Quantum paradoxes are essential means to reveal the incompatibility between quantum and classical theories,among which the Einstein–Podolsky–Rosen(EPR)steering paradox offers a sharper criterion for the contradictio...Quantum paradoxes are essential means to reveal the incompatibility between quantum and classical theories,among which the Einstein–Podolsky–Rosen(EPR)steering paradox offers a sharper criterion for the contradiction between localhidden-state model and quantum mechanics than the usual inequality-based method.In this work,we present a generalized EPR steering paradox,which predicts a contradictory equality“2Q=(1+δ)C”(0≤δ<1)given by the quantum(Q)and classical(C)theories.For any N-qubit state in which the conditional state of the steered party is pure,we test the paradox through a two-setting steering protocol,and find that the state is steerable if some specific measurement requirements are satisfied.Moreover,our construction also enlightens the building of EPR steering inequality,which may contribute to some schemes for typical quantum teleportation and quantum key distributions.展开更多
Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter.They break the fermion-boson dichotomy and obey non-Abelian braiding statistics:their interchanges yield unitary o...Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter.They break the fermion-boson dichotomy and obey non-Abelian braiding statistics:their interchanges yield unitary operations,rather than merely a phase factor,in a space spanned by topologically degenerate wavefunctions.They are the building blocks of topological quantum computing.However,experimental observation of non-Abelian anyons and their characterizing braiding statistics is notoriously challenging and has remained elusive hitherto,in spite of various theoretical proposals.Here,we report an experimental quantum digital simulation of projective non-Abelian anyons and their braiding statistics with up to 68 programmable superconducting qubits arranged on a two-dimensional lattice.By implementing the ground states of the toric-code model with twists through quantum circuits,we demonstrate that twists exchange electric and magnetic charges and behave as a particular type of non-Abelian anyons,i.e.,the Ising anyons.In particular,we show experimentally that these twists follow the fusion rules and non-Abelian braiding statistics of the Ising type,and can be explored to encode topological logical qubits.Furthermore,we demonstrate how to implement both single-and two-qubit logic gates through applying a sequence of elementary Pauli gates on the underlying physical qubits.Our results demonstrate a versatile quantum digital approach for simulating non-Abelian anyons,offering a new lens into the study of such peculiar quasiparticles.展开更多
This work is concerned with the viscous flow due to a curved stretching sheet. The similarity solution of the problem is obtained numerically by a shooting method using the Runge-Kutta algorithm. The physical quantiti...This work is concerned with the viscous flow due to a curved stretching sheet. The similarity solution of the problem is obtained numerically by a shooting method using the Runge-Kutta algorithm. The physical quantities of interest like the fluid velocity and skin friction coefficient are obtained and discussed under the influence of dimensionless curvature. It is evident from the results that dimensionless curvature causes an increase in boundary layer thickness and a decrease in the skin friction coefficient.展开更多
Quantum steering in a global state allows an observer to remotely steer a subsystem into different ensembles by performing different local measurements on the other part. We show that, in general, this property cannot...Quantum steering in a global state allows an observer to remotely steer a subsystem into different ensembles by performing different local measurements on the other part. We show that, in general, this property cannot be perfectly cloned by any joint operation between a steered subsystem and a third system. Perfect cloning is viable if and only if the initial state is of zero discord. We also investigate the process of cloning the steered qubit of a Bell state using a universal cloning machine. Einstein–Podolsky–Rosen(EPR) steering, which is a type of quantum correlation existing in the states without a local-hidden-state model, is observed in the two copy subsystems. This contradicts the conclusion of no-cloning of quantum steering(EPR steering) [C. Y. Chiu et al.,npj Quantum Inf. 2, 16020(2016)] based on a mutual information criterion for EPR steering.展开更多
