The Equatorial Undercurrent(EUC) plays an important role in ocean circulation and global climate change. Near the equator, as the Coriolis parameter goes to 0, equatorial currents cannot be described by geostrophy i...The Equatorial Undercurrent(EUC) plays an important role in ocean circulation and global climate change. Near the equator, as the Coriolis parameter goes to 0, equatorial currents cannot be described by geostrophy in which the pressure gradient force term is balanced by the Coriolis force term. Many previous studies focus on the relationships between the EUC and El Ni?o-Southern Oscillation(ENSO), the thermocline, sea surface topography, the distribution of equatorial wind stress and other atmosphere-ocean factors. However, little attention has been paid to the northward pressure gradient(NGT), which may also be important to the EUC. The pressure can be regarded as a complex nonlinear function of terms including temperature, salinity and density.This study attempts to reveal the connection between a function of the northward pressure gradient(FNP) and the EUC. The connection is derived from primitive equations, by simplifying the equations with using scaling analysis, and shows that the beta effect may be the main reason why the FNP is important to the EUC. The vertical structure of the EUC can be partially described by the FNP. The NGT has an obvious influence on the EUC while the eastward pressure gradient has a relatively smaller effect.展开更多
The association of typhoon tracks over the western Pacific with the low-frequency wind-field pattern of atmospheric intraseasonal (30-60 days) oscillation at 850 hPa is further studied by using observational data anal...The association of typhoon tracks over the western Pacific with the low-frequency wind-field pattern of atmospheric intraseasonal (30-60 days) oscillation at 850 hPa is further studied by using observational data analyses. Comparative analyses of the composite wind fields at 850 hPa, contrasting the atmospheric intraseasonal oscillation (ISO) with the original circulation, show that the typhoon tracks are closely related to the wind pattern of the ISO but are not obviously related to the original wind fields. Case studies of two typhoons in 2006 also show that the low-frequency wind-field pattern, particularly the maximum-value line (belt) of low-frequency cyclonic vorticity at 850 hPa, is closely related to the typhoon track. Therefore, the lowfrequency circulation pattern and the maximum-value line (belt) of low- frequency cyclonic vorticity at 850hPa can be used to predict typhoon tracks over the northwestern Pacific.展开更多
Objective To investigate the seasonal characteristics and the sources of elements and ions with different sizes in the aerosols in Beijing. Methods Samples of particulate matters (PM2,5), PM10, and total suspended p...Objective To investigate the seasonal characteristics and the sources of elements and ions with different sizes in the aerosols in Beijing. Methods Samples of particulate matters (PM2,5), PM10, and total suspended particle (TSP) aerosols were collected simultaneously in Beijing from July 2001 to April 2003. The aerosol was chemically characterized by measuring 23 elements and 18 water-soluble ions by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ion chromatography (IC), respectively. Results The samples were divided into four categories: spring non-dust, spring dust, summer dust, and winter dust. TSP, PM10, and PM2.5 were most abundant in the spring dust, and the least in summer dust. The average mass ratios of PM〉10, PM2,5-10, and PM2.5 to TSP confirmed that in the spring dust both the large coarse (PM〉10) and fine particles (PM2.5) contributed significantly in summer PM2.5, PM2,5-10, and PM〉10 contributed similar fractions to TSP, and in winter much PM2.5. The seasonal variation characteristics of the elements and ions were used to divide them into four groups: crustal, pollutant, mixed, and secondary. The highest levels of crustal elements, such as AI, Fe, and Ca, were found in the dust season, the highest levels of pollutant elements and ions, such as As, F, and Cl^-, were observed in winter, and the highest levels of secondary ions (SO4^2-, NO3^-, and NH4^+) were seen both in summer and in winter. The mixed group (Eu, Ni, and Cu) showed the characteristics of both crustal and pollutant elements. The mineral aerosol from outside Beijiug contributed more than that from the local part in all the reasons but summer, estimated using a newly developed element tracer technique.展开更多
Using the daily precipitation data of 740 stations in China from 1960 to 2000, the analysis on the variations and distributions of the frequency and the percentage of extreme precipitation to the annual rainfall have ...Using the daily precipitation data of 740 stations in China from 1960 to 2000, the analysis on the variations and distributions of the frequency and the percentage of extreme precipitation to the annual rainfall have been performed in this paper. Results indicate that the percentage of heavy rains (above 25mm/day) in the annual rainfall has increased, while on average the day number of heavy rains has slightly reduced during the past 40 years. In the end of 1970s and the beginning of 1980s, both the number of days with extreme precipitation and the percentage of extreme precipitation abruptly changed over China, especially in the northern China. By moving t test, the abrupt change year of extreme precipitation for each station and its spatial distribution over the whole country are also obtained. The abrupt change years concentrated in 1978-1982 for most regions of northern China while occurred at various stations in southern China in greatly different/diverse years. Besides the abrupt change years of extreme precipitation at part stations of Northwest China happened about 5 years later in comparison with that of the country's average.展开更多
