideration to local natural conditions in Sichuan Province and starting with purification process,the paper analyzed process configurations,energy utilization and conservation,safety and environment protection measures. The integrated technology and engineering scheme for high sour natural gas purification was established and successfully used in industrial application.展开更多
As early as in the 1960s some people had predicted that crude oil would deplete soon. Nevertheless, by the end of 1999 the world proven reserves of remaining conventional oil amounted to 139.2 billion tons. The world ...As early as in the 1960s some people had predicted that crude oil would deplete soon. Nevertheless, by the end of 1999 the world proven reserves of remaining conventional oil amounted to 139.2 billion tons. The world consumed about 3.462 billion tons of oil in 1999. In addition, there exist sizable reserves of non-conventional oil (heavy oils and super-heavy oils).展开更多
The flow dynamics in a novel fast-turbulent fluidized bed (FTFB) with middle-upper expanding structure and two different ring-feeder internals (mixed and vortex ring-feeder) were studied to achieve a reduction in ...The flow dynamics in a novel fast-turbulent fluidized bed (FTFB) with middle-upper expanding structure and two different ring-feeder internals (mixed and vortex ring-feeder) were studied to achieve a reduction in gasoline olefin production, Compared with a conventional circulating fluidized bed, the novel FTFB displayed unique characteristics and advantages. A higher solids holdup and more uniform solids holdup distribution existed in the diameter-expanding region, especially for the FTFB with vortex ring-feeder structure, A probability density distribution analysis indicated that the novel fluidized bed could reduce gas-solids segregation and enhance gas-solids interaction. A constant carbon dioxide tracer system was used to simulate the reactant gas distribution. The gas-solids contact efficiency was defined according to the solid dispersibility and the amount of gas covering the solid surface. Novel FTFB risers, especially those with vortex ring-feeders, have a much higher gas-solids contact efficiency than that of traditional risers.展开更多
The precipitation behavior of V-N microalloyed steel during normalizing process was studied by physicochemical phase analysis and transmission electron microscopy(TEM). The effect of precipitation behavior on mechan...The precipitation behavior of V-N microalloyed steel during normalizing process was studied by physicochemical phase analysis and transmission electron microscopy(TEM). The effect of precipitation behavior on mechanical properties was investigated by theoretical calculations. The results showed that 32.9% of V(C,N) precipitates remained undissolved in the austenite during the soaking step of the normalizing process. These precipitates prevented the growth of the austenite grains. During the subsequent cooling process, the dissolved V(C,N) re-precipitated and played a role in precipitation strengthening. The undissolved V(C,N) induced intragranular ferrite nucleation and refined the ferrite grains. Consequently, compared with hot-rolled steel, the normalized steel exhibited increased grain-refining strengthening but diminished precipitation strengthening, leading to an improvement of the impact energy at the expense of about 40 MPa yield strength.展开更多
文摘A three-lumping Langmuir-Hinshelwood kinetic model was established based on the structures and reactivities of sulfur compounds.This model described the ultra-deep hydrodesulfurization(UDHDS)performance of diesel,reducing sulfur content from 10000μg/g to less than 10μg/g,with experimental and predicted data showing a discrepancy of less than 10%.The diesel UDHDS reaction was simulated by combining the mass transfer,reaction kinetics model,and physical properties of diesel.The results showed how the concentrations of H2S,hydrogen,and sulfur in the gas,liquid,and solid phases varied along the reactor length.Moreover,the study discussed the effects of each process parameter and impurity concentrations(H2S,basic nitrogen and,non-basic nitrogen)on diesel UDHDS.
文摘In Kiruna,nearly all the residents support the migration plan in order to make LKAB able to continue the mining process.Based on current condition,a larger part of this town will be demolished by the sinking land caused by iron ore mining processing operated by LKAB.Since then,most of the buildings in the sinking district will be relocated in another district.However,the situation in Kiruna is not quite the same as when this kind of migration happens in another place.In other place,while migration happens,even if not most,a large part of the local residents will resist and fight for their house and properties.Concentrated on the ownership of different buildings and tried find the relationship between the public and private buildings to discover some issue that will help to work on the computational urban design.