We analyze the two-dimensional peristaltic flow of a micropolar fluid in a curved channel. Long wavelength and low Reynolds number assumptions are used in deriving the governing equations. A shooting method with fourt...We analyze the two-dimensional peristaltic flow of a micropolar fluid in a curved channel. Long wavelength and low Reynolds number assumptions are used in deriving the governing equations. A shooting method with fourth-order Runge-Kutta algorithm is employed to solve the equations. The influence of dimensionless curvature radius on pumping and trapping phenomena is discussed with the help of graphical results. It is seen that the pressure rise per wavelength in the pumping region increases with an increase in the curvature of the channel. Moreover the symmetry of the trapped bolus destroys in going from strMg'ht to curved channel.展开更多
The Clauser Horne--Shimony-Holt-type noncontextuality inequality and the Svetliehny inequality are derived from the Alicki-van Ryn quantumness witness. Thus connections between quantumness and quantum contextuality, a...The Clauser Horne--Shimony-Holt-type noncontextuality inequality and the Svetliehny inequality are derived from the Alicki-van Ryn quantumness witness. Thus connections between quantumness and quantum contextuality, and between quantumness and genuine multipartite nonlocality are established.展开更多
A nonlocality distillation protocol for arbitrary high-dimensional systems is proposed. We study the nonlocality distillation in the 2-input d-output bi-partite case. Firstly, we give the one-parameter nonlocal boxes ...A nonlocality distillation protocol for arbitrary high-dimensional systems is proposed. We study the nonlocality distillation in the 2-input d-output bi-partite case. Firstly, we give the one-parameter nonlocal boxes and their correlated distilling protocol. Then, we generalize the one-parameter nonlocality distillation protocol to the twoparameter case. Furthermore, we introduce a contracting protocol testifying that the 2-input d-output nonlocal boxes make communication complexity trivial.展开更多
Magnetosonic shock structures in dissipative magnetized degenerate electron ion plasma are studied. The two fluid quantum magnetohydrodynamic equations for non-degenerate ions and ultra-relativistic degenerate electro...Magnetosonic shock structures in dissipative magnetized degenerate electron ion plasma are studied. The two fluid quantum magnetohydrodynamic equations for non-degenerate ions and ultra-relativistic degenerate electron fluids with the Maxwell equations are presented. Using the reductive perturbation technique the Korteweg de Vries Burgers (KdVB) equation is derived and its solution is presented with the tanh method. Astrophysical plasma parameters are used to study the effects of variation of plasma density, magnetic field intensity and kinematic viscosity on the propagation characteristics of nonlinear shock structures in such plasma systems.展开更多
We have investigated quantum statistical behaviors of photons and atoms in interaction of an atomic Bose Einstein condensate with quantized laser field. When the quantized laser field is initially prepared in a superp...We have investigated quantum statistical behaviors of photons and atoms in interaction of an atomic Bose Einstein condensate with quantized laser field. When the quantized laser field is initially prepared in a superposition state which exhibits holes in its photon-number distribution, while the atomic field is initially in a Fock state, it is found that there is energy exchange between photons and atoms. For the input and output states, the photons and atoms may exhibit the sub-Poissonian distribution. The input and output laser fields may exhibit quadrature squeezing, but for the atomic field, only the output state exhibits quadrature squeezing. It is shown that there exists the violation of the Cauchy-Schwartz inequality, which means that the correlation between photons and atoms is nonclassical.展开更多
We study the nonlinear effects in the quantum states transfer technique from photons to matter waves in the three-level case, which may provide the formation of a soliton atom laser with nonclassical atoms. The validi...We study the nonlinear effects in the quantum states transfer technique from photons to matter waves in the three-level case, which may provide the formation of a soliton atom laser with nonclassical atoms. The validity of quantum transfer mechanism is confirmed in the presence of the intrinsic nonlinear atomic interactions. The accompanied frequency chirp effect is shown to have no influence on the grey solitons formed by the output atom laser and the possible quantum depletion effect is also briefly discussed.展开更多