Extreme sensitivity to initial values is an intrinsic character of chaotic systems. The evolution of a chaotic system has a spatiotemporal structure containing quasi-periodic changes of different spatiotemporal scales...Extreme sensitivity to initial values is an intrinsic character of chaotic systems. The evolution of a chaotic system has a spatiotemporal structure containing quasi-periodic changes of different spatiotemporal scales. This paper uses an empirical mode decomposition (EMD) method to decompose and compare the evolution of the time-dependent evolutions of the x-component of the Lorenz system. The results indicate that the sensitivity of intrinsic mode function (IMF) component is dependent on initial values, which provides some scientific evidence for the possibility of long-range climatic prediction.展开更多
In the application of the physical iterative method to retrieve millimeter-wave radar liquid water content(LWC)and liquid water path(LWP),particle parameter scheme is the main factor affecting retrieval performance.In...In the application of the physical iterative method to retrieve millimeter-wave radar liquid water content(LWC)and liquid water path(LWP),particle parameter scheme is the main factor affecting retrieval performance.In this paper,synchronous measurements of an airborne millimeter-wave radar and a hot-wire probe in stratus cloud are used to compare the LWC retrievals of the oceanic and continental particle parameter scheme with diameter less than 50μm and the particle parameter scheme with diameter less than 500μm and 1500μm(scheme 1,scheme 2,scheme 3,and scheme4,respectively).The results show that the particle parameter scheme needs to be selected according to the reflectivity factor when using the physical iterative method to retrieve the LWC and LWP.When the reflectivity factor is less than-30 d BZ,the retrieval error of scheme 1 is the minimum.When the reflectivity factor is greater than-30 d BZ,the retrieval error of scheme 4 is the minimum.Based on the reflectance factor value,the LWP retrievals of scheme 4 are closer to the measurements,the average relative bias is 5.2%,and the minimum relative bias is 4.4%.Compared with other schemes,scheme 4 seems to be more useful for the LWC and LWP retrieval of stratus cloud in China.展开更多
Recent advances in dynamical climate prediction at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP/CAS) during the last five years have been briefly described in this paper. Firstly, the second ...Recent advances in dynamical climate prediction at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP/CAS) during the last five years have been briefly described in this paper. Firstly, the second generation of the IAP dynamical climate prediction system (IAP DCP-Ⅱ) has been described, and two sets of hindcast experiments of the summer rainfall anomalies over China for the periods of 1980-1994 with different versions of the IAP AGCM have been conducted. The comparison results show that the predictive skill of summer rainfall anomalies over China is improved with the improved IAP AGCM in which the surface albedo parameterization is modified. Furthermore, IAP DCP-II has been applied to the real-time prediction of summer rainfall anomalies over China since 1998, and the verification results show that IAP DCP-II can quite well capture the large scale patterns of the summer flood/drought situations over China during the last five years (1998-2002). Meanwhile, an investigation has demonstrated the importance of the atmospheric initial conditions on the seasonal climate prediction, along with studies on the influences from surface boundary conditions (e.g., land surface characteristics, sea surface temperature). Certain conclusions have been reached, such as, the initial atmospheric anomalies in spring may play an important role in the summer climate anomalies, and soil moisture anomalies in spring can also have a significant impact on the summer climate anomalies over East Asia. Finally, several practical techniques (e.g., ensemble technique, correction method, etc.), which lead to the increase of the prediction skill for summer rainfall anomalies over China, have also been illustrated. The paper concludes with a list of critical requirements needed for the further improvement of dynamical seasonal climate prediction.展开更多