文摘This article sums up the energy consumption of process units and the overall energy consumption of 10 Mt/a class refineries constructed or revamped in recent years. The energy saving measures adopted in design of these refineries are analyzed and discussed. Finally, this article also makes comments and puts forward recommendations on the objectives for energy conservation at refineries in the future.
基金support from the National Natural Science Foundation of China (21878171)。
文摘With the increase in the complexity of industrial system, simply detecting and diagnosing a fault may be insufficient in some cases, and prognosing the fault ahead of time could have a certain necessity. Accurate prediction of key alarm variables in chemical process can indicate the possible change to reduce the probability of abnormal conditions. According to the characteristics of chemical process data, this work proposed a key alarm variables prediction model in chemical process based on dynamic-inner principal component analysis(DiPCA) and long short-term memory(LSTM). DiPCA is used to extract the most dynamic components for prediction. While LSTM is used to learn the relationship and predict the key alarm variables. This work used a simulation data set and a real hydrogenation process data set for applications and explained the model validity from the essential characteristics. Comparison of results with different models shows that our model has better prediction accuracy and performance, which can provide the basis for fault prognosis and health management.
文摘A novel vapor-liquid distributor was developed on the basis of sufficient study on the existing distributors applied in hydroprocessing reactors. The cold model test data showed that the fluid distribution performance of the novel vapor-liquid distributor was evidently better than the traditional one. Com- mercial tests of the new distributor were carded out in the 300 kt/a gas oil hydrotreating reactor at SINOPEC Changling Branch Company, showing that the new vapor-liquid distributor could improve the fluid distribution, promote the hydrotreating efficiency and lead to better performance than the traditional one.
基金This work was financially supported by the SINOPEC Research Program(No.115015 and 117017-1).
文摘In order to utilize petroleum resources efficiently and greenly,and solve the problems of high coke yield,highsulfur coke utilization,and environmental protection concerns in China’s refineries,a resid contact cracking and coke gasification integrated technology is being developed by the Research Institute of Petroleum Processing(RIPP).Based on the three technical characteristics including thin films cracking,partial oxidation,and rapid cracking,this technology not only can reduce the production rate of coke and dry gas formed during the process,but also can increase the liquid yield.Moreover,the in-situ low-temperature gasification technology is used to solve the clean utilization of high-sulfur petroleum coke,which can play the role of“Utility Island”and is a green and low-carbon technology for low-quality heavy oil upgrading.
基金Supported by the Central College Research Fund(JL1101)the National Natural Science Foundation of China(21121064,21076008)
文摘Column setup has been widely utilized in the petroleum and chemistry industries. However, with the fast progress of industries and the increasingly serious energy shortage, designing a new column setup with better performance and higher capacity becomes more urgent. In order to improve column's capacity and expand operating condition, a new type of column tray named novel vertical spray packing(NVSP) tray was designed and experimented. The performances of the novel tray, including pressure drop, weeping, entrainment and tray efficiency, were tested in a plexiglass column. In addition, performances of the novel tray were compared with that of the sieve tray and the Glitsch V1 valve tray. Based on the experiment data, the mathematical correlations of pressure drop, weeping and entrainment for the novel tray were established by regression analysis method. A fundamental model of dry pressure drop of the novel tray was promoted at the form of sum mode. The results indicate that the novel tray has wider operating condition and better performance.
基金Supported by the Independent Innovation Foundation of Tianjin University(No.2010XY-0013)
文摘Ethanol-water near-azeotropic mixture dehydration was investigated by formulated compound starchbased adsorbent(CSA), which consists of corn, sweet potato and foaming agent. The net retention time and separation factor of water over ethanol were measured by inverse gas chromatography(IGC). Results indicated that water has a longer net retention time than ethanol and that low temperature is beneficial to this dehydration process. Orthogonal test was conducted under different vapor feed flow rates, bed temperatures and bed heights, to obtain optimal fixed-bed dehydration condition. Dynamic saturated adsorbance was also studied. It was found that CSA has the same water adsorption capacity(0.15 g/g)as some commercial molecular sieves. Besides, this biosorptive dehydration process was found to be the most energy-efficient compared with other ethanol purification processes.
