Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biot...Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.展开更多
Nucleic acid analysis is a key technique that enables accurate detection of various microorganisms.Conventional nucleic acid testing typically requires access to specialized laboratories,equipment,and trained personne...Nucleic acid analysis is a key technique that enables accurate detection of various microorganisms.Conventional nucleic acid testing typically requires access to specialized laboratories,equipment,and trained personnel,which hinders the widespread use of on-site testing for DNA and RNA targets.However,integrating gene editing technology with traditional nucleic acid detection methods,especially isothermal amplification technology,can help overcome the limitations associated with on-site testing.This combination can accomplish precise and swift detection of nucleic acid sequences,offering a robust tool for on-site detection.The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins(CRISPR/Cas)technology,which comprises the CRISPR system and Cas effector proteins,is a powerful tool that is advancing the field of nucleic acid detection.Specifically,Cas12,Cas13,and Cas14 proteins have emerged as straightforward,effective,precise,sensitive,and cost-effective methods for in vitro nucleic acid detection because of their“collateral cleavage”characteristics.When combined with the“collateral cleavage”ability of Cas protein and isothermal amplification,CRISPR/Cas systems have great potential to advance nucleic acid detection.This article summarizes the research progress of different CRISPR/Cas systems and their applications in nucleic acid detection and future perspectives.展开更多
BACKGROUND Infectious diseases are still one of the greatest threats to human health,and the etiology of 20%of cases of clinical fever is unknown;therefore,rapid identification of pathogens is highly important.Traditi...BACKGROUND Infectious diseases are still one of the greatest threats to human health,and the etiology of 20%of cases of clinical fever is unknown;therefore,rapid identification of pathogens is highly important.Traditional culture methods are only able to detect a limited number of pathogens and are time-consuming;serologic detection has window periods,false-positive and false-negative problems;and nucleic acid molecular detection methods can detect several known pathogens only once.Three-generation nanopore sequencing technology provides new options for identifying pathogens.CASE SUMMARY Case 1:The patient was admitted to the hospital with abdominal pain for three days and cessation of defecation for five days,accompanied by cough and sputum.Nanopore sequencing of the drainage fluid revealed the presence of orallike bacteria,leading to a clinical diagnosis of bronchopleural fistula.Cefoperazone sodium sulbactam treatment was effective.Case 2:The patient was admitted to the hospital with fever and headache,and CT revealed lung inflammation.Antibiotic treatment for Streptococcus pneumoniae,identified through nanopore sequencing of cerebrospinal fluid,was effective.Case 3:The patient was admitted to our hospital with intermittent fever and an enlarged neck mass that had persisted for more than six months.Despite antibacterial treatment,her symptoms worsened.The nanopore sequencing results indicate that voriconazole treatment is effective for Aspergillus brookii.The patient was diagnosed with mixed cell type classical Hodgkin's lymphoma with infection.CONCLUSION Three-generation nanopore sequencing technology allows for rapid and accurate detection of pathogens in human infectious diseases.展开更多
With the rapid advancement of network technology,new payment methods represented by Q coins and game currencies have entered a phase of significant growth.However,these payment methods have a limited scope of applicat...With the rapid advancement of network technology,new payment methods represented by Q coins and game currencies have entered a phase of significant growth.However,these payment methods have a limited scope of application and lack the legal status of fiat currency.The rise of digital currency has profoundly impacted the authority of traditional currency systems.Distinguished by robust payment capabilities,digital currency differs significantly from traditional currency.Yet,due to its relatively brief history,a globally unified definition has yet to be established.Consequently,there is an urgent need to enhance the regulation of digital currency through legislative measures to ensure its orderly and sustainable development.展开更多
With the upgrading of industries,the cosmetics industry has posed new requirements for technical talents.As a professional core course in cosmetic technology,“Cosmetic Product Formulation Design and Preparation Techn...With the upgrading of industries,the cosmetics industry has posed new requirements for technical talents.As a professional core course in cosmetic technology,“Cosmetic Product Formulation Design and Preparation Technology”serves as the foundation for cultivating students’abilities in cosmetic development and preparation.To foster high-quality skilled talents capable of adapting to the rapid growth of color cosmetics and to better promote the deep integration of scientific and technological industries with curriculum teaching,the teacher team embarked on active explorations and practical teaching research for curriculum teaching reform from four dimensions:strengthening top-level design,enriching teaching content,optimizing teaching design,and reforming assessment methods.These efforts have enhanced students’comprehensive vocational qualities and innovative consciousness,contributing to the teaching reform in higher vocational colleges under the integration of industry,education,and research.展开更多
