Cu(NO3)(2) and (NH4)(6)H(2)W(12)O(40)center dot 4H(2)O were used to prepare W/Cu nanosized composite powder by sol-gel technique. The influences of heat treatment process, pH value of the solution and the amount of an...Cu(NO3)(2) and (NH4)(6)H(2)W(12)O(40)center dot 4H(2)O were used to prepare W/Cu nanosized composite powder by sol-gel technique. The influences of heat treatment process, pH value of the solution and the amount of an addition agent on particle size were investigated by DSC, XRD and TEM. The results show that, at a certain heat treatment temperature, the W/Cu nanoparticle size increases with the pH value or the amount of the addition agent increasing.展开更多
Cemented Carbide YG11C and Tool Steel Crl2MoV was blazed with Ni-base amorphous alloys, QG-1011, MBF-20 and MBF-75, using dynamics thermodynamics analogue testing machine Gleeble 1500D. The effects of brazing temperat...Cemented Carbide YG11C and Tool Steel Crl2MoV was blazed with Ni-base amorphous alloys, QG-1011, MBF-20 and MBF-75, using dynamics thermodynamics analogue testing machine Gleeble 1500D. The effects of brazing temperature, holding time and holding pressure on micro-structure and bond strength were investigated. Results showed that YG11C and Crl2MoV were all wetted well by these three Ni-base alloys, and the bond strength was as high as 220MPa, 320MPa, 320MPa respectively. When the blazing temperature was at the point over the melting point 60-70°C of Ni-base alloy, the holding time was about 2-10min, the suitable pressure was benefit for improving the brazing quality. Microanalysis showed Co in cemented carbide diffused into liquid brazing alloy and formed the Fe-Co solid .solution.展开更多
A novel co-sputtering method that combined magnetron sputtering (MS) with ion beam sputtering (IBS) was used to fabricate CuCr alloy films without breaking vacuum after depositing diffusion barrier with IBS. Different...A novel co-sputtering method that combined magnetron sputtering (MS) with ion beam sputtering (IBS) was used to fabricate CuCr alloy films without breaking vacuum after depositing diffusion barrier with IBS. Different bombardment energies were used to improve the comprehensive properties of Cu alloy film. The results indicated that the effects of diffusion barriers and bombardment energy on adhesive strength could be evaluated by a rolling contact fatigue adhesion test. Diffusion barrier can enhance the adhesive strength, and the adhesion of CuCr/CrN was higher than that of CuCr/TiN. When bombarding energy was higher, the adhesive strength of CuCr/TiN films was higher due to the broader transition zone.展开更多
The effect of heat treatment parameters on the strength and plasticity and the metallographic structures and substructures of Crl2W2MoVNbNB steel has been studied. The regularity among the different heat treatment pro...The effect of heat treatment parameters on the strength and plasticity and the metallographic structures and substructures of Crl2W2MoVNbNB steel has been studied. The regularity among the different heat treatment processes, the strength and plasticity, the feature of its structure and substructure have been analyzed. The results show that after being normalized and tempered, the structure of tempered lath martensite and blocky ferrite has been acquired, the grains do not grow up with the increasing of normalizing temperatures. During the tempering process, instead of recrystallization, polygonization of tempered martensite only takes place. Tempering temperature is chief effective factor to the strength of the steel. Moreover the proper heat treatment parameters of Crl2W2MoVNbNB steel have been given.展开更多
The corrosion behavior of TP304H steel with combined treatment of shot blasting and electrophoresis deposited RE coating in l%SO2+14%O2+85%Ar mixture gaseous has been studied at 923K for 150 hours. The results show th...The corrosion behavior of TP304H steel with combined treatment of shot blasting and electrophoresis deposited RE coating in l%SO2+14%O2+85%Ar mixture gaseous has been studied at 923K for 150 hours. The results show that both RE coating and shot blasting can improve the corrosion resistance of TP304H steel, and combined treatment has the best effect. Combined treatment reduces 50% mass gain, enhances the continuous and compactness of scale and changes the scale phase forms from FeaOs/Fe^S/Ni^/S to Cr2O3/FeCr2S4/Ni3_xS2. The synergistic effects of combined treatment on corrosion resistance and the effect of shot blasting on corrosion kinetics are discussed. Shot blasting increases the outward diffusion and surface concentration of Cr, Ce coating promotes the selective oxidation of Cr.展开更多
