In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned o...In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned oil and gas(AOG)wells,focusing particularly on Lubbock,a geographic area situated within the larger region known as the Permian Basin in West Texas,United States.The objective is to assess the extent and environmental implications of methane leakage from these wells.The analysis integrates pertinent literature,governmental and industry data,and prior Lubbock reports.Factors affecting methane leakage,including well integrity,geological characteristics,and human activities,are explored.Our research estimates 1781 drilled wells in Lubbock,forming a foundation for targeted assessments and monitoring due to historical drilling trends.The hierarchy of well statuses in Lubbock highlights the prevalence of“active oil wells,”trailed by“plugged and abandoned oil wells”and“inactive oil wells.”Methane leakage potential aligns with these well types,underscoring the importance of strategic monitoring and mitigation.The analysis notes a zenith in“drilled and completed”wells during 1980-1990.While our study's case analysis and literature review reiterate the critical significance of assessing and mitigating methane emissions from AOG wells,it's important to clarify that the research does not directly provide methane leakage data.Instead,it contextualizes the issue's magnitude and emphasizes the well type and status analysis's role in targeted mitigation efforts.In summary,our research deepens our understanding of methane leakage,aiding informed decision-making and policy formulation for environmental preservation.By clarifying well type implications and historical drilling patterns,we aim to contribute to effective strategies in mitigating methane emissions from AOG wells.展开更多
The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are...The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition.展开更多
Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela ...Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasomedependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.展开更多
Objective: As a needs assessment for intervention, quantitative and qualitative methods were used to examine attitude, subjective norms, perceived behavioral control, intention, knowledge, and weight control status re...Objective: As a needs assessment for intervention, quantitative and qualitative methods were used to examine attitude, subjective norms, perceived behavioral control, intention, knowledge, and weight control status related to physical activity in female university students within the Theory of Planned Behavior (TPB). Methods: A two-phase mixed method design was used. In Phase I, 362 students participated in an online survey, and in Phase II, 33 students participated in five focus group discussions. Ages of participants ranged from 18 to 45 years old, with 18 - 25 year olds making up over 74% of the sample. Results: Attitude, subjective norms, and perceived behavioral control, along with weight control status of trying to lose weight, were found to be significant predictors of intention to follow physical activity recommendations, which in turn were the strongest predictor of physical activity. Knowledge was not found to be significant. Group discussions revealed barriers to meeting physical activity recommendations, which included lack of companionship and social support, lack of motivation, time and cost restrictions, and lack of privacy in the gym. Social norms exerted both positive and negative influences. Conclusion: The mixed method approach provided a deeper insight into the influential factors pertaining to physical activity among female students, and results could be used in further research to develop effective interventions.展开更多
This paper presents a brief overview of several promising design technologies for high efficiency silicon-based radio frequency (RF) power amplifiers (PAs) as well as the use of these technologies in mobile broadb...This paper presents a brief overview of several promising design technologies for high efficiency silicon-based radio frequency (RF) power amplifiers (PAs) as well as the use of these technologies in mobile broadband wireless communications. Four important aspects of PA design are addressed in this paper. First, we look at class-E PA design equations and provide an example of a class-E PA that achieves efficiency of 65-70% at 2.4 GHz. Then, we discuss state-of-the-art envelope tracking (ET) design for monolithic wideband RF mobile transmitter applications. A brief overview of Doherty PA design for the next-generation wireless handset applications is then given. Towards the end of the paper, we discuss an inherently broadband and highly efficient class-J PA design targeting future multi-band multi-standard wireless communication protocols.展开更多
