In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.Howe...In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.However,when managing multiple disturbances from the same source,it may not be feasible to use existing IM methods such as Interference Alignment(IA)and Interference Steering(IS)exclusively.It is because with IA,the aligned interference becomes indistinguishable at its desired Receiver(Rx)under the cost constraint of Degrees-of-Freedom(DoF),while with IS,more transmit power will be consumed in the direct and repeated application of IS to each interference.To remedy these deficiencies,Interference Alignment Steering(IAS)is proposed by incorporating IA and IS and exploiting their advantages in IM.With IAS,the interfering Transmitter(Tx)first aligns one interference incurred by the transmission of one data stream to a one-dimensional subspace orthogonal to the desired transmission at the interfered Rx,and then the remaining interferences are treated as a whole and steered to the same subspace as the aligned interference.Moreover,two improved versions of IAS,i.e.,IAS with Full Adjustment at the Interfering Tx(IAS-FAIT)and Interference Steering and Alignment(ISA),are presented.The former considers the influence of IA on the interfering user-pair's performance.The orthogonality between the desired signals at the interfered Rx can be maintained by adjusting the spatial characteristics of all interferences and the aligned interference components,thus ensuring the Spectral Efficiency(SE)of the interfering communication pairs.Under ISA,the power cost for IS at the interfered Tx is minimized,hence improving SE performance of the interfered communication-pairs.Since the proposed methods are realized at the interfering and interfered Txs cooperatively,the expenses of IM are shared by both communication-pairs.Our in-depth simulation results show that joint use of IA and IS can effectively manage multiple disturbances from the same source and improve the system's SE.展开更多
Due to the broadcast nature of wireless communications,users’data transmitted wirelessly is susceptible to security/privacy threats.Meanwhile,as a result of the limitation of spectrum resources,massive wireless conne...Due to the broadcast nature of wireless communications,users’data transmitted wirelessly is susceptible to security/privacy threats.Meanwhile,as a result of the limitation of spectrum resources,massive wireless connections will incur serious interference,which may damage the efficiency of data transmission.Therefore,improving both efficiency and secrecy of data transmission is of research significance.In this paper,we propose a wireless transmission scheme by taking both Secure Communication(SC)and Interference Management(IM)into account,namely SCIM.With this scheme,an SCIM signal is generated by the legitimate transmitter(Tx)and sent along with the desired signal,so that the SCIM signal can interact with and suppress the environmental interference at the legitimate receiver(Rx).Meanwhile,the SCIM signal may interfere with the eavesdropper in the coverage of legitimate transmission so as to deteriorate the eavesdropping performance.Therefore,the secrecy of desired transmission is improved.In this way,both the transmission efficiency and privacy are enhanced.Then,by taking various transmission preferences into account,we develop different implementations of SCIM,including Interference Suppression First SCIM(ISF-SCIM),Data Transmission First SCIM(DTF-SCIM),Anti-Eavesdropping First SCIM(AEF-SCIM),and Secrecy Rate Maximization SCIM(SRM-SCIM).Our in-depth simulation results have shown the proposed methods to effectively improve the efficiency and secrecy of the legitimate transmission.展开更多
基金supported in part by NSF of Shaanxi Province under Grant 2021JM-143the Fundamental Research Funds for the Central Universities under Grant JB211502+5 种基金the Project of Key Laboratory of Science&Technology on Communication Network under Grant 6142104200412the National Natural Science Foundation of China under Grant 62072351the Academy of Finland under Grant 308087,Grant 335262 and Grant 345072the Shaanxi Innovation Team Project under Grant 2018TD-007the 111 Project under Grant B16037,JSPS KAKENHI Grant Number JP20K14742the Project of Cyber Security Establishment with Inter University Cooperation.
文摘In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.However,when managing multiple disturbances from the same source,it may not be feasible to use existing IM methods such as Interference Alignment(IA)and Interference Steering(IS)exclusively.It is because with IA,the aligned interference becomes indistinguishable at its desired Receiver(Rx)under the cost constraint of Degrees-of-Freedom(DoF),while with IS,more transmit power will be consumed in the direct and repeated application of IS to each interference.To remedy these deficiencies,Interference Alignment Steering(IAS)is proposed by incorporating IA and IS and exploiting their advantages in IM.With IAS,the interfering Transmitter(Tx)first aligns one interference incurred by the transmission of one data stream to a one-dimensional subspace orthogonal to the desired transmission at the interfered Rx,and then the remaining interferences are treated as a whole and steered to the same subspace as the aligned interference.Moreover,two improved versions of IAS,i.e.,IAS with Full Adjustment at the Interfering Tx(IAS-FAIT)and Interference Steering and Alignment(ISA),are presented.The former considers the influence of IA on the interfering user-pair's performance.The orthogonality between the desired signals at the interfered Rx can be maintained by adjusting the spatial characteristics of all interferences and the aligned interference components,thus ensuring the Spectral Efficiency(SE)of the interfering communication pairs.Under ISA,the power cost for IS at the interfered Tx is minimized,hence improving SE performance of the interfered communication-pairs.Since the proposed methods are realized at the interfering and interfered Txs cooperatively,the expenses of IM are shared by both communication-pairs.Our in-depth simulation results show that joint use of IA and IS can effectively manage multiple disturbances from the same source and improve the system's SE.
基金supported in part by the Natural Science Foundation of Shaanxi Province under Grant Number 2021JM-143the Fundamental Research Funds for the Central Universities under Grant Number JB211502+5 种基金the Project of Key Laboratory of Science and Technology on Communication Network under Grant Number 6142104200412the National Natural Science Foundation of China under Grant Number 61672410the Academy of Finland under Grant Number 308087the China 111 project under Grant Number B16037JSPS KAKENHI under Grant Number JP20K14742and the Project of Cyber Security Establishment with Inter University Cooperation.
文摘Due to the broadcast nature of wireless communications,users’data transmitted wirelessly is susceptible to security/privacy threats.Meanwhile,as a result of the limitation of spectrum resources,massive wireless connections will incur serious interference,which may damage the efficiency of data transmission.Therefore,improving both efficiency and secrecy of data transmission is of research significance.In this paper,we propose a wireless transmission scheme by taking both Secure Communication(SC)and Interference Management(IM)into account,namely SCIM.With this scheme,an SCIM signal is generated by the legitimate transmitter(Tx)and sent along with the desired signal,so that the SCIM signal can interact with and suppress the environmental interference at the legitimate receiver(Rx).Meanwhile,the SCIM signal may interfere with the eavesdropper in the coverage of legitimate transmission so as to deteriorate the eavesdropping performance.Therefore,the secrecy of desired transmission is improved.In this way,both the transmission efficiency and privacy are enhanced.Then,by taking various transmission preferences into account,we develop different implementations of SCIM,including Interference Suppression First SCIM(ISF-SCIM),Data Transmission First SCIM(DTF-SCIM),Anti-Eavesdropping First SCIM(AEF-SCIM),and Secrecy Rate Maximization SCIM(SRM-SCIM).Our in-depth simulation results have shown the proposed methods to effectively improve the efficiency and secrecy of the legitimate transmission.