Shot blasting on a tube steel of TP304H can greatly improve the oxidation resistance at *50°C—770°C in water vapor, by the presence of an appropriate blasting intensity. SEM and EPMA analysis indicated that...Shot blasting on a tube steel of TP304H can greatly improve the oxidation resistance at *50°C—770°C in water vapor, by the presence of an appropriate blasting intensity. SEM and EPMA analysis indicated that the structure of the oxide scale turned from multi-layer to monolayer after blasting and Cr2O3 in predominant. The untreated sample characterized in multi-layer oxide was composed of Fe in the outer layer and Fe and Cr underneath. For blasted one, the increase of diffusion rate of Cr and the decrease of effective diffusion energy of scale led to a uniform Cr-rich oxide layer, which was dense and protective and the oxidation resistance was increased.展开更多
The kinetics of internal oxidation of Cu-Al alloy cylinders, containing up to 2.214mol% Al, were investigated in the temperature range of 1023 K to 1273 K, and the depth of internal oxidation was measured in the micro...The kinetics of internal oxidation of Cu-Al alloy cylinders, containing up to 2.214mol% Al, were investigated in the temperature range of 1023 K to 1273 K, and the depth of internal oxidation was measured in the microscopy. A kinetic equation was derived to describe the internal oxidation of Cu-Al alloy cylinders. For the internal oxidation of Cu-Al alloys employed in the synthesis of alumina dispersion strengthened copper, the kinetic equation can be simplified. The derived equation was checked experimentally by means of oxidation depth measurements and the results show that the derived equation is exact enough to describe the kinetics of internal oxidation of Cu-Al alloy cylinders. Based on this equation and the oxidation depth measurements, the permeability of oxygen in solid copper was obtained. Investigation also shows that there is no evidence for preferential diffusion along grain boundaries in the process of internal oxidation.展开更多
Oxidation behaviors of TP304H steel with electrophoresis deposited CeO2 coating in water vapor were studied at 610℃~770℃ for 65 h. The results showed that CeO2 coating reduced effectively the oxidation rate of TP30...Oxidation behaviors of TP304H steel with electrophoresis deposited CeO2 coating in water vapor were studied at 610℃~770℃ for 65 h. The results showed that CeO2 coating reduced effectively the oxidation rate of TP304H. Analysis with SEM and EDS showed the structure of oxide scale turned from multi-layer to mono-layer and oxide scale with high Cr content formed on the surface of CeO2 coating while inner oxidation disappeared. Based on test results and CeO2characters that Ce ion can vary between Ce4+ and Ce3+ under oxygen-rich and oxygen-poor environment, it is concluded that CeO2 coating acts as a barrier to prevent oxygen inner diffusion and the partial oxygen pressure of CeO2 coating-substrate interface is limited. Cr first diffuses outward across CeO2 coating and forms oxide scale on the surface, which delays formation of Fe oxide.展开更多
基金This Project was financially supported by the National Natural Science Foundation of China (No. 50471033).
文摘Cu(NO3)(2) and (NH4)(6)H(2)W(12)O(40)center dot 4H(2)O were used to prepare W/Cu nanosized composite powder by sol-gel technique. The influences of heat treatment process, pH value of the solution and the amount of an addition agent on particle size were investigated by DSC, XRD and TEM. The results show that, at a certain heat treatment temperature, the W/Cu nanoparticle size increases with the pH value or the amount of the addition agent increasing.
文摘Cemented Carbide YG11C and Tool Steel Crl2MoV was blazed with Ni-base amorphous alloys, QG-1011, MBF-20 and MBF-75, using dynamics thermodynamics analogue testing machine Gleeble 1500D. The effects of brazing temperature, holding time and holding pressure on micro-structure and bond strength were investigated. Results showed that YG11C and Crl2MoV were all wetted well by these three Ni-base alloys, and the bond strength was as high as 220MPa, 320MPa, 320MPa respectively. When the blazing temperature was at the point over the melting point 60-70°C of Ni-base alloy, the holding time was about 2-10min, the suitable pressure was benefit for improving the brazing quality. Microanalysis showed Co in cemented carbide diffused into liquid brazing alloy and formed the Fe-Co solid .solution.
基金the Natural Science Foundation of China for its financial support under the granted No.59931010.