We present a generalized two-state theory to investigate the quantum dynamics and statistics of an atom laser with nonlinear couplings. The rotating wave approximate Hamiltonian of the system is proved to be analytica...We present a generalized two-state theory to investigate the quantum dynamics and statistics of an atom laser with nonlinear couplings. The rotating wave approximate Hamiltonian of the system is proved to be analytically solvable. The fraction of output atoms is then showed to exhibit an interesting collapse and revival phenomenon with respect to the evolution time, a sign of nonlinear couplings. Several nonclassical effects, such as sub-Poissonian distribution, quadrature squeezing effects, second-order cross-correlation and accompanied violation of Cauchy-Schwartz inequality are also revealed for the output matter wave. The initial global phase of the trapped condensate, in weak nonlinear coupling limits, is found to exert an interesting impact on the quantum statistical properties of the propagating atom laser beam.展开更多
An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byu...An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byusing SU(2), SU(1,1) Lie algebraic method, respectively. Meanwhile, the eigenstates of the above two models are revealedto be SU(2), SU(1,1) coherent states, respectively. The relation between the usual Bogoliubov Valatin transformationand the algebraic method in a special case is also discussed.展开更多
We have studied quantum statistical properties of the exciton in a leaky quasi-mode cavity. It is shown that when the exciton is initially in a squeezed coherent state whereas cavity initially in a vacuum state, there...We have studied quantum statistical properties of the exciton in a leaky quasi-mode cavity. It is shown that when the exciton is initially in a squeezed coherent state whereas cavity initially in a vacuum state, there is energy exchange between the exciton and cavity. Both the exciton and cavity may exhibit sub-Poissonian distribution and exist quadrature squeezing. Calculation shows that correlation between the exciton and cavity is classical, which implies that there is not the violation of the Cauchy-Schwartz inequality.展开更多
Nonlinear properties of ion acoustic solitary waves are studied in the case of dense magnetized plasmas. The degenerate electrons with relative density effects from their spin states in the same direction and from equ...Nonlinear properties of ion acoustic solitary waves are studied in the case of dense magnetized plasmas. The degenerate electrons with relative density effects from their spin states in the same direction and from equally probable up and down spinning states are taken up separately. Quantum statistical as well as quantum tunneling effects for both types of electrons are taken. The ions have large inertia and are considered classically, whereas the electrons are degenerate. The collisions of ions and electrons with neutral atoms are considered. We derive the deformed Korteweg de–Vries(DKdV)equation for small amplitude electrostatic potential disturbances by employing the reductive perturbation technique. The Runge–Kutta method is applied to solve numerically the DKdV equation. The analytical solution of DKdV is also presented with time dependence. We discuss the profiles for velocity, amplitude, and time variations in solitons for the cases when all the electrons are spinning in the same direction and for the case when there is equal probability of electrons having spin up and spin down. We have found that the wave is unstable because of the collisions between neutral gas molecules and the charged plasmas particles in the presence of degenerate electrons.展开更多
GLAss Spherical Tokamak(GLAST-Ⅲ)is a spherical tokamak with an insulating vacuum vessel that has a unique single-passage capability for incident microwaves.In this work,electron cyclotron resonance heating(ECRH)-assi...GLAss Spherical Tokamak(GLAST-Ⅲ)is a spherical tokamak with an insulating vacuum vessel that has a unique single-passage capability for incident microwaves.In this work,electron cyclotron resonance heating(ECRH)-assisted plasma pre-ionization in GLAST-Ⅲis explored for three radio-frequency(RF)polarizations(the O-,X-,and M-modes)at different toroidal-field(TF)strengths and filled gas pressures.The optimum hydrogen pressure is identified for efficient plasma pre-ionization.A comparison of the plasma pre-ionizations initiated by the O-,X-,and M-modes shows prominent differences in the breakdown time,location,and wave absorption.In the case of O-mode polarization,microwave absorption occurs for a relatively shorter duration,resulting in a bell-shaped electron-temperature(Te)temporal profile.Microwave absorption is dominant in the case of the X-mode,leading to a broader Te temporal profile.The M-mode discharge contains features of both the X-and O-modes.Efficient plasma pre-ionization is achieved in the X-mode polarization for the intermediate TF strengths(with a central toroidal magnetic field B0=0.075 T).Traces of the electron-number density show a similar tendency,as revealed by Te.These results suggest that the X-mode is the best candidate for efficient plasma pre-ionization at low filled gas pressures(10-2 Pa)in small tokamaks.展开更多