National surveys have shown that over 80% of adults do not know their recommended calorie levels. Lack of knowledge about calorie needs could be contributing to the high prevalence of obesity in the US. Young adulthoo...National surveys have shown that over 80% of adults do not know their recommended calorie levels. Lack of knowledge about calorie needs could be contributing to the high prevalence of obesity in the US. Young adulthood is a crucial period for the development of dietary behaviors that continue into later adulthood and influence the risk of obesity and chronic disease. This study examined university students’ knowledge of their recommended calorie needs. Subjects (N = 153) were students at Texas Tech University in Fall 2010. Students were given a survey to assess perceived daily calorie need (PDCN) and perceived daily calorie intake (PDCI). Their recommended daily calorie needs (RDCN) and actual calorie intakes (ACI) were determined using MyPyramid.gov. PDCN, PDCI, RDCN, and ACI were compared to determine students’ ability to accurately estimate and consume recommended daily calorie levels. The range of their PDCN was 120 kcal to 10,000 kcal. Only 19.7% of students estimated their RDCN accurately. There were significant differences between PDCN and RDCN (t [152] = ?3.223, P = 0.002);PDCI and ACI (t [114] = 3.246, P = 0.002);and ACI and RDCN (t [114] = ?5.6, P = 0.000). Nearly 40% of these university students were overweight. BMI had a significant effect (P = 0.001) on students’ estimation of their RDCN as students with underweight/normal BMI were more accurate. Nutrition education programs focused on calorie needs should be implemented with university students so they will be able to effectively use calorie information on food labels and menus for weight management.展开更多
The nature of spatial spillovers in the adoption of irrigation technology is examined in this paper. Adopting a new technology is a decision that is based on economic and individual-specific factors. One of these indi...The nature of spatial spillovers in the adoption of irrigation technology is examined in this paper. Adopting a new technology is a decision that is based on economic and individual-specific factors. One of these individual factors might be communication with other users. It makes sense to expect that contact between users and non-users would follow a spatial pattern, and if knowledge spillovers are important to the adoption decision then resource managers need to be aware of their existence. Using counties in the Texas High Plains as the study area, the adoption of center pivot technology is examined using both Ordinary Least Squares and spatial regression models to determine if knowledge spillovers exist. Ultimately, no evidence was found that adoption practices in a county affects its neighbors;however, geographic location does matter to who adopts and when.展开更多
Crop production in the Texas High Plains is shifting from irrigated to dryland due to the increase of the depth to the water table from the Ogallala aquifer in regions where the saturated thickness of 9 m, the minimum...Crop production in the Texas High Plains is shifting from irrigated to dryland due to the increase of the depth to the water table from the Ogallala aquifer in regions where the saturated thickness of 9 m, the minimum to sustain irrigation, has been reached. Our objective was to use the mechanistic model ENWATBAL to evaluate the daily and annual water balance for three scenarios of rainfall in this region, a dry (189 mm), an average (449 mm) and a wet (669 mm) year. These three scenarios were applied to two major soil series of this region, Pullman and Amarillo. In all simulations, we used hourly input weather data for a location near Lubbock, Texas and used measured soil hydraulic properties to simulate the water balance for each soil series and the three rainfall scenarios. Results showed that in years with average and wet rain, storage of rainfall occurred in the Pullman but not in in the Amarillo soil series. However, storage of water could be enhanced by combining furrow dikes with minimum tillage along with crop covers that provide a surface residue. The implications of our results for dryland crop production in the semiarid climate of the THP suggest that for years with average and wetter rainfall soils in the Pullman series could store water that would be available for crop use. However, this was not the case for the Amarillo soil series and these soils represent a higher risk for dryland crop production.展开更多
This paper utilizes the virtual water concept to evaluate water usage of agricultural production in West Texas. This work evaluates the measure of virtual water, as it relates to informing water policy in a semi-arid,...This paper utilizes the virtual water concept to evaluate water usage of agricultural production in West Texas. This work evaluates the measure of virtual water, as it relates to informing water policy in a semi-arid, agriculture-intensive region, which relies upon a minimally renewable groundwater resource. The results suggest that production in the region reflects a collective effort to capture the highest value from the water resource, consistent with the virtual water philosophy, even in the absence of specific water policy toward that goal. Additionally, this work takes advantage of high resolution data to reinforce the need to calibrate virtual water calculations to account for regional differences.展开更多
A new cotton transformation method was developed by Ge and colleagues at Institute of Cotton Research of Chinese Academy of Agricultural Sciences,and this work was published in a recent issue of the Journal of Integra...A new cotton transformation method was developed by Ge and colleagues at Institute of Cotton Research of Chinese Academy of Agricultural Sciences,and this work was published in a recent issue of the Journal of Integrative Plant Biology(Ge et al.2023;https://doi.org/10.1111/jipb.13427).This method is a milestone progress in the development of cotton transformation technologies,as it can be used to transform different genotypes and species of cotton such as Gossypium hirsutum,Gossypium barbadense,and Gossypium arboreum.This method is fast,user friendly,and the transformation efficiency is equivalent to or superior to other cotton transformation methods.展开更多