The huge increase in the communication network rate has made the application fields and scenarios for vehicular ad hoc networks more abundant and diversified and proposed more requirements for the efficiency and quali...The huge increase in the communication network rate has made the application fields and scenarios for vehicular ad hoc networks more abundant and diversified and proposed more requirements for the efficiency and quality of data transmission.To improve the limited communication distance and poor communication quality of the Internet of Vehicles(IoV),an optimal intelligent routing algorithm is proposed in this paper.Combined multiweight decision algorithm with the greedy perimeter stateless routing protocol,designed and evaluated standardized function for link stability.Linear additive weighting is used to optimize link stability and distance to improve the packet delivery rate of the IoV.The blockchain system is used as the storage structure for relay data,and the smart contract incentive algorithm based on machine learning is used to encourage relay vehicles to provide more communication bandwidth for data packet transmission.The proposed scheme is simulated and analyzed under different scenarios and different parameters.The experimental results demonstrate that the proposed scheme can effectively reduce the packet loss rate and improve system performance.展开更多
Retrieval experiment was made for global total column ozone using the first year measurements of Total Ozone Unit (TOU) on board the second generation polar orbiting meteorological satellite of China, FY-3/A. The retr...Retrieval experiment was made for global total column ozone using the first year measurements of Total Ozone Unit (TOU) on board the second generation polar orbiting meteorological satellite of China, FY-3/A. The retrieval results were analyzed and validated by comparison with AURA/OMI, Meteop/GOME-2 global ozone products and ground-based ozone measurement data. The qualititative comparisons over the globe especially over Antarctica and the Tibetan Plateau show that the spatial and temporal distribution characteristics are consistent with OMI and GOME-2 products. The quantitative comparisons with ground-based measurements and AURA/OMI ozone product were made over 74 stations, the TOU total ozone retrieval has a 3% rms relative error compared with AURA/OMI ozone product and 4.2% rms relative error with ground-based measurements. The maximum difference between satellite retrieval and ground-based measurements was found in the Antarctica ozone hole. The TOU global ozone product is operational and distributed to all users.展开更多
Climate prediction is the ultimate of the World Climate Research Program and one major task challenging the disaster reduction and social-economic development. China is one of the countries in the world who first star...Climate prediction is the ultimate of the World Climate Research Program and one major task challenging the disaster reduction and social-economic development. China is one of the countries in the world who first started to perform seasonal climate prediction via dynamical climate models, and has achieved considerable encouraging results in the past 20 years. However,展开更多
基金The Open Research Fund of State Key Laboratory of Estuarine and Coastal Research of China,East China Normal University under contract No.SKLEC-KF201707the National Natural Science Foundation of China under contract No.41490642the Natural Science Foundation of Shandong Province of China under contract No.ZR2016DL09
文摘The Equatorial Undercurrent(EUC) plays an important role in ocean circulation and global climate change. Near the equator, as the Coriolis parameter goes to 0, equatorial currents cannot be described by geostrophy in which the pressure gradient force term is balanced by the Coriolis force term. Many previous studies focus on the relationships between the EUC and El Ni?o-Southern Oscillation(ENSO), the thermocline, sea surface topography, the distribution of equatorial wind stress and other atmosphere-ocean factors. However, little attention has been paid to the northward pressure gradient(NGT), which may also be important to the EUC. The pressure can be regarded as a complex nonlinear function of terms including temperature, salinity and density.This study attempts to reveal the connection between a function of the northward pressure gradient(FNP) and the EUC. The connection is derived from primitive equations, by simplifying the equations with using scaling analysis, and shows that the beta effect may be the main reason why the FNP is important to the EUC. The vertical structure of the EUC can be partially described by the FNP. The NGT has an obvious influence on the EUC while the eastward pressure gradient has a relatively smaller effect.
基金supported by the National Natural Science Foundation of China (Grant No. U0833602)the National Basic Research Program of China (Grant No. 2007CB411805)
文摘The association of typhoon tracks over the western Pacific with the low-frequency wind-field pattern of atmospheric intraseasonal (30-60 days) oscillation at 850 hPa is further studied by using observational data analyses. Comparative analyses of the composite wind fields at 850 hPa, contrasting the atmospheric intraseasonal oscillation (ISO) with the original circulation, show that the typhoon tracks are closely related to the wind pattern of the ISO but are not obviously related to the original wind fields. Case studies of two typhoons in 2006 also show that the low-frequency wind-field pattern, particularly the maximum-value line (belt) of low-frequency cyclonic vorticity at 850 hPa, is closely related to the typhoon track. Therefore, the lowfrequency circulation pattern and the maximum-value line (belt) of low- frequency cyclonic vorticity at 850hPa can be used to predict typhoon tracks over the northwestern Pacific.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 29837190, 30230310, 20077004, and 20477004),and Beijing Natural Science Foundation (Grant No. 8991002 and 8041003).