In the system of several interacting spins,geometric phases have been researched intensively.However,the studies are mainly focused on the adiabatic case (Berry phase),so it is necessary for us to study the non-adiaba...In the system of several interacting spins,geometric phases have been researched intensively.However,the studies are mainly focused on the adiabatic case (Berry phase),so it is necessary for us to study the non-adiabaticcounterpart (Aharonov and Anandan phase).In this paper,we analyze both the non-degenerate and degenerate geometricphase of Lipkin-Meskov-Glick type model,which has many application in Bose-Einstein condensates and entanglementtheory.Furthermore,in order to calculate degenerate geometric phases,the Floquet theorem and decomposition ofoperator are generalized.And the general formula is achieved.展开更多
The polynomial algebra is a deformed su(2) algebra. Here, we use polynomial algebra az a method to solve a series of deformed oscillators. Thus, we find a series of physics systems corresponding with polynomial alge...The polynomial algebra is a deformed su(2) algebra. Here, we use polynomial algebra az a method to solve a series of deformed oscillators. Thus, we find a series of physics systems corresponding with polynomial algebra with different highest orders.展开更多
Interference between the two Bose-Einstein condensates with collision and dissipation is investigated. Itis found that when the two condensates are initially in the coherent state, the interference intensity is affect...Interference between the two Bose-Einstein condensates with collision and dissipation is investigated. Itis found that when the two condensates are initially in the coherent state, the interference intensity is affected by thecollision and dissipation, but for the initial Fock state, it is only related to the dissipation. Whether the initial stateis in the coherent state or in a Fock state, the fidelity time has nothing to do with collision. For the initial coherentstate, the fidelity loss rate is zero, but for the initial Fock state, it is determined by the initial particle number of thetwo condensates and dissipation.展开更多
Quantum contextuality is one kind of quantumness that distinguishes quantum mechanics from classical theory.As the simplest exclusivity graph,quantum contextuality of the n-cycle graph has been reviewed,while only for...Quantum contextuality is one kind of quantumness that distinguishes quantum mechanics from classical theory.As the simplest exclusivity graph,quantum contextuality of the n-cycle graph has been reviewed,while only for odd n the quantumness can be revealed.Motivated by this,we propose the degree of non-commutativity and the degree of uncertainty to measure the quantumness in the n-cycle graphs.As desired,these two measures can detect the quantumness of any n-cycle graph when n≥4.展开更多
We propose a scheme of acoustic spherical cloaking by means of background irrotational flow in compressible fluid.The background flow forms a virtual curved spacetime and directs the sound waves to bypass the cloaked ...We propose a scheme of acoustic spherical cloaking by means of background irrotational flow in compressible fluid.The background flow forms a virtual curved spacetime and directs the sound waves to bypass the cloaked objects. To satisfy the laws of real fluid, we show that spatially distributed mass source and momentum source are necessary to supply. The propagation of sound waves in this system is studied via both geometric acoustics approximation and full wave approach.The analytic solution of sound fields is obtained for plane wave incidence. The results reveal the effect of phase retardation(or lead) in comparison with the ordinary transformation-acoustic cloak. In addition, the ability of cloaking is also evaluated for unideal background flows by analyzing the scattering cross section.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12275136 and 12075001)the 111 Project(Grant No.B23045)the Nankai Zhide Foundation.
文摘Quantum paradoxes are essential means to reveal the incompatibility between quantum and classical theories,among which the Einstein–Podolsky–Rosen(EPR)steering paradox offers a sharper criterion for the contradiction between localhidden-state model and quantum mechanics than the usual inequality-based method.In this work,we present a generalized EPR steering paradox,which predicts a contradictory equality“2Q=(1+δ)C”(0≤δ<1)given by the quantum(Q)and classical(C)theories.For any N-qubit state in which the conditional state of the steered party is pure,we test the paradox through a two-setting steering protocol,and find that the state is steerable if some specific measurement requirements are satisfied.Moreover,our construction also enlightens the building of EPR steering inequality,which may contribute to some schemes for typical quantum teleportation and quantum key distributions.