Cancer risks in the United States are linked to undesirable dietary and physical activity habits that may be more common in rural communities. This study assessed the cancer risk in two rural West Texas communities th...Cancer risks in the United States are linked to undesirable dietary and physical activity habits that may be more common in rural communities. This study assessed the cancer risk in two rural West Texas communities through anthropometrics, diet, and physical activity measures (n = 374). No significant relationships were found between body mass index (BMI) and waist circumference (WC) with consumption of fruits, vegetables, whole grains, and sugar-sweetened beverages;however, data showed significant negative associations between BMI and WC and physical activity. Over 58% of the sample was unaware of the link between obesity and cancer risk. Further evaluation of cancer risk in rural communities is needed to develop effective interventions and reduce health disparities.展开更多
Image semantic segmentation is an important branch of computer vision of a wide variety of practical applications such as medical image analysis,autonomous driving,virtual or augmented reality,etc.In recent years,due ...Image semantic segmentation is an important branch of computer vision of a wide variety of practical applications such as medical image analysis,autonomous driving,virtual or augmented reality,etc.In recent years,due to the remarkable performance of transformer and multilayer perceptron(MLP)in computer vision,which is equivalent to convolutional neural network(CNN),there has been a substantial amount of image semantic segmentation works aimed at developing different types of deep learning architecture.This survey aims to provide a comprehensive overview of deep learning methods in the field of general image semantic segmentation.Firstly,the commonly used image segmentation datasets are listed.Next,extensive pioneering works are deeply studied from multiple perspectives(e.g.,network structures,feature fusion methods,attention mechanisms),and are divided into four categories according to different network architectures:CNN-based architectures,transformer-based architectures,MLP-based architectures,and others.Furthermore,this paper presents some common evaluation metrics and compares the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value on the most widely used datasets.Finally,possible future research directions and challenges are discussed for the reference of other researchers.展开更多
This study considers several computational techniques for solving one formulation of the wells placement problem (WPP). Usually the wells placement problem is tackled through the combined efforts of many teams using c...This study considers several computational techniques for solving one formulation of the wells placement problem (WPP). Usually the wells placement problem is tackled through the combined efforts of many teams using conventional approaches, which include gathering seismic data, conducting real-time surveys, and performing production interpretations in order to define the sweet spots. This work considers one formulation of the wells placement problem in heterogeneous reservoirs with constraints on inter-well spacing. The performance of three different types of algorithms for optimizing the well placement problem is compared. These three techniques are: genetic algorithm, simulated annealing, and mixed integer programming (IP). Example case studies show that integer programming is the best approach in terms of reaching the global optimum. However, in many cases, the other approaches can often reach a close to optimal solution with much more computational efficiency.展开更多
Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objecti...Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Landscape Modeling System (PALMS) model to simulate soil water content throughout the growing season for several years and for three major soil series of the semiarid Texas Southern High Plains (SHP). Accuracy of the model was evaluated by comparing measured and calculated values of soil water content and using root mean squared difference (RMSD), squared bias (SB), squared difference between standard deviations (SDSD), and lack of correlation weighted by the standard deviation (LCS). Different versions of the model were obtained by modifying soil hydraulic properties, including saturated hydraulic conductivity (Ks) and residual (θr) and saturated (θs) soil volumetric water content, which were calculated using Rosetta pedotransfer functions. These modifications were combined with updated routines of the soil water solver in PALMS to account for rapid infiltration into dry soils that often occur in the SHP. Field studies were conducted across a wide range of soil and water conditions in the SHP. Soil water content was measured by neutron attenuation and gravimetrically throughout the growing seasons at each location to compare absolute values and the spatial distribution of soil water with PALMS calculated values. Use of Rosetta calculated soil hydraulic properties improved PALMS soil water calculation from 1% - 13% of measured soil volumetric water content (θv) depending on soil type. Large-scale models such as PALMS have the potential to more realistically represent management effects on soil water availability in agricultural fields. Improvements in PALMS soil water calculations indicated that the model may be useful to assess long-term implications of management practices designed to conserve irrigation water and maximize the profitability of dryland and irrigated cropping systems in the SHP.展开更多