文摘A novel co-sputtering method that combined magnetron sputtering (MS) with ion beam sputtering (IBS) was used to fabricate CuCr alloy films without breaking vacuum after depositing diffusion barrier with IBS. Different bombardment energies were used to improve the comprehensive properties of Cu alloy film. The results indicated that the effects of diffusion barriers and bombardment energy on adhesive strength could be evaluated by a rolling contact fatigue adhesion test. Diffusion barrier can enhance the adhesive strength, and the adhesion of CuCr/CrN was higher than that of CuCr/TiN. When bombarding energy was higher, the adhesive strength of CuCr/TiN films was higher due to the broader transition zone.
文摘The effect of heat treatment parameters on the strength and plasticity and the metallographic structures and substructures of Crl2W2MoVNbNB steel has been studied. The regularity among the different heat treatment processes, the strength and plasticity, the feature of its structure and substructure have been analyzed. The results show that after being normalized and tempered, the structure of tempered lath martensite and blocky ferrite has been acquired, the grains do not grow up with the increasing of normalizing temperatures. During the tempering process, instead of recrystallization, polygonization of tempered martensite only takes place. Tempering temperature is chief effective factor to the strength of the steel. Moreover the proper heat treatment parameters of Crl2W2MoVNbNB steel have been given.
文摘The corrosion behavior of TP304H steel with combined treatment of shot blasting and electrophoresis deposited RE coating in l%SO2+14%O2+85%Ar mixture gaseous has been studied at 923K for 150 hours. The results show that both RE coating and shot blasting can improve the corrosion resistance of TP304H steel, and combined treatment has the best effect. Combined treatment reduces 50% mass gain, enhances the continuous and compactness of scale and changes the scale phase forms from FeaOs/Fe^S/Ni^/S to Cr2O3/FeCr2S4/Ni3_xS2. The synergistic effects of combined treatment on corrosion resistance and the effect of shot blasting on corrosion kinetics are discussed. Shot blasting increases the outward diffusion and surface concentration of Cr, Ce coating promotes the selective oxidation of Cr.
文摘Shot blasting on a tube steel of TP304H can greatly improve the oxidation resistance at *50°C—770°C in water vapor, by the presence of an appropriate blasting intensity. SEM and EPMA analysis indicated that the structure of the oxide scale turned from multi-layer to monolayer after blasting and Cr2O3 in predominant. The untreated sample characterized in multi-layer oxide was composed of Fe in the outer layer and Fe and Cr underneath. For blasted one, the increase of diffusion rate of Cr and the decrease of effective diffusion energy of scale led to a uniform Cr-rich oxide layer, which was dense and protective and the oxidation resistance was increased.
文摘The kinetics of internal oxidation of Cu-Al alloy cylinders, containing up to 2.214mol% Al, were investigated in the temperature range of 1023 K to 1273 K, and the depth of internal oxidation was measured in the microscopy. A kinetic equation was derived to describe the internal oxidation of Cu-Al alloy cylinders. For the internal oxidation of Cu-Al alloys employed in the synthesis of alumina dispersion strengthened copper, the kinetic equation can be simplified. The derived equation was checked experimentally by means of oxidation depth measurements and the results show that the derived equation is exact enough to describe the kinetics of internal oxidation of Cu-Al alloy cylinders. Based on this equation and the oxidation depth measurements, the permeability of oxygen in solid copper was obtained. Investigation also shows that there is no evidence for preferential diffusion along grain boundaries in the process of internal oxidation.
文摘Oxidation behaviors of TP304H steel with electrophoresis deposited CeO2 coating in water vapor were studied at 610℃~770℃ for 65 h. The results showed that CeO2 coating reduced effectively the oxidation rate of TP304H. Analysis with SEM and EDS showed the structure of oxide scale turned from multi-layer to mono-layer and oxide scale with high Cr content formed on the surface of CeO2 coating while inner oxidation disappeared. Based on test results and CeO2characters that Ce ion can vary between Ce4+ and Ce3+ under oxygen-rich and oxygen-poor environment, it is concluded that CeO2 coating acts as a barrier to prevent oxygen inner diffusion and the partial oxygen pressure of CeO2 coating-substrate interface is limited. Cr first diffuses outward across CeO2 coating and forms oxide scale on the surface, which delays formation of Fe oxide.