The welding mechanism of laser-TIG hybrid welding process is analyzed. Withthe variation of arc current, the welding process is divided into two patterns: deep-penetrationwelding and heat conductive welding. The heat ...The welding mechanism of laser-TIG hybrid welding process is analyzed. Withthe variation of arc current, the welding process is divided into two patterns: deep-penetrationwelding and heat conductive welding. The heat flow model of hybrid welding is presented. As todeep-penetration welding, the heat source includes a surface heat flux and a volume heat flux. Theheat source of heat conductive welding is composed of two Gaussian distribute surface heat sources.With this heat source model, a temperature field is calculated. The finite element code MARC isemployed for this purpose. The calculation results show a good agreement with the experimental data.展开更多
A comprehensive experimental and numerical study of solder joints for plastic leaded chip carrier (PLCC) 84-Pin, 1.27 mm pitch was carried out. The reliability of solder joints was assessed through accelerated thermal...A comprehensive experimental and numerical study of solder joints for plastic leaded chip carrier (PLCC) 84-Pin, 1.27 mm pitch was carried out. The reliability of solder joints was assessed through accelerated thermal cycling at the temperature range of - 55℃-125℃. The samples were taken out to observe the evolution in microstructure, such as grain coarsening, initiation and propagation of cracks. It was found that the Pb-rich phases segregated gradually and formed a continuous layer adjacent to the intermetallic compound (IMC) layer with increasing the number of thermal cycles, resulting in cracks near the solder/lead interface. The response of stress and strain was studied using nonlinear finite element method (FEM), and the results agreed well with the experimental data.展开更多
Analyzing and modeling the relation between monitoring information during welding and quality information of the joints is the foundation of monitoring resistance spot welding quality. According to the means of modeli...Analyzing and modeling the relation between monitoring information during welding and quality information of the joints is the foundation of monitoring resistance spot welding quality. According to the means of modeling, the known models can be divided into three large categories: single linear regression models, multiple linear regression models and multiple non linear models. By modeling the relations between dynamic resistance information and welding quality parameters with different means, this paper analyzes effects of modeling means on performances of monitoring models of resistance spot welding quality. From the test results, the following conclusions can be drawn: By comparison with two other kinds of models, artificial neural network (ANN) model can describe non linear and high coupling relationship between monitoring information and quality information more reasonably, improve performance of monitoring model remarkably, and make the estimated values of welding quality parameters more accurate and reliable.展开更多
Factors that affect weld mechanical properties of commercially pure titanium have been investigated using artificial neural networks. Input data were obtained from mechanical testing of single-pass, autogenous welds, ...Factors that affect weld mechanical properties of commercially pure titanium have been investigated using artificial neural networks. Input data were obtained from mechanical testing of single-pass, autogenous welds, and neural network models were used to predict the ultimate tensile strength, yield strength, elongation, reduction of area, Vickers hardness and Rockwell B hardness. The results show that both oxygen and nitrogen have the most significant effects on the strength while hydrogen has the least effect over the range investigated. Predictions of the mechanical properties are shown and agree well with those obtained using the 'oxygen equivalent' (OE) equations.展开更多
In this study, intermetallic TiAl and steel 40Cr are diffusion bonded successfully by using a composite barrien layer Ti/V/Cu. In this case, a diphase Ti 3Al+TiAl layer and a Ti solid solution which enhance the stren...In this study, intermetallic TiAl and steel 40Cr are diffusion bonded successfully by using a composite barrien layer Ti/V/Cu. In this case, a diphase Ti 3Al+TiAl layer and a Ti solid solution which enhance the strength of the joint are obtained at the TiAl/Ti interface. The interface of TiAl/Ti/V/Cu/40Cr was free from intermetallic compounds and other brittle phases, and the strength of the joint was as high as 420 MPa , very close to that of the TiAl base. This method gives a reliable bonding of intermetallic TiAl and steel 40Cr.展开更多
A measurement system for high power electrical variables with ultrasonic frequency was established. It can measure the effective values of the voltage and the current, the active power, the phase difference of voltage...A measurement system for high power electrical variables with ultrasonic frequency was established. It can measure the effective values of the voltage and the current, the active power, the phase difference of voltage and current, the frequency of the transducer during ultrasonic welding and cutting. In sampling circuits of the system, the measured current is sensed by using a no capacitance and no inductance precision resistor and is treated with a difference amplifier, the measured voltage is processed by using a proportional amplifier. For achieving good amplitude frequency characteristics and rapid measurement of high frequency signals, the resistors, capacitors and amplifiers used in the system are rationally selected. Calibrating experiments show that relative errors are less than 1% for voltage and current effective values and less than 2.5% for active power, and absolute errors are ±1 Hz for frequency and ±1.7° for phase difference of voltage and current in the range of 17~23 kHz .展开更多