基金the National Natural Science Foundation of China(Grants Nos.92065204,12075128,T2225008,12174342,12274368,12274367,U20A2076,and 11725419)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300200)+2 种基金the Zhejiang Province Key Research and Development Program(Grant No.2020C01019)supported by Tsinghua Universitythe Shanghai Qi Zhi Institute。
文摘Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter.They break the fermion-boson dichotomy and obey non-Abelian braiding statistics:their interchanges yield unitary operations,rather than merely a phase factor,in a space spanned by topologically degenerate wavefunctions.They are the building blocks of topological quantum computing.However,experimental observation of non-Abelian anyons and their characterizing braiding statistics is notoriously challenging and has remained elusive hitherto,in spite of various theoretical proposals.Here,we report an experimental quantum digital simulation of projective non-Abelian anyons and their braiding statistics with up to 68 programmable superconducting qubits arranged on a two-dimensional lattice.By implementing the ground states of the toric-code model with twists through quantum circuits,we demonstrate that twists exchange electric and magnetic charges and behave as a particular type of non-Abelian anyons,i.e.,the Ising anyons.In particular,we show experimentally that these twists follow the fusion rules and non-Abelian braiding statistics of the Ising type,and can be explored to encode topological logical qubits.Furthermore,we demonstrate how to implement both single-and two-qubit logic gates through applying a sequence of elementary Pauli gates on the underlying physical qubits.Our results demonstrate a versatile quantum digital approach for simulating non-Abelian anyons,offering a new lens into the study of such peculiar quasiparticles.
文摘This work is concerned with the viscous flow due to a curved stretching sheet. The similarity solution of the problem is obtained numerically by a shooting method using the Runge-Kutta algorithm. The physical quantities of interest like the fluid velocity and skin friction coefficient are obtained and discussed under the influence of dimensionless curvature. It is evident from the results that dimensionless curvature causes an increase in boundary layer thickness and a decrease in the skin friction coefficient.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11675119, 11575125, and 11105097)。
文摘Quantum steering in a global state allows an observer to remotely steer a subsystem into different ensembles by performing different local measurements on the other part. We show that, in general, this property cannot be perfectly cloned by any joint operation between a steered subsystem and a third system. Perfect cloning is viable if and only if the initial state is of zero discord. We also investigate the process of cloning the steered qubit of a Bell state using a universal cloning machine. Einstein–Podolsky–Rosen(EPR) steering, which is a type of quantum correlation existing in the states without a local-hidden-state model, is observed in the two copy subsystems. This contradicts the conclusion of no-cloning of quantum steering(EPR steering) [C. Y. Chiu et al.,npj Quantum Inf. 2, 16020(2016)] based on a mutual information criterion for EPR steering.
文摘We analyze the two-dimensional peristaltic flow of a micropolar fluid in a curved channel. Long wavelength and low Reynolds number assumptions are used in deriving the governing equations. A shooting method with fourth-order Runge-Kutta algorithm is employed to solve the equations. The influence of dimensionless curvature radius on pumping and trapping phenomena is discussed with the help of graphical results. It is seen that the pressure rise per wavelength in the pumping region increases with an increase in the curvature of the channel. Moreover the symmetry of the trapped bolus destroys in going from strMg'ht to curved channel.
基金Supported by the National Basic Research Program of China under Grant No 2012CB921900the National Natural Science Foundation of China under Grant Nos 11175089 and 11475089
文摘The Clauser Horne--Shimony-Holt-type noncontextuality inequality and the Svetliehny inequality are derived from the Alicki-van Ryn quantumness witness. Thus connections between quantumness and quantum contextuality, and between quantumness and genuine multipartite nonlocality are established.
基金Supported by the National Basic Research Program of China under Grant No 2012CB921900the National Natural Science Foundation of China under Grant Nos 11175089 and 11475089
文摘A nonlocality distillation protocol for arbitrary high-dimensional systems is proposed. We study the nonlocality distillation in the 2-input d-output bi-partite case. Firstly, we give the one-parameter nonlocal boxes and their correlated distilling protocol. Then, we generalize the one-parameter nonlocality distillation protocol to the twoparameter case. Furthermore, we introduce a contracting protocol testifying that the 2-input d-output nonlocal boxes make communication complexity trivial.
文摘Magnetosonic shock structures in dissipative magnetized degenerate electron ion plasma are studied. The two fluid quantum magnetohydrodynamic equations for non-degenerate ions and ultra-relativistic degenerate electron fluids with the Maxwell equations are presented. Using the reductive perturbation technique the Korteweg de Vries Burgers (KdVB) equation is derived and its solution is presented with the tanh method. Astrophysical plasma parameters are used to study the effects of variation of plasma density, magnetic field intensity and kinematic viscosity on the propagation characteristics of nonlinear shock structures in such plasma systems.