The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel indu...The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel industry is reviewed,and the current state of development of low-carbon technologies is discussed.Additionally,low-carbon pathways for the steel industry at the current time are proposed,emphasizing prevention and treatment strategies.Furthermore,the prospects of low-carbon technologies are explored from the perspective of transitioning the energy structure to a“carbon-electricity-hydrogen”relationship.Overall,steel enterprises should adopt hydrogen-rich metallurgical technologies that are compatible with current needs and process flows in the short term,based on the carbon substitution with hydrogen(prevention)and the CCU(CO_(2) capture and utilization)concepts(treatment).Additionally,the capture and utilization of CO_(2) for steelmaking,which can assist in achieving short-term emission reduction targets but is not a long-term solution,is discussed.In conclusion,in the long term,the carbon metallurgical process should be gradually supplanted by a hydrogen-electric synergistic approach,thus transforming the energy structure of existing steelmaking processes and attaining near-zero carbon emission steelmaking technology.展开更多
A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL...A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.展开更多
Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"a...Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.展开更多
Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable...Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.展开更多
Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES te...Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES.展开更多
Proteomics is a new technology that has been widely applied in the field of life and health science.It effectively addresses issues related to the impact of dietary structure on organs,tissues,and cells,as well as the...Proteomics is a new technology that has been widely applied in the field of life and health science.It effectively addresses issues related to the impact of dietary structure on organs,tissues,and cells,as well as the changes in proteins in various organs,tissues,and cells under disease conditions.The differential proteins identified through proteomics can serve as disease biomarkers and target proteins affecting health and can be used for disease diagnosis and health regulation.In this paper,the application of proteomics in the field of infl ammation in recent years was summarized,especially in the therapeutic target and mechanism of action,which opens up a new way for more effective prevention,diagnosis,and treatment of inflammation,and provides medical protection for human life and health.展开更多
Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a ...Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a combined technology integrating an improved Kalman Filter with Space Domain Phase Difference of Arrival(SD-PDOA)and Received Signal Strength Indicator(RSSI).This methodology utilizes the distinct channel characteristics in multipath and NLoS contexts to effectively filter out interference and accurately extract localization information,thereby facilitating high precision and stability in passive RFID localization.The efficacy of this approach is demonstrated through detailed simulations and empirical tests conducted on a custom-built experimental platform consisting of passive RFID tags and an R420 reader.The findings are significant:in NLoS conditions,the four-antenna localization system achieved a notable localization accuracy of 0.25 m at a distance of 5 m.In complex multipath environments,this system achieved a localization accuracy of approximately 0.5 m at a distance of 5 m.When compared to conventional passive localization methods,our proposed solution exhibits a substantial improvement in indoor localization accuracy under NLoS and multipath conditions.This research provides a robust and effective technical solution for high-precision passive indoor localization in the Internet of Things(IoT)system,marking a significant advancement in the field.展开更多
Crop phenomics has rapidly progressed in recent years due to the growing need for crop functional geno-mics,digital breeding,and smart cultivation.Despite this advancement,the lack of standards for the cre-ation and u...Crop phenomics has rapidly progressed in recent years due to the growing need for crop functional geno-mics,digital breeding,and smart cultivation.Despite this advancement,the lack of standards for the cre-ation and usage of crop phenomics technology and equipment has become a bottleneck,limiting the industry’s high-quality development.This paper begins with an overview of the crop phenotyping indus-try and presents an industrial mapping of technology and equipment for big data in crop phenomics.It analyzes the necessity and current state of constructing a standard framework for crop phenotyping.Furthermore,this paper proposes the intended organizational structure and goals of the standard frame-work.It details the essentials of the standard framework in the research and development of hardware and equipment,data acquisition,and the storage and management of crop phenotyping data.Finally,it discusses promoting the construction and evaluation of the standard framework,aiming to provide ideas for developing a high-quality standard framework for crop phenotyping.展开更多