文摘Objective To investigate the seasonal characteristics and the sources of elements and ions with different sizes in the aerosols in Beijing. Methods Samples of particulate matters (PM2,5), PM10, and total suspended particle (TSP) aerosols were collected simultaneously in Beijing from July 2001 to April 2003. The aerosol was chemically characterized by measuring 23 elements and 18 water-soluble ions by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ion chromatography (IC), respectively. Results The samples were divided into four categories: spring non-dust, spring dust, summer dust, and winter dust. TSP, PM10, and PM2.5 were most abundant in the spring dust, and the least in summer dust. The average mass ratios of PM〉10, PM2,5-10, and PM2.5 to TSP confirmed that in the spring dust both the large coarse (PM〉10) and fine particles (PM2.5) contributed significantly in summer PM2.5, PM2,5-10, and PM〉10 contributed similar fractions to TSP, and in winter much PM2.5. The seasonal variation characteristics of the elements and ions were used to divide them into four groups: crustal, pollutant, mixed, and secondary. The highest levels of crustal elements, such as AI, Fe, and Ca, were found in the dust season, the highest levels of pollutant elements and ions, such as As, F, and Cl^-, were observed in winter, and the highest levels of secondary ions (SO4^2-, NO3^-, and NH4^+) were seen both in summer and in winter. The mixed group (Eu, Ni, and Cu) showed the characteristics of both crustal and pollutant elements. The mineral aerosol from outside Beijiug contributed more than that from the local part in all the reasons but summer, estimated using a newly developed element tracer technique.
基金Project supported by the National Natural Science Foundation of China (Grant No 40675044)the State Key Development Program for Basic Research of China (Grant No 2006CB400503)the Laboratory for Climate Studies of China Meteorological Administration Climate Research Program (Grant No LCS-2006-04)
文摘Using the daily precipitation data of 740 stations in China from 1960 to 2000, the analysis on the variations and distributions of the frequency and the percentage of extreme precipitation to the annual rainfall have been performed in this paper. Results indicate that the percentage of heavy rains (above 25mm/day) in the annual rainfall has increased, while on average the day number of heavy rains has slightly reduced during the past 40 years. In the end of 1970s and the beginning of 1980s, both the number of days with extreme precipitation and the percentage of extreme precipitation abruptly changed over China, especially in the northern China. By moving t test, the abrupt change year of extreme precipitation for each station and its spatial distribution over the whole country are also obtained. The abrupt change years concentrated in 1978-1982 for most regions of northern China while occurred at various stations in southern China in greatly different/diverse years. Besides the abrupt change years of extreme precipitation at part stations of Northwest China happened about 5 years later in comparison with that of the country's average.
文摘Extreme sensitivity to initial values is an intrinsic character of chaotic systems. The evolution of a chaotic system has a spatiotemporal structure containing quasi-periodic changes of different spatiotemporal scales. This paper uses an empirical mode decomposition (EMD) method to decompose and compare the evolution of the time-dependent evolutions of the x-component of the Lorenz system. The results indicate that the sensitivity of intrinsic mode function (IMF) component is dependent on initial values, which provides some scientific evidence for the possibility of long-range climatic prediction.
基金National Natural Science Foundation of China(41575031,41175089)China Postdoctoral Science Foundation(2015M580124)Key Laboratory of Geo-Information Engineering(S18701)
文摘In the application of the physical iterative method to retrieve millimeter-wave radar liquid water content(LWC)and liquid water path(LWP),particle parameter scheme is the main factor affecting retrieval performance.In this paper,synchronous measurements of an airborne millimeter-wave radar and a hot-wire probe in stratus cloud are used to compare the LWC retrievals of the oceanic and continental particle parameter scheme with diameter less than 50μm and the particle parameter scheme with diameter less than 500μm and 1500μm(scheme 1,scheme 2,scheme 3,and scheme4,respectively).The results show that the particle parameter scheme needs to be selected according to the reflectivity factor when using the physical iterative method to retrieve the LWC and LWP.When the reflectivity factor is less than-30 d BZ,the retrieval error of scheme 1 is the minimum.When the reflectivity factor is greater than-30 d BZ,the retrieval error of scheme 4 is the minimum.Based on the reflectance factor value,the LWP retrievals of scheme 4 are closer to the measurements,the average relative bias is 5.2%,and the minimum relative bias is 4.4%.Compared with other schemes,scheme 4 seems to be more useful for the LWC and LWP retrieval of stratus cloud in China.
基金supported by the Key P roject of the National N atural Science Foundation of China(Grant Nos:40233027 and 40221503)the Key Project of the Chinese Academy of Sciences(KZCX2-203)the IAP/CAS Knowledge Innovation Project.