文摘1 Introduction
China has enforced a new gasoline standard starting 2003 to limit the olefins, aromatics and benzene contents in gasoline.The isomerate is the cleanest gasoline component because it does not contain the above-mentioned components, and is also an excellent gasoline blending component because of its higher RON and MON ratings.
文摘The performance of heat transfer is a key issue for reactor design in petrochemical industry. Since the heat transfer in reactors is a complicated process and depends on multiple parameters, the evaluation of the heat transfer performance is usually challenging, and few previous studies gave an overall view of heat exchange performance of different types of reactors. In this review, heat transfer coefficients of two types of petrochemical reactors, including the packed bed and the fluidized bed, were systematically analyzed and compared based on a number of reported correlations. The relationship between heat transfer coefficients and fluid flow velocity in different reactors has been well established, which clearly demonstrates the varying range of their heat transfer coefficients. Heat transfer coefficients of gas-phase packed bed can exceed 200 W/m^2·K, rather than the suggested values(17—89 W/m^2·K) mentioned in the literature. The fluidized bed shows better performance for both two-phase and three-phase beds as compared to the packed bed. Systems with liquid phase also show better heat transfer performance than other phases because of the larger heat capacity of liquid. Thus the industrial three-phase fluidized beds have the best heat transfer performance with an overall heat transfer coefficient of greater than 1 000 W/m^2·K. The heat transfer results provided by this review can afford not only new insights into the heat transfer in typical reactors, but also the basis and guidelines for reactor design and selection.
基金Supported by Sinopec Group company commissioned development project(contract number:412101)
文摘Based on a typical gas composition from a methanol-to-propylene (MTP) reactor, and guided by a requirement to recover both propylene and ethylene, three separation strategies are studied and simulated by using PROI1 package. These strategies are sequential separation, front-end dethanization, and front-end depropanization. The process does not involve an ethylene refrigeration system, using the separated stream as absorbent, and absorbing further the medium-pressure demethanization, and a proprietary technology by combining intercooling oil absorption and throttle expansio n. In fluences of different process streams as absorbent are studied on energy consumptions, propylene and ethylene recovery percentages, and other key-performance indicators of the separation strategies. Based on a commercial MTP plant with a methanol capacity of 1700 kt·a^-1, the simulated results show that the front-end dethanization using the C4 mixture as absorbent is the optimal separation strategy, in which the standard fuel oil consumption (a key-performance in dicator of energy con sumption) is 18.97 kt·h^-1, the total power consumption of two compressors is 22.4 MW, the propylene recovery percentage is 99.70%, and the ethylene recovery percentage is 99.70%. For a further improvement, the pre-dethanization and thermal coupling methods are applied. By using front-end pre-dethanization (partial cutting) with debutanizeroverhead, i.e. the C4 mixture, as absorbent, the power consumption of the compressors decreases to 19.9 MW, an 11% reduction compared with the clear-cutting method. The energy consumption for the dual compressors for crude gaseous product mixture and main product propylene refrigeration is 16.69 MW, 16.55% lower than that of the present MTP industrial plant with the same scale, and a total energy consumption of 20 MW for the triple compressors including product gas mixture compression, and ethylene and propylene refrigeration.
文摘Oil resources are non- renewable and the utilization of oil resources should be sustainable andrational. Oil processing industry must, to the maximum extent, produce liquid transportation fuel and chemi-cal feedstocks, which can hardly be replaced by other forms of energy. Restructuring oil refineries in China,developing hydrocracking technologies and improving light oil yield are the significant means to achievethe sustainable development of petroleum processing industry.
文摘This article has analyzed the environment and tasks confronting China's petroleum refining industry, and has referred to principles for selecting the resid processing technologies and viability of various combination technologies for resid processing. Taking into account the actual commercial practice of resid hydrogenation units, this article has also discussed methods for processing high-sulfur inferior crudes as well as the suitability of resid hydrogenation technology.
文摘This article summarizes the block process flow scheme for the 8.0 Mt/a refining project at Hainan Refining and Chemical Company, Ltd., highlighting a green route for processing sour heavy oils, and the enlarged scale of production with Chinese content. The refinery is targeted at hydrotreating of process streams, integration and intensified design of process units, clean gasoline and diesel production, centralized recovery and utilization of light ends and optimization of sulphur recovery systems.