The study projects a flexible and compact wearable pear-shaped Super High Frequency(SHF)antenna that can provide detailed location recognition and tracking applicable to defense beacon technology.This mini aperture wi...The study projects a flexible and compact wearable pear-shaped Super High Frequency(SHF)antenna that can provide detailed location recognition and tracking applicable to defense beacon technology.This mini aperture with electrical dimensions of 0.12λ_(0)×0.22λ_(0)×0.01λ_(0)attains a vast bandwidth over 3.1-34.5 GHz Super High Frequency(SHF)frequency band at S_(11)≤-10 dB,peak gain of 7.14 dBi and proportionately homogeneous radiation pattern.The fractional bandwidth(%BW)acquired is 168%that envelopes diversified frequency spectrum inclusive of X band specifically targeted to all kinds of defense and military operations.The proposed antenna can be worn on a soldier's uniform and hence the Specific Absorption Rate simulation is accomplished.The Peak SAR Value over 1 g of tissue is 1.48 W/kg and for 10 g of tissue is 0.27 W/kg well under the safety standards.The flexibility is proven by analyzing the full electromagnetic simulations for various bending conditions.Time response analysis is attained with its Fidelity Factor and Group Delay.Communication excellence is determined using Link Budget Analysis and it is seen that margin at 100 Mbps is 62 m and at 200 Mbps is 59 m.Prototype is fabricated along with experimental validation.All the results show harmony in shaping the antenna to provide critical situational awareness and data sharing capabilities required in defense beacon technology for location identification.展开更多
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous...The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.展开更多
With the proposal of the double carbon target,the task of energy saving and emission reduction of buildings has become more arduous.The application of building photovoltaic technology is identified as a significant br...With the proposal of the double carbon target,the task of energy saving and emission reduction of buildings has become more arduous.The application of building photovoltaic technology is identified as a significant breakthrough to address this challenge.In this paper,the visual analysis and interpretation of literature on building photovoltaic(PV)technology were conducted by using the Cite Space analysis tool based on a review of Chinese and international literature databases.Meanwhile,global research on BIPV technology was summarized and compared.This paper provides ideas for the future application of building photovoltaic technology by constructing a knowledge map for the application of building photovoltaic technology to help the construction of a low-carbon society.展开更多
This study explored the nature and use of technology-based self-regulated learning(SRL)strategies among the Chinese university students.A total of 20 undergraduate students in China's Mainland were invited to part...This study explored the nature and use of technology-based self-regulated learning(SRL)strategies among the Chinese university students.A total of 20 undergraduate students in China's Mainland were invited to participate in a focus group interview.The students reported using four types of technology-based SRL strategies including cognitive,meta-cognitive,social behavioral,and motivational regulation strategies.Among the strategies,technology-based vocabulary learning was reported to be a dominant strategy by the students.This study opens a new window to understanding how English as a foreign language(EFL)students utilize different strategies to learn English in technology-based learning context.展开更多
Slightly acidic electrolyzed water(SAEW)has proven to be an efficient and novel sanitizer in food and agriculture field.This study assessed the efficacy of SAEW(30 mg/L)at 40℃on the inactivation of foodbome pathogens...Slightly acidic electrolyzed water(SAEW)has proven to be an efficient and novel sanitizer in food and agriculture field.This study assessed the efficacy of SAEW(30 mg/L)at 40℃on the inactivation of foodbome pathogens and detachment of multi-resistant Staphylococcus aureus(MRSA)biofilm.Furthermore.the underlying mechanism of MRS A biofilm under heated SAEW at 40℃treatment on metabolic profiles was investigated.The results showed that the heated SAEW at 40℃significantly effectively against foodbome pathogens of 1.96-7.56(lg(CFU/g))reduction in pork,chicken,spinach,and lettuce.The heated SAEW at 40℃treatment significantly reduced MRS A biofilm cells by 2.41(lg(CFU/cm^(2))).The synergistic effect of SAEW treatment showed intense anti-biofilm activity in decreasing cell density and impairing biofilm cell membranes.Global metabolic response of MRSA biofilms,treated by SAEW at 40℃,revealed the alterations of intracellular metabolites,including amino acids,organic acid,fatty acid,and lipid.Moreover,signaling pathways involved in amino acid metabolism,energy metabolism,nucleotide synthesis,carbohydrate metabolites,and lipid biosynthesis were functionally disrupted by the SAEW at 40℃treatment.As per our knowledge,this is the first research to uncover the potential mechanism of heated SAEW treatment against MRSA biofilm on food contact surface.展开更多
