期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Parametric Analysis of Tensile Properties of Bimodal Al Alloys by Finite Element Method
1
作者 W.L. Zhang S. Li S.R. Nutt 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第2期281-288,共8页
An axisymmetrical unit cell model was used to represent a bimodal Al alloy that was composed of both nano-grained (NG) and coarse-grained (CG) aluminum. Effects of microstructural and materials parameters on tensi... An axisymmetrical unit cell model was used to represent a bimodal Al alloy that was composed of both nano-grained (NG) and coarse-grained (CG) aluminum. Effects of microstructural and materials parameters on tensile properties of bimodal AI alloy were investigated by finite element method (FEM). The parameters analyzed included aspect ratios of CG Al and the unit cell, volume fraction of CG Al (VFCG), and yield strength and strain hardening exponent of CG Al. Aspect ratios of CG Al and the unit cell have no significant influence on tensile stress-strain response of the bimodal Al alloy. This phenomenon derives from the similarity in elastic modulus and coefficient of thermal expansion between CG AI and NG Al. Conversely, tensile properties of bimodal Al alloy are extremely sensitive to VFCG, yield strength and strain hardening exponent of CG Al. Specifically, as VFCG increases, both yield strength and ultimate tensile strength (UTS) of the bimodal Al alloy decreases, while uniform strain of bimodal AI alloy increases. In addition, an increase in yield strength of CG Al results in an increase in both yield stress and UTS of bimodal AI alloy and a decrease in uniform strain of bimodal Al alloy. The lower capability in lowering the increase of stress concentration in NG Al due to a higher yield strength of CG Al causes the lower uniform strain of the bimodal AI alloy. When strain hardening exponent of CG Al increases, 0.2% yield stress, UTS, and uniform strain of the bimodal Al alloy increases. This can be attributed to the increased work-hardening ability of CG Al with a higher strain hardening exponent. 展开更多
关键词 NANOMATERIALS Bimodal alloys Finite element method Tensile properties Parametric analysis
下载PDF
Influence of cold forming on the tensile behavior and properties of low-carbon microalloyed steel
2
作者 YANG Feng SU Daxiong ZHANG Wenlong 《Baosteel Technical Research》 CAS 2010年第3期53-57,共5页
The tensile behavior and properties of cold formed low-carbon microalloyed steel with its microstmcture of all ferrite and pearlite (F + P) were investigated. Bending and flattening deformations were carried out in... The tensile behavior and properties of cold formed low-carbon microalloyed steel with its microstmcture of all ferrite and pearlite (F + P) were investigated. Bending and flattening deformations were carried out in the laboratory on hot-rolled sheets in order to simulate the cold forming process of steel sheets during pipe fabrication and sampling of high frequency straight bead welding pipes. A comparison of the tensile behavior and properties of the material made before and after cold forming indicates that cold deformation alters the tensile behavior and properties of the material to a certain degree depending on the manner of the cold deformation and the degree. The research on the Bauschinger effect indicates that for the steels investigated, when the plastic strain is small, the back stress increases rapidly with the increase of the plastic strain and then rapidly tends to saturation. The finite element analysis indicates that the change in the properties of the steel sheets due to cold forming is a result of the Banschinger effect and work hardening. The mechanism of the change in the properties is also given in this study. 展开更多
关键词 F P steel bending deformation tensile strength Bauschinger effect
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部