The Texas High Plains faces projections of increasing temperature and declining precipitation in the future on account of its semi-arid climate. This research evaluated the impact of climatic variability on agricultur...The Texas High Plains faces projections of increasing temperature and declining precipitation in the future on account of its semi-arid climate. This research evaluated the impact of climatic variability on agricultural land prices under different land uses in the Texas High Plains, employing the Ricardian approach of land climate pricing over a study period of 1991-2011. The results indicate that climatic variability had a greater impact on irrigated land prices as compared to dryland and ranchland. This study could be instrumental in predictive market analyses of rural land values in semi-arid economies which are vulnerable to future climate change.展开更多
With the increase of software complexity,the security threats faced by the software are also increasing day by day.So people pay more and more attention to the mining of software vulnerabilities.Although source code h...With the increase of software complexity,the security threats faced by the software are also increasing day by day.So people pay more and more attention to the mining of software vulnerabilities.Although source code has rich semantics and strong comprehensibility,source code vulnerability mining has been widely used and has achieved significant development.However,due to the protection of commercial interests and intellectual property rights,it is difficult to obtain source code.Therefore,the research on the vulnerability mining technology of binary code has strong practical value.Based on the investigation of related technologies,this article firstly introduces the current typical binary vulnerability analysis framework,and then briefly introduces the research background and significance of the intermediate language;with the rise of artificial intelligence,a large number of machine learning methods have been tried to solve the problem of binary vulnerability mining.This article divides the current related binary vulnerabilities mining technology into traditional mining technology and machine learning mining technology,respectively introduces its basic principles,research status and existing problems,and briefly summarizes them.Finally,based on the existing research work,this article puts forward the prospect of the future research on the technology of binary program vulnerability mining.展开更多
This article returns to the topic of sustainability. West Texas, mainly known for its cotton and cattle production, is facing problems related to the dispensation of agricultural waste produced by these operations. Th...This article returns to the topic of sustainability. West Texas, mainly known for its cotton and cattle production, is facing problems related to the dispensation of agricultural waste produced by these operations. The article looks at the ways of handling agricultural waste and the opportunities of dispensing it in West Texas. Since between 30 - 40 percent of food produced in the US is not consumed, reduction of food waste is another sustainability problem that, when solved, would lead to the reduction of agricultural production and, in turn, the reduction of agricultural waste. Waste reduction management practices of large food chain stores in West Texas are discussed, with a final goal of bringing waste to a zero level. Public sources of sustainable agricultural and non-agricultural waste handling are also mentioned. This research adds to the previous knowledge on sustainability by discussing agricultural waste practices of a specific local area, i.e. West Texas.展开更多
Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's dis...Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.展开更多
With rising demand for clean energy,global focus turns to finding ideal sites for large-scale underground hydrogen storage(UHS)in depleted petroleum reservoirs.A thorough preliminary reservoir evaluation before hydrog...With rising demand for clean energy,global focus turns to finding ideal sites for large-scale underground hydrogen storage(UHS)in depleted petroleum reservoirs.A thorough preliminary reservoir evaluation before hydrogen(H_(2))injection is crucial for UHS success and safety.Recent criteria for UHS often emphasize economics and chemistry,neglecting key reservoir attributes.This study introduces a comprehensive framework for the reservoir-scale preliminary assessment,specifically tailored for long-term H_(2) storage within depleted gas reservoirs.The evaluation criteria encompass critical components,including reservoir geometry,petrophysical properties,tectonics,and formation fluids.To illustrate the practical application of this approach,we assess the Barnett shale play reservoir parameters.The assessment unfolds through three key stages:(1)A systematic evaluation of the reservoir's properties against our comprehensive screening criteria determines its suitability for H_(2) storage.