The vacuum diffusion bonding of titanium alloy to tin bronze has been studied and the feasibility and appropriate processing parameters have been investigated. The maximum tensile strength of the joints is 168 MPa ...The vacuum diffusion bonding of titanium alloy to tin bronze has been studied and the feasibility and appropriate processing parameters have been investigated. The maximum tensile strength of the joints is 168 MPa , and a firm joint is obtained. The microstructure of diffusion bonded joint has been observed by SEM, X ray and EPMA, and the main factors affecting diffusion bonding have been analyzed. The intermetallic compounds Ti 2Cu and TiCu were formed near the interface. The width and quantity of the intermetallic compound increases with the increase of the bonding time. The formation of the intermetallic compounds results in embrittlement of the joint and the poor joint properties.展开更多
Through the vacuum diffusion welding SiC_p/ZL101 aluminum with Ni interlayer,the effect of welding parameter and the thickness property of Ni on the welded joint wasinvestigated, and the optimal welding parameters wer...Through the vacuum diffusion welding SiC_p/ZL101 aluminum with Ni interlayer,the effect of welding parameter and the thickness property of Ni on the welded joint wasinvestigated, and the optimal welding parameters were put forward at the same time. Themicrostructure of joint was analyzed by means of optical-microscope, scanning electron microscope(SEM) in order to study the relationship between the macro-properties of joint and themicrostructure. The results show that diffusion welding with Ni interlayer can be used for weldingaluminum matrix composites SiC_p/ZL101 successfully. Under the welding parameters T=560℃, P=5 MPa,t=60 min, H=14μm, the bonding strength of welded joint can up to 121 MPa. Moreover, the thicknessof interlayer should match with the size of reinforced particles. If the thickness of interlayer istoo thin, it would have no effect on the welded joint beneficially. If the thickness of interlayeris too thick, it would cause the 'no-reinforcement zone' to appear.展开更多
Laser and hot air reflow soldering of PBGA solder ball was investigated. Experimental results showed that surface quality and shear strength of solder bump reflowed by laser was superior than the solder bump by hot ai...Laser and hot air reflow soldering of PBGA solder ball was investigated. Experimental results showed that surface quality and shear strength of solder bump reflowed by laser was superior than the solder bump by hot air, and the microstructure within the solder bump reflowed by laser was much finer. Analysis on interfacial reaction showed that eutectic solder reacted with Au/Ni/Cu pad shortly after the solder was melted. Interface of solder bump reflowed by laser consists of a continuous AuSn 4 layer and remnant Au element. Needle like AuSn 4 grew sidewise from interface, and then spread out to the entire interface region. A thin layer of Ni 3Sn 4 intermetallic compound was found at the interface of solder bump reflowed by hot air, and AuSn 4 particles distributed within the whole solder bump randomly. The combination effect of the continuous AuSn 4 layer and finer eutectic microstructure contributes to the higher shear strength of solder bump reflowed by laser.展开更多
文摘The welding mechanism of laser-TIG hybrid welding process is analyzed. Withthe variation of arc current, the welding process is divided into two patterns: deep-penetrationwelding and heat conductive welding. The heat flow model of hybrid welding is presented. As todeep-penetration welding, the heat source includes a surface heat flux and a volume heat flux. Theheat source of heat conductive welding is composed of two Gaussian distribute surface heat sources.With this heat source model, a temperature field is calculated. The finite element code MARC isemployed for this purpose. The calculation results show a good agreement with the experimental data.
文摘A comprehensive experimental and numerical study of solder joints for plastic leaded chip carrier (PLCC) 84-Pin, 1.27 mm pitch was carried out. The reliability of solder joints was assessed through accelerated thermal cycling at the temperature range of - 55℃-125℃. The samples were taken out to observe the evolution in microstructure, such as grain coarsening, initiation and propagation of cracks. It was found that the Pb-rich phases segregated gradually and formed a continuous layer adjacent to the intermetallic compound (IMC) layer with increasing the number of thermal cycles, resulting in cracks near the solder/lead interface. The response of stress and strain was studied using nonlinear finite element method (FEM), and the results agreed well with the experimental data.
文摘Analyzing and modeling the relation between monitoring information during welding and quality information of the joints is the foundation of monitoring resistance spot welding quality. According to the means of modeling, the known models can be divided into three large categories: single linear regression models, multiple linear regression models and multiple non linear models. By modeling the relations between dynamic resistance information and welding quality parameters with different means, this paper analyzes effects of modeling means on performances of monitoring models of resistance spot welding quality. From the test results, the following conclusions can be drawn: By comparison with two other kinds of models, artificial neural network (ANN) model can describe non linear and high coupling relationship between monitoring information and quality information more reasonably, improve performance of monitoring model remarkably, and make the estimated values of welding quality parameters more accurate and reliable.
