期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Multi-objective planning model for simultaneous reconfiguration of power distribution network and allocation of renewable energy resources and capacitors with considering uncertainties 被引量:9
1
作者 Sajad Najafi Ravadanegh Mohammad Reza Jannati Oskuee Masoumeh Karimi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1837-1849,共13页
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a... This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration. 展开更多
关键词 optimal reconfiguration renewable energy resources sitting and sizing capacitor allocation electric distribution system uncertainty modeling scenario based-stochastic programming multi-objective genetic algorithm
下载PDF
Coordinated and uncoordinated design of LFO damping controllers with IPFC and PSS using ICA and SFLA 被引量:1
2
作者 Mahdi Toupchi Khosroshahi Farhad Mohajel Kazemi +1 位作者 Mohammad Reza Jannati Oskuee Sajad Najafi-Ravadanegh 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3418-3426,共9页
A single machine-infinite-bus(SMIB) system including the interline power flow controllers(IPFCs) and the power system stabilizer(PSS) controller is addressed. The linearized system model is considered for investigatin... A single machine-infinite-bus(SMIB) system including the interline power flow controllers(IPFCs) and the power system stabilizer(PSS) controller is addressed. The linearized system model is considered for investigating the interactions among IPFC and PSS controllers. To improve the stability of whole system again different disturbances, a lead-lag controller is considered to produce supplementary signal. The proposed supplementary controller is implemented to improve the damping of the power system low frequency oscillations(LFOs). Imperialist optimization algorithm(ICA) and shuffled frog leaping algorithm(SFLA) are implemented to search for optimal supplementary controllers and PSS parameters. Moreover, singular value decomposition(SVD) method is utilized to select the most effective damping control signal of IPFC lead-lag controllers. To evaluate the system performance, different operating conditions are considered. Reponses of system in five modes including uncoordinated and coordinated modes of IPFC and PSS using ICA and SFLA are studied and compared. Considering the results, response of system without controller shows the highest overshoot and the longest settling time for rotor angel at the different operating conditions. In this mode of system, rotor speed has the highest overshoot. Rotor angel in the system with only PSS includes lower overshoot and oscillation than system without controller. When PSS is only implemented, rotor speed deviation has the longest settling time. Rotor speed deviation in the uncoordinated mode of IPFC and PSS shows lower overshoot than system with only PSS and without controller. It is noticeable that in this mode, rotor angel has higher overshoot than system with only PSS. The superiority of the suggested ICA-based coordinated controllers is obvious compared with SFLA-based coordinated controllers and other system modes. Responses of coordinated PSS and IPFC SFLA-based supplementary controllers include higher peak amplitude and longer settling time compared with coordinated IPFC and PSS ICA-based controllers. This comparison shows that overshoots, undershoots and the settling times are reduced considerably in coordinated mode of IPFC based controller and PSS using ICA. Analysis of the system performance shows that the proposed method has excellent response to different faults in power system. 展开更多
关键词 interline power flow controller(IPFC) controller imperialist competitive optimization algorithm power system stabilizer(PSS)
下载PDF
A new multilevel voltage source inverter configuration with minimum number of circuit elements
3
作者 Mohammad Reza Jannati Oskuee Masoumeh Karimi +2 位作者 Yahya Naderi Sajad Najafi Ravadanegh Seyyed Hossein Hosseini 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期912-920,共9页
An advanced configuration for multilevel voltage source converters is proposed. The proposed converter is able to apply asymmetrical DC sources. The configuration of the proposed inverter is well designed in order to ... An advanced configuration for multilevel voltage source converters is proposed. The proposed converter is able to apply asymmetrical DC sources. The configuration of the proposed inverter is well designed in order to provide the maximum number of voltage levels in output terminals using lower number of circuit devices. The authority of the proposed inverter versus the conventional H-bridge cascaded inverter and the most recently introduced ones, is verified with a provided comparison study. The proposed inverter is able to generate the desired voltage levels using a lower number of circuit devices including power semi-conductor switches, IGBTs, diodes, related gate driver circuits of switches and DC voltage sources. As a result, the total cost and installation area are considerably reduced and the control scheme gets simpler. To confirm the feasibility of the proposed multilevel structure, both the simulation and experimental results are provided and compared which shows good agreements. 展开更多
关键词 MULTILEVEL VOLTAGE source INVERTER reduction of circuit components SYMMETRIC INVERTER ASYMMETRIC INVERTER
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部