(2)Using both homogeneous and multilayered gas reservoir models,we explore the feasibility and efficiency of H_(2) storage.This phase involves an in-depth examination of reservoir behavior during the injection stage.(3)To enhance understanding of UHS performance,sensitivity analyses investigate the impact of varying reservoir dimensions and injection/production pressures.The findings reveal the following:(a)Despite potential challenges associated with reservoir compaction and aquifer support,the reservoir exhibits substantial promise as an H_(2) storage site.(b)Notably,a pronounced increase in reservoir pressure manifests during the injection stage,particularly in homogeneous reservoirs.(c)Furthermore,optimizing injection-extraction cycle efficiency can be achieved by augmenting reservoir dimensions while maintaining a consistent thickness.To ensure a smooth transition to implementation,further comprehensive investigations are advised,including experimental and numerical studies to address injectivity concerns and explore storage site development.This evaluation framework is a valuable tool for assessing the potential of depleted gas reservoirs for large-scale hydrogen storage,advancing global eco-friendly energy systems.展开更多
文摘In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned oil and gas(AOG)wells,focusing particularly on Lubbock,a geographic area situated within the larger region known as the Permian Basin in West Texas,United States.The objective is to assess the extent and environmental implications of methane leakage from these wells.The analysis integrates pertinent literature,governmental and industry data,and prior Lubbock reports.Factors affecting methane leakage,including well integrity,geological characteristics,and human activities,are explored.Our research estimates 1781 drilled wells in Lubbock,forming a foundation for targeted assessments and monitoring due to historical drilling trends.The hierarchy of well statuses in Lubbock highlights the prevalence of“active oil wells,”trailed by“plugged and abandoned oil wells”and“inactive oil wells.”Methane leakage potential aligns with these well types,underscoring the importance of strategic monitoring and mitigation.The analysis notes a zenith in“drilled and completed”wells during 1980-1990.While our study's case analysis and literature review reiterate the critical significance of assessing and mitigating methane emissions from AOG wells,it's important to clarify that the research does not directly provide methane leakage data.Instead,it contextualizes the issue's magnitude and emphasizes the well type and status analysis's role in targeted mitigation efforts.In summary,our research deepens our understanding of methane leakage,aiding informed decision-making and policy formulation for environmental preservation.By clarifying well type implications and historical drilling patterns,we aim to contribute to effective strategies in mitigating methane emissions from AOG wells.
基金supported by NIH grants AG079264(to PHR)and AG071560(to APR)。
文摘The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition.
文摘Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasomedependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.
文摘Objective: As a needs assessment for intervention, quantitative and qualitative methods were used to examine attitude, subjective norms, perceived behavioral control, intention, knowledge, and weight control status related to physical activity in female university students within the Theory of Planned Behavior (TPB). Methods: A two-phase mixed method design was used. In Phase I, 362 students participated in an online survey, and in Phase II, 33 students participated in five focus group discussions. Ages of participants ranged from 18 to 45 years old, with 18 - 25 year olds making up over 74% of the sample. Results: Attitude, subjective norms, and perceived behavioral control, along with weight control status of trying to lose weight, were found to be significant predictors of intention to follow physical activity recommendations, which in turn were the strongest predictor of physical activity. Knowledge was not found to be significant. Group discussions revealed barriers to meeting physical activity recommendations, which included lack of companionship and social support, lack of motivation, time and cost restrictions, and lack of privacy in the gym. Social norms exerted both positive and negative influences. Conclusion: The mixed method approach provided a deeper insight into the influential factors pertaining to physical activity among female students, and results could be used in further research to develop effective interventions.
文摘This paper presents a brief overview of several promising design technologies for high efficiency silicon-based radio frequency (RF) power amplifiers (PAs) as well as the use of these technologies in mobile broadband wireless communications. Four important aspects of PA design are addressed in this paper. First, we look at class-E PA design equations and provide an example of a class-E PA that achieves efficiency of 65-70% at 2.4 GHz. Then, we discuss state-of-the-art envelope tracking (ET) design for monolithic wideband RF mobile transmitter applications. A brief overview of Doherty PA design for the next-generation wireless handset applications is then given. Towards the end of the paper, we discuss an inherently broadband and highly efficient class-J PA design targeting future multi-band multi-standard wireless communication protocols.