As a tool for human communication,the use of language is affected by the way of thinking in cross-cultural communication.Due to the differences between Chinese and Western cultures,the way of thinking varies under the...As a tool for human communication,the use of language is affected by the way of thinking in cross-cultural communication.Due to the differences between Chinese and Western cultures,the way of thinking varies under the influence of such cultural differences.In the process of translation,the influence of the different thinking mode on translation activities cannot be ignored.At present,a lot of studies and researches have focused on the influence of Chinese and Western thinking mode on translation.However,it is still worthwhile to study what specific influence the difference between Chinese and Western thinking mode will exert on the translation process of science texts and what kind of measure should be taken to solve the negative influence brought by the differences when we are translating.This paper aims to discuss the influence of thinking differences between Chinese and Western countries on the process of English-Chinese translation of science and technology from the perspectives of long sentences,passive voice and nominalization,and how the translators should appropriately adjust their thinking pattern and use reasonable skills to eliminate the potential negative interference caused by the difference and achieve a better transformation between English and Chinese.展开更多
Atrial fibrillation (AF) is the most common chronic arrhythmia in clinical practice, which can cause high disability and mortality with the progress of the disease. Many studies at home and abroad have shown that the ...Atrial fibrillation (AF) is the most common chronic arrhythmia in clinical practice, which can cause high disability and mortality with the progress of the disease. Many studies at home and abroad have shown that the incidence of atrial fibrillation gradually increases with age. Clinically, the onset of most AF patients is insidious, which is difficult to capture by routine electrocardiogram, and there is some difficulty in the diagnosis. In order to make the early diagnosis of atrial fibrillation more efficient and accurate, this paper reviews the current status and research progress of detection technology for atrial fibrillation at home and abroad, in order to provide a scientific basis for the early diagnosis of atrial fibrillation.展开更多
基金supported by grants from the National Key R&D Program of China,No.2017YFC0909200(to DC)the National Natural Science Foundation of China,No.62075225(to HZ)+1 种基金Zhejiang Provincial Medical Health Science and Technology Project,No.2023XY053(to ZP)Zhejiang Provincial Traditional Chinese Medical Science and Technology Project,No.2023ZL703(to ZP).
文摘Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
基金supported by the Natural Science Foundation of Hunan Province(Grant Nos.2021JJ30050 and 2023JJ50368)Science and Technology Program of Hunan Province(Grant No.2021SK50313)+3 种基金the Research Project of Hunan Provincial Health Commission(Grant Nos.202203102912 and 202203103105,W20243264)the Science and Technology Program of Chenzhou(Grant No.ZDYF2020011)the Key Project of the First People’s Hospital of Chenzhou(Grant No.CZYY202203)the Innovative Team Project of the First People’s Hospital of Chenzhou(Grant No.CX202103).
文摘Nucleic acid analysis is a key technique that enables accurate detection of various microorganisms.Conventional nucleic acid testing typically requires access to specialized laboratories,equipment,and trained personnel,which hinders the widespread use of on-site testing for DNA and RNA targets.However,integrating gene editing technology with traditional nucleic acid detection methods,especially isothermal amplification technology,can help overcome the limitations associated with on-site testing.This combination can accomplish precise and swift detection of nucleic acid sequences,offering a robust tool for on-site detection.The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins(CRISPR/Cas)technology,which comprises the CRISPR system and Cas effector proteins,is a powerful tool that is advancing the field of nucleic acid detection.Specifically,Cas12,Cas13,and Cas14 proteins have emerged as straightforward,effective,precise,sensitive,and cost-effective methods for in vitro nucleic acid detection because of their“collateral cleavage”characteristics.When combined with the“collateral cleavage”ability of Cas protein and isothermal amplification,CRISPR/Cas systems have great potential to advance nucleic acid detection.This article summarizes the research progress of different CRISPR/Cas systems and their applications in nucleic acid detection and future perspectives.
基金Supported by Research and Development Funding for Medical and Health Institutions,No.2021YL007.
