Cassava productivity is hampered by pests and diseases including cassava<span style="font-family:;" "=""><span style="font-family:Verdana;"> mosaic disease (CMD) and cass...Cassava productivity is hampered by pests and diseases including cassava<span style="font-family:;" "=""><span style="font-family:Verdana;"> mosaic disease (CMD) and cassava brown streak disease (CBSD).</span><b> </b><span style="font-family:Verdana;">The main ob</span><span style="font-family:Verdana;">jective of this study was to identify stable superior genotypes that combine</span><span style="font-family:Verdana;"> dis</span><span style="font-family:Verdana;">ease resistance and high yield. Sixteen cassava genotypes were planted in a</span> <span style="font-family:Verdana;">randomized complete block design with three replications for six planting </span><span style="font-family:Verdana;">seasons (years) at five sites in Tanzania. The genotypes were assessed using the additive main effect and multiplicative interaction (AMMI) analysis, and highly significant (</span></span><span style="font-family:Verdana;">P </span><span style="font-family:Verdana;">< 0.001) effects of genotype, environment, and genotype-</span><span style="font-family:;" "=""><span style="font-family:Verdana;">by-environment (</span><i><span style="font-family:Verdana;">G</span><sup><span style="font-family:Verdana;">*</span></sup><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;">) interactions were observed for all traits studied. Per</span><span style="font-family:Verdana;">cent sum of squares (SS) due to environment (12.66% - 85.23%) was the</span><span style="font-family:Verdana;"> highest followed by </span><i><span style="font-family:Verdana;">G</span><sup><span style="font-family:Verdana;">*</span></sup><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;"> (14.12% - 39.56%) for CMD foliar symptoms, root weight and dry matter. On the other hand, % SS due to genotype (52.14% - 69.14%) </span><span><span style="font-family:Verdana;">was highest followed by </span><i><span style="font-family:Verdana;">G</span><sup><span style="font-family:Verdana;">*</span></sup><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;"> (26.14% - 35.91%) for CBSD foliar and root</span></span><span style="font-family:Verdana;"> symptoms indicating that the environment and </span><i><span style="font-family:Verdana;">G</span><sup><span style="font-family:Verdana;">*</span></sup><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;"> greatly influenced trait expression. The most stable genotypes which combined disease resistance and high yield were NDL 2003/31 and NDL 2003/111. The findings of this study will give impetus for the release of new cassava varieties that are not only high yielding but are also dually resistant to both CMD and CBSD in different locations and sites.</span></span>展开更多
Smallholder farmers in semiarid areas face low and erratic rainfall and need field management practices that conserve water in the root zone. This work evaluated the effect of mulching and DD (deep tillage) practices ...Smallholder farmers in semiarid areas face low and erratic rainfall and need field management practices that conserve water in the root zone. This work evaluated the effect of mulching and DD (deep tillage) practices as a way to conserve soil moisture and thus improve water availability and maize crop yield in this water-scarce environment. The field experiment was carried out in which the soil moisture content (SMC) was monitored and the other water balance components were measured to quantify the crop ET with the soil water balance (SWB) method. The components of the SWB (rainfall, supplemental irrigation, runoff, deep percolation and change of soil moisture content) were measured for three consecutive seasons of 2018-2019, i.e. two long rain seasons (Masika 2018 and 2019) and one short-rains season (Vuli 2018). The estimation of the deep percolation (DP) involved calculating water fluxes from hydraulic properties measured in the laboratory and from hydraulic gradients measured with tensiometers in the field plots. Treatments significantly affected ET (p < 0.05) during the Vuli 2018 season. The estimated ET was highest in FC plots, medium in DD, and FCM recorded the lowest ET value. The significant difference in ET was between FCM and other treatments. Relative to a control treatment (farmers’ cultivation, FC), mulching (FCM) reduced evapotranspiration by 14% and 18% during more water-stressed seasons of Vuli 2018 and Masika 2019. The ET reduction among the treatments was in line with the reduction in soil evaporation, as reflected in the results (of the other article of the same work). The crop transpiration was observed higher, which was consistent with the higher canopy cover observations for the two treatments relative to the FC treatment. Also, while the mulch practice did not affect ET during the first and less water-stressed season of Masika 2018, DD reduced it by 9% and showed no effect during other seasons.展开更多