文摘National surveys have shown that over 80% of adults do not know their recommended calorie levels. Lack of knowledge about calorie needs could be contributing to the high prevalence of obesity in the US. Young adulthood is a crucial period for the development of dietary behaviors that continue into later adulthood and influence the risk of obesity and chronic disease. This study examined university students’ knowledge of their recommended calorie needs. Subjects (N = 153) were students at Texas Tech University in Fall 2010. Students were given a survey to assess perceived daily calorie need (PDCN) and perceived daily calorie intake (PDCI). Their recommended daily calorie needs (RDCN) and actual calorie intakes (ACI) were determined using MyPyramid.gov. PDCN, PDCI, RDCN, and ACI were compared to determine students’ ability to accurately estimate and consume recommended daily calorie levels. The range of their PDCN was 120 kcal to 10,000 kcal. Only 19.7% of students estimated their RDCN accurately. There were significant differences between PDCN and RDCN (t [152] = ?3.223, P = 0.002);PDCI and ACI (t [114] = 3.246, P = 0.002);and ACI and RDCN (t [114] = ?5.6, P = 0.000). Nearly 40% of these university students were overweight. BMI had a significant effect (P = 0.001) on students’ estimation of their RDCN as students with underweight/normal BMI were more accurate. Nutrition education programs focused on calorie needs should be implemented with university students so they will be able to effectively use calorie information on food labels and menus for weight management.
文摘The nature of spatial spillovers in the adoption of irrigation technology is examined in this paper. Adopting a new technology is a decision that is based on economic and individual-specific factors. One of these individual factors might be communication with other users. It makes sense to expect that contact between users and non-users would follow a spatial pattern, and if knowledge spillovers are important to the adoption decision then resource managers need to be aware of their existence. Using counties in the Texas High Plains as the study area, the adoption of center pivot technology is examined using both Ordinary Least Squares and spatial regression models to determine if knowledge spillovers exist. Ultimately, no evidence was found that adoption practices in a county affects its neighbors;however, geographic location does matter to who adopts and when.
文摘Crop production in the Texas High Plains is shifting from irrigated to dryland due to the increase of the depth to the water table from the Ogallala aquifer in regions where the saturated thickness of 9 m, the minimum to sustain irrigation, has been reached. Our objective was to use the mechanistic model ENWATBAL to evaluate the daily and annual water balance for three scenarios of rainfall in this region, a dry (189 mm), an average (449 mm) and a wet (669 mm) year. These three scenarios were applied to two major soil series of this region, Pullman and Amarillo. In all simulations, we used hourly input weather data for a location near Lubbock, Texas and used measured soil hydraulic properties to simulate the water balance for each soil series and the three rainfall scenarios. Results showed that in years with average and wet rain, storage of rainfall occurred in the Pullman but not in in the Amarillo soil series. However, storage of water could be enhanced by combining furrow dikes with minimum tillage along with crop covers that provide a surface residue. The implications of our results for dryland crop production in the semiarid climate of the THP suggest that for years with average and wetter rainfall soils in the Pullman series could store water that would be available for crop use. However, this was not the case for the Amarillo soil series and these soils represent a higher risk for dryland crop production.
文摘This paper utilizes the virtual water concept to evaluate water usage of agricultural production in West Texas. This work evaluates the measure of virtual water, as it relates to informing water policy in a semi-arid, agriculture-intensive region, which relies upon a minimally renewable groundwater resource. The results suggest that production in the region reflects a collective effort to capture the highest value from the water resource, consistent with the virtual water philosophy, even in the absence of specific water policy toward that goal. Additionally, this work takes advantage of high resolution data to reinforce the need to calibrate virtual water calculations to account for regional differences.
文摘A new cotton transformation method was developed by Ge and colleagues at Institute of Cotton Research of Chinese Academy of Agricultural Sciences,and this work was published in a recent issue of the Journal of Integrative Plant Biology(Ge et al.2023;https://doi.org/10.1111/jipb.13427).This method is a milestone progress in the development of cotton transformation technologies,as it can be used to transform different genotypes and species of cotton such as Gossypium hirsutum,Gossypium barbadense,and Gossypium arboreum.This method is fast,user friendly,and the transformation efficiency is equivalent to or superior to other cotton transformation methods.