文摘BACKGROUND Infectious diseases are still one of the greatest threats to human health,and the etiology of 20%of cases of clinical fever is unknown;therefore,rapid identification of pathogens is highly important.Traditional culture methods are only able to detect a limited number of pathogens and are time-consuming;serologic detection has window periods,false-positive and false-negative problems;and nucleic acid molecular detection methods can detect several known pathogens only once.Three-generation nanopore sequencing technology provides new options for identifying pathogens.CASE SUMMARY Case 1:The patient was admitted to the hospital with abdominal pain for three days and cessation of defecation for five days,accompanied by cough and sputum.Nanopore sequencing of the drainage fluid revealed the presence of orallike bacteria,leading to a clinical diagnosis of bronchopleural fistula.Cefoperazone sodium sulbactam treatment was effective.Case 2:The patient was admitted to the hospital with fever and headache,and CT revealed lung inflammation.Antibiotic treatment for Streptococcus pneumoniae,identified through nanopore sequencing of cerebrospinal fluid,was effective.Case 3:The patient was admitted to our hospital with intermittent fever and an enlarged neck mass that had persisted for more than six months.Despite antibacterial treatment,her symptoms worsened.The nanopore sequencing results indicate that voriconazole treatment is effective for Aspergillus brookii.The patient was diagnosed with mixed cell type classical Hodgkin's lymphoma with infection.CONCLUSION Three-generation nanopore sequencing technology allows for rapid and accurate detection of pathogens in human infectious diseases.
文摘With the rapid advancement of network technology,new payment methods represented by Q coins and game currencies have entered a phase of significant growth.However,these payment methods have a limited scope of application and lack the legal status of fiat currency.The rise of digital currency has profoundly impacted the authority of traditional currency systems.Distinguished by robust payment capabilities,digital currency differs significantly from traditional currency.Yet,due to its relatively brief history,a globally unified definition has yet to be established.Consequently,there is an urgent need to enhance the regulation of digital currency through legislative measures to ensure its orderly and sustainable development.
文摘With the upgrading of industries,the cosmetics industry has posed new requirements for technical talents.As a professional core course in cosmetic technology,“Cosmetic Product Formulation Design and Preparation Technology”serves as the foundation for cultivating students’abilities in cosmetic development and preparation.To foster high-quality skilled talents capable of adapting to the rapid growth of color cosmetics and to better promote the deep integration of scientific and technological industries with curriculum teaching,the teacher team embarked on active explorations and practical teaching research for curriculum teaching reform from four dimensions:strengthening top-level design,enriching teaching content,optimizing teaching design,and reforming assessment methods.These efforts have enhanced students’comprehensive vocational qualities and innovative consciousness,contributing to the teaching reform in higher vocational colleges under the integration of industry,education,and research.
文摘The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel industry is reviewed,and the current state of development of low-carbon technologies is discussed.Additionally,low-carbon pathways for the steel industry at the current time are proposed,emphasizing prevention and treatment strategies.Furthermore,the prospects of low-carbon technologies are explored from the perspective of transitioning the energy structure to a“carbon-electricity-hydrogen”relationship.Overall,steel enterprises should adopt hydrogen-rich metallurgical technologies that are compatible with current needs and process flows in the short term,based on the carbon substitution with hydrogen(prevention)and the CCU(CO_(2) capture and utilization)concepts(treatment).Additionally,the capture and utilization of CO_(2) for steelmaking,which can assist in achieving short-term emission reduction targets but is not a long-term solution,is discussed.In conclusion,in the long term,the carbon metallurgical process should be gradually supplanted by a hydrogen-electric synergistic approach,thus transforming the energy structure of existing steelmaking processes and attaining near-zero carbon emission steelmaking technology.
基金supported by the National Natural Science Foundation of China under Grant 62034002 and 62374026.
文摘A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.
基金the financial support from the Scientific Research and Technology Development Project of China Energy Engineering Corporation Limited(CEEC-KJZX-04).
文摘Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.
基金the Guangdong Planning Office of Philosophy and Social Science(Grant No.GD22XYS04).
文摘Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.
基金supported by the National Nature Science Foundation of China under grant No.42272350the Foundation of Shanxi Key Laboratory for Exploration and Exploitation of Geothermal Resources under grant No.SX202202.
文摘Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES.
基金funded by National Key R&D Program of China(2022YFF1100300).
文摘Proteomics is a new technology that has been widely applied in the field of life and health science.It effectively addresses issues related to the impact of dietary structure on organs,tissues,and cells,as well as the changes in proteins in various organs,tissues,and cells under disease conditions.The differential proteins identified through proteomics can serve as disease biomarkers and target proteins affecting health and can be used for disease diagnosis and health regulation.In this paper,the application of proteomics in the field of infl ammation in recent years was summarized,especially in the therapeutic target and mechanism of action,which opens up a new way for more effective prevention,diagnosis,and treatment of inflammation,and provides medical protection for human life and health.