文摘The operating circumstances of refinery industry in China in 2005 were referred to in this paper, along with the processes for development of petrochemical industry aimed at regionalization, concentrated disposition of enterprises and construction of industrial bases. The pressure faced currently by the oil refining industry in terms of resources avalibility and environmental regulations was analyzed. The key elements associated with the refining industry restructuring to economize on all kinds of resources were discussed and presented. It is stated that the key for building an energy and materials saving oil refining industry should rely on the adoption of advanced process and engineering technology, adjustment of refinery configuration, improving the energy and resources utilization efficiency, deep processing of crude oils, optimizing all kinds of resources, reducing effluents by saving water, as well as boosting the integration of oil refining with chemical production, concentrated disposition and realization of large scale of process units.
文摘The catalytic desulfurization of a model organic sulfurous compound n-butyl-sulfide in a fixed bed microreactor is studied in the presence of catalyst and a hydrogen provider. The experimental results show that the appropriate reaction conditions are: a mixed catalyst of HZSM-5 zeolite and Co-Mo/Al2O3-TiO2, a reaction temperature of 300℃, atmosphere pressure, a feed speed of 50 mL/h and a mass hourly space velocity of 3.0 h^-1 A higher catalytic property and desulfurization efficiency of the mixed catalyst of HZSM-5 zeolite and Co-Mo/Al2O3-TiO2 is achieved. The adsorption and desulfurization efficiency of the FCC gasoline from Shenghua Refinery, which is affiliated to China University of Petroleum (East China), is 53.0 %.
文摘Aiming at acute characteristics of flammability,explosibility,causticity and leakiness of high sour natural gas,giving full consideration to local natural conditions in Sichuan Province and starting with purification process,the paper analyzed process configurations,energy utilization and conservation,safety and environment protection measures. The integrated technology and engineering scheme for high sour natural gas purification was established and successfully used in industrial application.
文摘As early as in the 1960s some people had predicted that crude oil would deplete soon. Nevertheless, by the end of 1999 the world proven reserves of remaining conventional oil amounted to 139.2 billion tons. The world consumed about 3.462 billion tons of oil in 1999. In addition, there exist sizable reserves of non-conventional oil (heavy oils and super-heavy oils).
基金the financial support of the CNPC in the National Program on Key Basic Research Project(973 Program) of China(No.2012CB215000)
文摘The flow dynamics in a novel fast-turbulent fluidized bed (FTFB) with middle-upper expanding structure and two different ring-feeder internals (mixed and vortex ring-feeder) were studied to achieve a reduction in gasoline olefin production, Compared with a conventional circulating fluidized bed, the novel FTFB displayed unique characteristics and advantages. A higher solids holdup and more uniform solids holdup distribution existed in the diameter-expanding region, especially for the FTFB with vortex ring-feeder structure, A probability density distribution analysis indicated that the novel fluidized bed could reduce gas-solids segregation and enhance gas-solids interaction. A constant carbon dioxide tracer system was used to simulate the reactant gas distribution. The gas-solids contact efficiency was defined according to the solid dispersibility and the amount of gas covering the solid surface. Novel FTFB risers, especially those with vortex ring-feeders, have a much higher gas-solids contact efficiency than that of traditional risers.
基金Item Sponsored by National Science and Technology Pillar Program of China(2011BAE25B01)
文摘The precipitation behavior of V-N microalloyed steel during normalizing process was studied by physicochemical phase analysis and transmission electron microscopy(TEM). The effect of precipitation behavior on mechanical properties was investigated by theoretical calculations. The results showed that 32.9% of V(C,N) precipitates remained undissolved in the austenite during the soaking step of the normalizing process. These precipitates prevented the growth of the austenite grains. During the subsequent cooling process, the dissolved V(C,N) re-precipitated and played a role in precipitation strengthening. The undissolved V(C,N) induced intragranular ferrite nucleation and refined the ferrite grains. Consequently, compared with hot-rolled steel, the normalized steel exhibited increased grain-refining strengthening but diminished precipitation strengthening, leading to an improvement of the impact energy at the expense of about 40 MPa yield strength.