文摘Cancer risks in the United States are linked to undesirable dietary and physical activity habits that may be more common in rural communities. This study assessed the cancer risk in two rural West Texas communities through anthropometrics, diet, and physical activity measures (n = 374). No significant relationships were found between body mass index (BMI) and waist circumference (WC) with consumption of fruits, vegetables, whole grains, and sugar-sweetened beverages;however, data showed significant negative associations between BMI and WC and physical activity. Over 58% of the sample was unaware of the link between obesity and cancer risk. Further evaluation of cancer risk in rural communities is needed to develop effective interventions and reduce health disparities.
基金supported by the Major science and technology project of Hainan Province(Grant No.ZDKJ2020012)National Natural Science Foundation of China(Grant No.62162024 and 62162022)+1 种基金Key Projects in Hainan Province(Grant ZDYF2021GXJS003 and Grant ZDYF2020040)Graduate Innovation Project(Grant No.Qhys2021-187).
文摘Image semantic segmentation is an important branch of computer vision of a wide variety of practical applications such as medical image analysis,autonomous driving,virtual or augmented reality,etc.In recent years,due to the remarkable performance of transformer and multilayer perceptron(MLP)in computer vision,which is equivalent to convolutional neural network(CNN),there has been a substantial amount of image semantic segmentation works aimed at developing different types of deep learning architecture.This survey aims to provide a comprehensive overview of deep learning methods in the field of general image semantic segmentation.Firstly,the commonly used image segmentation datasets are listed.Next,extensive pioneering works are deeply studied from multiple perspectives(e.g.,network structures,feature fusion methods,attention mechanisms),and are divided into four categories according to different network architectures:CNN-based architectures,transformer-based architectures,MLP-based architectures,and others.Furthermore,this paper presents some common evaluation metrics and compares the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value on the most widely used datasets.Finally,possible future research directions and challenges are discussed for the reference of other researchers.
文摘This study considers several computational techniques for solving one formulation of the wells placement problem (WPP). Usually the wells placement problem is tackled through the combined efforts of many teams using conventional approaches, which include gathering seismic data, conducting real-time surveys, and performing production interpretations in order to define the sweet spots. This work considers one formulation of the wells placement problem in heterogeneous reservoirs with constraints on inter-well spacing. The performance of three different types of algorithms for optimizing the well placement problem is compared. These three techniques are: genetic algorithm, simulated annealing, and mixed integer programming (IP). Example case studies show that integer programming is the best approach in terms of reaching the global optimum. However, in many cases, the other approaches can often reach a close to optimal solution with much more computational efficiency.
文摘Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Landscape Modeling System (PALMS) model to simulate soil water content throughout the growing season for several years and for three major soil series of the semiarid Texas Southern High Plains (SHP). Accuracy of the model was evaluated by comparing measured and calculated values of soil water content and using root mean squared difference (RMSD), squared bias (SB), squared difference between standard deviations (SDSD), and lack of correlation weighted by the standard deviation (LCS). Different versions of the model were obtained by modifying soil hydraulic properties, including saturated hydraulic conductivity (Ks) and residual (θr) and saturated (θs) soil volumetric water content, which were calculated using Rosetta pedotransfer functions. These modifications were combined with updated routines of the soil water solver in PALMS to account for rapid infiltration into dry soils that often occur in the SHP. Field studies were conducted across a wide range of soil and water conditions in the SHP. Soil water content was measured by neutron attenuation and gravimetrically throughout the growing seasons at each location to compare absolute values and the spatial distribution of soil water with PALMS calculated values. Use of Rosetta calculated soil hydraulic properties improved PALMS soil water calculation from 1% - 13% of measured soil volumetric water content (θv) depending on soil type. Large-scale models such as PALMS have the potential to more realistically represent management effects on soil water availability in agricultural fields. Improvements in PALMS soil water calculations indicated that the model may be useful to assess long-term implications of management practices designed to conserve irrigation water and maximize the profitability of dryland and irrigated cropping systems in the SHP.
文摘The Texas High Plains faces projections of increasing temperature and declining precipitation in the future on account of its semi-arid climate. This research evaluated the impact of climatic variability on agricultural land prices under different land uses in the Texas High Plains, employing the Ricardian approach of land climate pricing over a study period of 1991-2011. The results indicate that climatic variability had a greater impact on irrigated land prices as compared to dryland and ranchland. This study could be instrumental in predictive market analyses of rural land values in semi-arid economies which are vulnerable to future climate change.