基金This work is supported by the Scientific Research Foun-dation for the Returned Overseas Chinese Scholars,Ministry of Education,China
文摘Factors that affect weld mechanical properties of commercially pure titanium have been investigated using artificial neural networks. Input data were obtained from mechanical testing of single-pass, autogenous welds, and neural network models were used to predict the ultimate tensile strength, yield strength, elongation, reduction of area, Vickers hardness and Rockwell B hardness. The results show that both oxygen and nitrogen have the most significant effects on the strength while hydrogen has the least effect over the range investigated. Predictions of the mechanical properties are shown and agree well with those obtained using the 'oxygen equivalent' (OE) equations.
文摘In this study, intermetallic TiAl and steel 40Cr are diffusion bonded successfully by using a composite barrien layer Ti/V/Cu. In this case, a diphase Ti 3Al+TiAl layer and a Ti solid solution which enhance the strength of the joint are obtained at the TiAl/Ti interface. The interface of TiAl/Ti/V/Cu/40Cr was free from intermetallic compounds and other brittle phases, and the strength of the joint was as high as 420 MPa , very close to that of the TiAl base. This method gives a reliable bonding of intermetallic TiAl and steel 40Cr.
基金This work has been carried out with the support of National Natural Science Foundation(No.59675054)
文摘A measurement system for high power electrical variables with ultrasonic frequency was established. It can measure the effective values of the voltage and the current, the active power, the phase difference of voltage and current, the frequency of the transducer during ultrasonic welding and cutting. In sampling circuits of the system, the measured current is sensed by using a no capacitance and no inductance precision resistor and is treated with a difference amplifier, the measured voltage is processed by using a proportional amplifier. For achieving good amplitude frequency characteristics and rapid measurement of high frequency signals, the resistors, capacitors and amplifiers used in the system are rationally selected. Calibrating experiments show that relative errors are less than 1% for voltage and current effective values and less than 2.5% for active power, and absolute errors are ±1 Hz for frequency and ±1.7° for phase difference of voltage and current in the range of 17~23 kHz .
文摘The vacuum diffusion bonding of titanium alloy to tin bronze has been studied and the feasibility and appropriate processing parameters have been investigated. The maximum tensile strength of the joints is 168 MPa , and a firm joint is obtained. The microstructure of diffusion bonded joint has been observed by SEM, X ray and EPMA, and the main factors affecting diffusion bonding have been analyzed. The intermetallic compounds Ti 2Cu and TiCu were formed near the interface. The width and quantity of the intermetallic compound increases with the increase of the bonding time. The formation of the intermetallic compounds results in embrittlement of the joint and the poor joint properties.
基金This work was supported by the National Natural Science Foundation of China (No.50171025).
文摘Through the vacuum diffusion welding SiC_p/ZL101 aluminum with Ni interlayer,the effect of welding parameter and the thickness property of Ni on the welded joint wasinvestigated, and the optimal welding parameters were put forward at the same time. Themicrostructure of joint was analyzed by means of optical-microscope, scanning electron microscope(SEM) in order to study the relationship between the macro-properties of joint and themicrostructure. The results show that diffusion welding with Ni interlayer can be used for weldingaluminum matrix composites SiC_p/ZL101 successfully. Under the welding parameters T=560℃, P=5 MPa,t=60 min, H=14μm, the bonding strength of welded joint can up to 121 MPa. Moreover, the thicknessof interlayer should match with the size of reinforced particles. If the thickness of interlayer istoo thin, it would have no effect on the welded joint beneficially. If the thickness of interlayeris too thick, it would cause the 'no-reinforcement zone' to appear.
文摘Laser and hot air reflow soldering of PBGA solder ball was investigated. Experimental results showed that surface quality and shear strength of solder bump reflowed by laser was superior than the solder bump by hot air, and the microstructure within the solder bump reflowed by laser was much finer. Analysis on interfacial reaction showed that eutectic solder reacted with Au/Ni/Cu pad shortly after the solder was melted. Interface of solder bump reflowed by laser consists of a continuous AuSn 4 layer and remnant Au element. Needle like AuSn 4 grew sidewise from interface, and then spread out to the entire interface region. A thin layer of Ni 3Sn 4 intermetallic compound was found at the interface of solder bump reflowed by hot air, and AuSn 4 particles distributed within the whole solder bump randomly. The combination effect of the continuous AuSn 4 layer and finer eutectic microstructure contributes to the higher shear strength of solder bump reflowed by laser.