文摘Cassava productivity is hampered by pests and diseases including cassava<span style="font-family:;" "=""><span style="font-family:Verdana;"> mosaic disease (CMD) and cassava brown streak disease (CBSD).</span><b> </b><span style="font-family:Verdana;">The main ob</span><span style="font-family:Verdana;">jective of this study was to identify stable superior genotypes that combine</span><span style="font-family:Verdana;"> dis</span><span style="font-family:Verdana;">ease resistance and high yield. Sixteen cassava genotypes were planted in a</span> <span style="font-family:Verdana;">randomized complete block design with three replications for six planting </span><span style="font-family:Verdana;">seasons (years) at five sites in Tanzania. The genotypes were assessed using the additive main effect and multiplicative interaction (AMMI) analysis, and highly significant (</span></span><span style="font-family:Verdana;">P </span><span style="font-family:Verdana;">< 0.001) effects of genotype, environment, and genotype-</span><span style="font-family:;" "=""><span style="font-family:Verdana;">by-environment (</span><i><span style="font-family:Verdana;">G</span><sup><span style="font-family:Verdana;">*</span></sup><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;">) interactions were observed for all traits studied. Per</span><span style="font-family:Verdana;">cent sum of squares (SS) due to environment (12.66% - 85.23%) was the</span><span style="font-family:Verdana;"> highest followed by </span><i><span style="font-family:Verdana;">G</span><sup><span style="font-family:Verdana;">*</span></sup><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;"> (14.12% - 39.56%) for CMD foliar symptoms, root weight and dry matter. On the other hand, % SS due to genotype (52.14% - 69.14%) </span><span><span style="font-family:Verdana;">was highest followed by </span><i><span style="font-family:Verdana;">G</span><sup><span style="font-family:Verdana;">*</span></sup><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;"> (26.14% - 35.91%) for CBSD foliar and root</span></span><span style="font-family:Verdana;"> symptoms indicating that the environment and </span><i><span style="font-family:Verdana;">G</span><sup><span style="font-family:Verdana;">*</span></sup><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;"> greatly influenced trait expression. The most stable genotypes which combined disease resistance and high yield were NDL 2003/31 and NDL 2003/111. The findings of this study will give impetus for the release of new cassava varieties that are not only high yielding but are also dually resistant to both CMD and CBSD in different locations and sites.</span></span>
文摘Smallholder farmers in semiarid areas face low and erratic rainfall and need field management practices that conserve water in the root zone. This work evaluated the effect of mulching and DD (deep tillage) practices as a way to conserve soil moisture and thus improve water availability and maize crop yield in this water-scarce environment. The field experiment was carried out in which the soil moisture content (SMC) was monitored and the other water balance components were measured to quantify the crop ET with the soil water balance (SWB) method. The components of the SWB (rainfall, supplemental irrigation, runoff, deep percolation and change of soil moisture content) were measured for three consecutive seasons of 2018-2019, i.e. two long rain seasons (Masika 2018 and 2019) and one short-rains season (Vuli 2018). The estimation of the deep percolation (DP) involved calculating water fluxes from hydraulic properties measured in the laboratory and from hydraulic gradients measured with tensiometers in the field plots. Treatments significantly affected ET (p < 0.05) during the Vuli 2018 season. The estimated ET was highest in FC plots, medium in DD, and FCM recorded the lowest ET value. The significant difference in ET was between FCM and other treatments. Relative to a control treatment (farmers’ cultivation, FC), mulching (FCM) reduced evapotranspiration by 14% and 18% during more water-stressed seasons of Vuli 2018 and Masika 2019. The ET reduction among the treatments was in line with the reduction in soil evaporation, as reflected in the results (of the other article of the same work). The crop transpiration was observed higher, which was consistent with the higher canopy cover observations for the two treatments relative to the FC treatment. Also, while the mulch practice did not affect ET during the first and less water-stressed season of Masika 2018, DD reduced it by 9% and showed no effect during other seasons.