基金This paper is based on the funding of the following two projects:Research on Key Technologies of User Location Privacy Protection and Data Integrity Verification under Mobile P2P Architecture,Project No.(619QN193)Research on Security Vulnerability Detection Technology of Open Source Software Based on Deep Learning,Project No.(ZDYF2020212).
文摘With the increase of software complexity,the security threats faced by the software are also increasing day by day.So people pay more and more attention to the mining of software vulnerabilities.Although source code has rich semantics and strong comprehensibility,source code vulnerability mining has been widely used and has achieved significant development.However,due to the protection of commercial interests and intellectual property rights,it is difficult to obtain source code.Therefore,the research on the vulnerability mining technology of binary code has strong practical value.Based on the investigation of related technologies,this article firstly introduces the current typical binary vulnerability analysis framework,and then briefly introduces the research background and significance of the intermediate language;with the rise of artificial intelligence,a large number of machine learning methods have been tried to solve the problem of binary vulnerability mining.This article divides the current related binary vulnerabilities mining technology into traditional mining technology and machine learning mining technology,respectively introduces its basic principles,research status and existing problems,and briefly summarizes them.Finally,based on the existing research work,this article puts forward the prospect of the future research on the technology of binary program vulnerability mining.
文摘This article returns to the topic of sustainability. West Texas, mainly known for its cotton and cattle production, is facing problems related to the dispensation of agricultural waste produced by these operations. The article looks at the ways of handling agricultural waste and the opportunities of dispensing it in West Texas. Since between 30 - 40 percent of food produced in the US is not consumed, reduction of food waste is another sustainability problem that, when solved, would lead to the reduction of agricultural production and, in turn, the reduction of agricultural waste. Waste reduction management practices of large food chain stores in West Texas are discussed, with a final goal of bringing waste to a zero level. Public sources of sustainable agricultural and non-agricultural waste handling are also mentioned. This research adds to the previous knowledge on sustainability by discussing agricultural waste practices of a specific local area, i.e. West Texas.
基金supported by the National Institute on Aging (NIA)National Institutes of Health (NIH)+3 种基金Nos.K99AG065645,R00AG065645R00AG065645-04S1 (to SK)NIH research grants,NINDS,No.R01 NS115834NINDS/NIA,No.R01 NS115834-02S1 (to LG)。
文摘Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.
文摘With rising demand for clean energy,global focus turns to finding ideal sites for large-scale underground hydrogen storage(UHS)in depleted petroleum reservoirs.A thorough preliminary reservoir evaluation before hydrogen(H_(2))injection is crucial for UHS success and safety.Recent criteria for UHS often emphasize economics and chemistry,neglecting key reservoir attributes.This study introduces a comprehensive framework for the reservoir-scale preliminary assessment,specifically tailored for long-term H_(2) storage within depleted gas reservoirs.The evaluation criteria encompass critical components,including reservoir geometry,petrophysical properties,tectonics,and formation fluids.To illustrate the practical application of this approach,we assess the Barnett shale play reservoir parameters.The assessment unfolds through three key stages:(1)A systematic evaluation of the reservoir's properties against our comprehensive screening criteria determines its suitability for H_(2) storage.(2)Using both homogeneous and multilayered gas reservoir models,we explore the feasibility and efficiency of H_(2) storage.This phase involves an in-depth examination of reservoir behavior during the injection stage.(3)To enhance understanding of UHS performance,sensitivity analyses investigate the impact of varying reservoir dimensions and injection/production pressures.The findings reveal the following:(a)Despite potential challenges associated with reservoir compaction and aquifer support,the reservoir exhibits substantial promise as an H_(2) storage site.(b)Notably,a pronounced increase in reservoir pressure manifests during the injection stage,particularly in homogeneous reservoirs.(c)Furthermore,optimizing injection-extraction cycle efficiency can be achieved by augmenting reservoir dimensions while maintaining a consistent thickness.To ensure a smooth transition to implementation,further comprehensive investigations are advised,including experimental and numerical studies to address injectivity concerns and explore storage site development.This evaluation framework is a valuable tool for assessing the potential of depleted gas reservoirs for large-scale hydrogen storage,advancing global eco-friendly energy systems.