基金supported in part by the Joint Project of National Natural Science Foundation of China(U22B2004,62371106)in part by China Mobile Research Institute&X-NET(Project Number:2022H002)+6 种基金in part by the Pre-Research Project(31513070501)in part by National Key R&D Program(2018AAA0103203)in part by Guangdong Provincial Research and Development Plan in Key Areas(2019B010141001)in part by Sichuan Provincial Science and Technology Planning Program of China(2022YFG0230,2023YFG0040)in part by the Fundamental Enhancement Program Technology Area Fund(2021-JCJQ-JJ-0667)in part by the Joint Fund of ZF and Ministry of Education(8091B022126)in part by Innovation Ability Construction Project for Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT(2303-510109-04-03-318020).
文摘Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a combined technology integrating an improved Kalman Filter with Space Domain Phase Difference of Arrival(SD-PDOA)and Received Signal Strength Indicator(RSSI).This methodology utilizes the distinct channel characteristics in multipath and NLoS contexts to effectively filter out interference and accurately extract localization information,thereby facilitating high precision and stability in passive RFID localization.The efficacy of this approach is demonstrated through detailed simulations and empirical tests conducted on a custom-built experimental platform consisting of passive RFID tags and an R420 reader.The findings are significant:in NLoS conditions,the four-antenna localization system achieved a notable localization accuracy of 0.25 m at a distance of 5 m.In complex multipath environments,this system achieved a localization accuracy of approximately 0.5 m at a distance of 5 m.When compared to conventional passive localization methods,our proposed solution exhibits a substantial improvement in indoor localization accuracy under NLoS and multipath conditions.This research provides a robust and effective technical solution for high-precision passive indoor localization in the Internet of Things(IoT)system,marking a significant advancement in the field.
基金supported by the National Key R&D Program of China(2022YFD2002300)the Construction of Collaborative Innovation Center of Beijing Academy of Agricultural and Forestry Sciences(KJCX20240406)+1 种基金the National Natural Science Foundation of China(32071891)the earmarked fund(CARS-02 and CARS-054).
文摘Crop phenomics has rapidly progressed in recent years due to the growing need for crop functional geno-mics,digital breeding,and smart cultivation.Despite this advancement,the lack of standards for the cre-ation and usage of crop phenomics technology and equipment has become a bottleneck,limiting the industry’s high-quality development.This paper begins with an overview of the crop phenotyping indus-try and presents an industrial mapping of technology and equipment for big data in crop phenomics.It analyzes the necessity and current state of constructing a standard framework for crop phenotyping.Furthermore,this paper proposes the intended organizational structure and goals of the standard frame-work.It details the essentials of the standard framework in the research and development of hardware and equipment,data acquisition,and the storage and management of crop phenotyping data.Finally,it discusses promoting the construction and evaluation of the standard framework,aiming to provide ideas for developing a high-quality standard framework for crop phenotyping.
基金the Defense Institute of Advanced Technology,Pune(DIAT,Pune)IIT Delhi。
文摘The study projects a flexible and compact wearable pear-shaped Super High Frequency(SHF)antenna that can provide detailed location recognition and tracking applicable to defense beacon technology.This mini aperture with electrical dimensions of 0.12λ_(0)×0.22λ_(0)×0.01λ_(0)attains a vast bandwidth over 3.1-34.5 GHz Super High Frequency(SHF)frequency band at S_(11)≤-10 dB,peak gain of 7.14 dBi and proportionately homogeneous radiation pattern.The fractional bandwidth(%BW)acquired is 168%that envelopes diversified frequency spectrum inclusive of X band specifically targeted to all kinds of defense and military operations.The proposed antenna can be worn on a soldier's uniform and hence the Specific Absorption Rate simulation is accomplished.The Peak SAR Value over 1 g of tissue is 1.48 W/kg and for 10 g of tissue is 0.27 W/kg well under the safety standards.The flexibility is proven by analyzing the full electromagnetic simulations for various bending conditions.Time response analysis is attained with its Fidelity Factor and Group Delay.Communication excellence is determined using Link Budget Analysis and it is seen that margin at 100 Mbps is 62 m and at 200 Mbps is 59 m.Prototype is fabricated along with experimental validation.All the results show harmony in shaping the antenna to provide critical situational awareness and data sharing capabilities required in defense beacon technology for location identification.