文摘Recent advances in dynamical climate prediction at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP/CAS) during the last five years have been briefly described in this paper. Firstly, the second generation of the IAP dynamical climate prediction system (IAP DCP-Ⅱ) has been described, and two sets of hindcast experiments of the summer rainfall anomalies over China for the periods of 1980-1994 with different versions of the IAP AGCM have been conducted. The comparison results show that the predictive skill of summer rainfall anomalies over China is improved with the improved IAP AGCM in which the surface albedo parameterization is modified. Furthermore, IAP DCP-II has been applied to the real-time prediction of summer rainfall anomalies over China since 1998, and the verification results show that IAP DCP-II can quite well capture the large scale patterns of the summer flood/drought situations over China during the last five years (1998-2002). Meanwhile, an investigation has demonstrated the importance of the atmospheric initial conditions on the seasonal climate prediction, along with studies on the influences from surface boundary conditions (e.g., land surface characteristics, sea surface temperature). Certain conclusions have been reached, such as, the initial atmospheric anomalies in spring may play an important role in the summer climate anomalies, and soil moisture anomalies in spring can also have a significant impact on the summer climate anomalies over East Asia. Finally, several practical techniques (e.g., ensemble technique, correction method, etc.), which lead to the increase of the prediction skill for summer rainfall anomalies over China, have also been illustrated. The paper concludes with a list of critical requirements needed for the further improvement of dynamical seasonal climate prediction.
基金supported by the National Key R&D Program of China (2020YFB2008400)LAGEO of Chinese Academy of Sciences (LAGEO-2019-2)+11 种基金Program for Science&Technology Innovation Talents in the University of Henan Province (20HASTIT022)21th Project of the Xizang Cultural Inheritance and Development Collaborative Innovation Center in 2018 (21IRTSTHN015)Natural Science Foundation of Xizang Named“Research of Key Technology of Millimeter Wave MIMO Secure Transmission with Relay Enhancement”in 2018Xizang Autonomous Region Education Science“13th Five-year Plan”Major Project for 2018 (XZJKY201803)Natural Science Foundation of Henan under Grant 202300410126Young Backbone Teachers in Henan Province (2018GGJS049)Henan Province Young Talent Lift Project (2020HYTP009)Program for Innovative Research Team in University of Henan Province (21IRTSTHNO15)Equipment Pre-research Joint Research Program of Ministry of Education (8091B032129)Training Program for Young Scholar of Henan Province for Colleges and Universities under Grand (2020GGJS172)Program for Science&Technology Innovation Talents in Universities of Henan Province under Grand (22HASTIT020)Henan Province Science Fund for Distinguished Young Scholars (222300420006).
文摘The huge increase in the communication network rate has made the application fields and scenarios for vehicular ad hoc networks more abundant and diversified and proposed more requirements for the efficiency and quality of data transmission.To improve the limited communication distance and poor communication quality of the Internet of Vehicles(IoV),an optimal intelligent routing algorithm is proposed in this paper.Combined multiweight decision algorithm with the greedy perimeter stateless routing protocol,designed and evaluated standardized function for link stability.Linear additive weighting is used to optimize link stability and distance to improve the packet delivery rate of the IoV.The blockchain system is used as the storage structure for relay data,and the smart contract incentive algorithm based on machine learning is used to encourage relay vehicles to provide more communication bandwidth for data packet transmission.The proposed scheme is simulated and analyzed under different scenarios and different parameters.The experimental results demonstrate that the proposed scheme can effectively reduce the packet loss rate and improve system performance.
基金supported by the National High-Tech Research & Development Program of China (2008AA121703)the National Natural Science Foundation of China (40905056)+3 种基金the State Key Labora-tory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC-KF-2008-11)Beijing Urban Meteorology Research Fund (UMRF-200704)the 11th Five-Year Plan of National Science and Technology Key Project (2008BAC34B04-2)the National Basic Research Program of China (2005CB422200x and 2006CB403702)
文摘Retrieval experiment was made for global total column ozone using the first year measurements of Total Ozone Unit (TOU) on board the second generation polar orbiting meteorological satellite of China, FY-3/A. The retrieval results were analyzed and validated by comparison with AURA/OMI, Meteop/GOME-2 global ozone products and ground-based ozone measurement data. The qualititative comparisons over the globe especially over Antarctica and the Tibetan Plateau show that the spatial and temporal distribution characteristics are consistent with OMI and GOME-2 products. The quantitative comparisons with ground-based measurements and AURA/OMI ozone product were made over 74 stations, the TOU total ozone retrieval has a 3% rms relative error compared with AURA/OMI ozone product and 4.2% rms relative error with ground-based measurements. The maximum difference between satellite retrieval and ground-based measurements was found in the Antarctica ozone hole. The TOU global ozone product is operational and distributed to all users.
文摘Climate prediction is the ultimate of the World Climate Research Program and one major task challenging the disaster reduction and social-economic development. China is one of the countries in the world who first started to perform seasonal climate prediction via dynamical climate models, and has achieved considerable encouraging results in the past 20 years. However,