Two polymeric adsorbents, poly(methyl p-vinylbenzyl ether) and poly(phenyl p-vinylbenzyl ether), were synthesized from chloromethylated polystyrene. Their adsorption property for phenol in hexane solution was investig...Two polymeric adsorbents, poly(methyl p-vinylbenzyl ether) and poly(phenyl p-vinylbenzyl ether), were synthesized from chloromethylated polystyrene. Their adsorption property for phenol in hexane solution was investigated. The results showed that the two adsorbents adsorb phenol from hexane solution through hydrogen-bonding and π-π stacking interaction.展开更多
This work is concentrated on elucidating the mechanism of the electric field enhanced water dissociation. A simple model was established for the theoretical current-voltage characteristics in water dissociation proces...This work is concentrated on elucidating the mechanism of the electric field enhanced water dissociation. A simple model was established for the theoretical current-voltage characteristics in water dissociation process on a bipolar membrane based on the existence of a depletion layer and Onsager's theory. Particular attention was given to the influence of applied voltage on depletion thickness and the dissociation constant. The factors on the water splitting process, such as water diffusivity, water content, ion exchange capacity, temperature, relative permittivity, etc. Were adequately analysed based on the derived model equations and several suggestions were proposed for decreasing the applied voltage in practical operation. The water dissociation tests were conducted and compared with both the theoretical calculation and the measured current-voltage curves reported in the literature, which showed a very good prediction to practical current-voltage behavior of a bipolar membrane at high current densities when the splitting of water actually commenced.展开更多
Ionic partition equilibrium in charged membrane immersed in solution of single electrolyte with monovalence or multi-valence is systematically investigated and several expressions are established for determination of ...Ionic partition equilibrium in charged membrane immersed in solution of single electrolyte with monovalence or multi-valence is systematically investigated and several expressions are established for determination of partition coefficients. On this basis, the effects of the ratio of membrane charge density to bulk electrolyte solution concentration, the charge sign and valence of electrolyte ions and the type of membrane on the partition equilibrium were analyzed and simulated within chosen parameters. It is revealed that ion partition is not related solely with the respective concentrations but also definitely with the concentration ratio of fixed group to bulk solution in addition to the charge sign and the valence. For a counterion, the partition coefficient increases with this ratio and the valence; while for a coion, the partition coefficient decreases with this ratio and the valence. The theoretical calculations were compared with the experimental data and a good agreement was observed.展开更多
基金the National Natural Science Foundation of China(No.29974015)the Visiting Scholar Foundation of Key Lab.In University for the financial support
文摘Two polymeric adsorbents, poly(methyl p-vinylbenzyl ether) and poly(phenyl p-vinylbenzyl ether), were synthesized from chloromethylated polystyrene. Their adsorption property for phenol in hexane solution was investigated. The results showed that the two adsorbents adsorb phenol from hexane solution through hydrogen-bonding and π-π stacking interaction.
基金Supported by the National Natural Science Foundation of China (No. 29976040), the Natural Science Foundation of Anhui Province (No. 99045431) and Youth Foundation of USTC.
文摘This work is concentrated on elucidating the mechanism of the electric field enhanced water dissociation. A simple model was established for the theoretical current-voltage characteristics in water dissociation process on a bipolar membrane based on the existence of a depletion layer and Onsager's theory. Particular attention was given to the influence of applied voltage on depletion thickness and the dissociation constant. The factors on the water splitting process, such as water diffusivity, water content, ion exchange capacity, temperature, relative permittivity, etc. Were adequately analysed based on the derived model equations and several suggestions were proposed for decreasing the applied voltage in practical operation. The water dissociation tests were conducted and compared with both the theoretical calculation and the measured current-voltage curves reported in the literature, which showed a very good prediction to practical current-voltage behavior of a bipolar membrane at high current densities when the splitting of water actually commenced.
基金Supported by the National Natural Science Foundation of China (No. 29976040), the Natural Science Foundation of Anhui Province(No. 99045431) and the Foundation of Environments and Resources of USTC (2000).
文摘Ionic partition equilibrium in charged membrane immersed in solution of single electrolyte with monovalence or multi-valence is systematically investigated and several expressions are established for determination of partition coefficients. On this basis, the effects of the ratio of membrane charge density to bulk electrolyte solution concentration, the charge sign and valence of electrolyte ions and the type of membrane on the partition equilibrium were analyzed and simulated within chosen parameters. It is revealed that ion partition is not related solely with the respective concentrations but also definitely with the concentration ratio of fixed group to bulk solution in addition to the charge sign and the valence. For a counterion, the partition coefficient increases with this ratio and the valence; while for a coion, the partition coefficient decreases with this ratio and the valence. The theoretical calculations were compared with the experimental data and a good agreement was observed.