基金the National Natural Science Foundation of China(Nos.52304141 and 52074154)。
文摘The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.
文摘With the proposal of the double carbon target,the task of energy saving and emission reduction of buildings has become more arduous.The application of building photovoltaic technology is identified as a significant breakthrough to address this challenge.In this paper,the visual analysis and interpretation of literature on building photovoltaic(PV)technology were conducted by using the Cite Space analysis tool based on a review of Chinese and international literature databases.Meanwhile,global research on BIPV technology was summarized and compared.This paper provides ideas for the future application of building photovoltaic technology by constructing a knowledge map for the application of building photovoltaic technology to help the construction of a low-carbon society.
文摘This study explored the nature and use of technology-based self-regulated learning(SRL)strategies among the Chinese university students.A total of 20 undergraduate students in China's Mainland were invited to participate in a focus group interview.The students reported using four types of technology-based SRL strategies including cognitive,meta-cognitive,social behavioral,and motivational regulation strategies.Among the strategies,technology-based vocabulary learning was reported to be a dominant strategy by the students.This study opens a new window to understanding how English as a foreign language(EFL)students utilize different strategies to learn English in technology-based learning context.
基金supported by Brain Korea (BK)21 Plus Project (4299990913942)funded by the Korean Government,Koreathe Collabo Project funded by the Ministry of SMEs and Startups (C1016120-01-02)the National Research Foundation of Korea (NRF) (2018007551)。
文摘Slightly acidic electrolyzed water(SAEW)has proven to be an efficient and novel sanitizer in food and agriculture field.This study assessed the efficacy of SAEW(30 mg/L)at 40℃on the inactivation of foodbome pathogens and detachment of multi-resistant Staphylococcus aureus(MRSA)biofilm.Furthermore.the underlying mechanism of MRS A biofilm under heated SAEW at 40℃treatment on metabolic profiles was investigated.The results showed that the heated SAEW at 40℃significantly effectively against foodbome pathogens of 1.96-7.56(lg(CFU/g))reduction in pork,chicken,spinach,and lettuce.The heated SAEW at 40℃treatment significantly reduced MRS A biofilm cells by 2.41(lg(CFU/cm^(2))).The synergistic effect of SAEW treatment showed intense anti-biofilm activity in decreasing cell density and impairing biofilm cell membranes.Global metabolic response of MRSA biofilms,treated by SAEW at 40℃,revealed the alterations of intracellular metabolites,including amino acids,organic acid,fatty acid,and lipid.Moreover,signaling pathways involved in amino acid metabolism,energy metabolism,nucleotide synthesis,carbohydrate metabolites,and lipid biosynthesis were functionally disrupted by the SAEW at 40℃treatment.As per our knowledge,this is the first research to uncover the potential mechanism of heated SAEW treatment against MRSA biofilm on food contact surface.
文摘As a tool for human communication,the use of language is affected by the way of thinking in cross-cultural communication.Due to the differences between Chinese and Western cultures,the way of thinking varies under the influence of such cultural differences.In the process of translation,the influence of the different thinking mode on translation activities cannot be ignored.At present,a lot of studies and researches have focused on the influence of Chinese and Western thinking mode on translation.However,it is still worthwhile to study what specific influence the difference between Chinese and Western thinking mode will exert on the translation process of science texts and what kind of measure should be taken to solve the negative influence brought by the differences when we are translating.This paper aims to discuss the influence of thinking differences between Chinese and Western countries on the process of English-Chinese translation of science and technology from the perspectives of long sentences,passive voice and nominalization,and how the translators should appropriately adjust their thinking pattern and use reasonable skills to eliminate the potential negative interference caused by the difference and achieve a better transformation between English and Chinese.
文摘Atrial fibrillation (AF) is the most common chronic arrhythmia in clinical practice, which can cause high disability and mortality with the progress of the disease. Many studies at home and abroad have shown that the incidence of atrial fibrillation gradually increases with age. Clinically, the onset of most AF patients is insidious, which is difficult to capture by routine electrocardiogram, and there is some difficulty in the diagnosis. In order to make the early diagnosis of atrial fibrillation more efficient and accurate, this paper reviews the current status and research progress of detection technology for atrial fibrillation at home and abroad, in order to provide a scientific basis for the early diagnosis of atrial fibrillation.