文摘We have investigated quantum statistical behaviors of photons and atoms in interaction of an atomic Bose Einstein condensate with quantized laser field. When the quantized laser field is initially prepared in a superposition state which exhibits holes in its photon-number distribution, while the atomic field is initially in a Fock state, it is found that there is energy exchange between photons and atoms. For the input and output states, the photons and atoms may exhibit the sub-Poissonian distribution. The input and output laser fields may exhibit quadrature squeezing, but for the atomic field, only the output state exhibits quadrature squeezing. It is shown that there exists the violation of the Cauchy-Schwartz inequality, which means that the correlation between photons and atoms is nonclassical.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10275036 and 10304020, the Wuhan 0pen Fund of State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics (WIPM T152505), and the Wuhan Youth Chenguang Project.
文摘We study the nonlinear effects in the quantum states transfer technique from photons to matter waves in the three-level case, which may provide the formation of a soliton atom laser with nonclassical atoms. The validity of quantum transfer mechanism is confirmed in the presence of the intrinsic nonlinear atomic interactions. The accompanied frequency chirp effect is shown to have no influence on the grey solitons formed by the output atom laser and the possible quantum depletion effect is also briefly discussed.
文摘We present a generalized two-state theory to investigate the quantum dynamics and statistics of an atom laser with nonlinear couplings. The rotating wave approximate Hamiltonian of the system is proved to be analytically solvable. The fraction of output atoms is then showed to exhibit an interesting collapse and revival phenomenon with respect to the evolution time, a sign of nonlinear couplings. Several nonclassical effects, such as sub-Poissonian distribution, quadrature squeezing effects, second-order cross-correlation and accompanied violation of Cauchy-Schwartz inequality are also revealed for the output matter wave. The initial global phase of the trapped condensate, in weak nonlinear coupling limits, is found to exert an interesting impact on the quantum statistical properties of the propagating atom laser beam.
文摘An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byusing SU(2), SU(1,1) Lie algebraic method, respectively. Meanwhile, the eigenstates of the above two models are revealedto be SU(2), SU(1,1) coherent states, respectively. The relation between the usual Bogoliubov Valatin transformationand the algebraic method in a special case is also discussed.
文摘We have studied quantum statistical properties of the exciton in a leaky quasi-mode cavity. It is shown that when the exciton is initially in a squeezed coherent state whereas cavity initially in a vacuum state, there is energy exchange between the exciton and cavity. Both the exciton and cavity may exhibit sub-Poissonian distribution and exist quadrature squeezing. Calculation shows that correlation between the exciton and cavity is classical, which implies that there is not the violation of the Cauchy-Schwartz inequality.
文摘Nonlinear properties of ion acoustic solitary waves are studied in the case of dense magnetized plasmas. The degenerate electrons with relative density effects from their spin states in the same direction and from equally probable up and down spinning states are taken up separately. Quantum statistical as well as quantum tunneling effects for both types of electrons are taken. The ions have large inertia and are considered classically, whereas the electrons are degenerate. The collisions of ions and electrons with neutral atoms are considered. We derive the deformed Korteweg de–Vries(DKdV)equation for small amplitude electrostatic potential disturbances by employing the reductive perturbation technique. The Runge–Kutta method is applied to solve numerically the DKdV equation. The analytical solution of DKdV is also presented with time dependence. We discuss the profiles for velocity, amplitude, and time variations in solitons for the cases when all the electrons are spinning in the same direction and for the case when there is equal probability of electrons having spin up and spin down. We have found that the wave is unstable because of the collisions between neutral gas molecules and the charged plasmas particles in the presence of degenerate electrons.
基金partially supported by a Grant-in-Aid from the Planning Commission,Government of Pakistan and IAEA Co-ordinated research project(CRP-F13018)under research grant PAK-22840。
文摘GLAss Spherical Tokamak(GLAST-Ⅲ)is a spherical tokamak with an insulating vacuum vessel that has a unique single-passage capability for incident microwaves.In this work,electron cyclotron resonance heating(ECRH)-assisted plasma pre-ionization in GLAST-Ⅲis explored for three radio-frequency(RF)polarizations(the O-,X-,and M-modes)at different toroidal-field(TF)strengths and filled gas pressures.The optimum hydrogen pressure is identified for efficient plasma pre-ionization.A comparison of the plasma pre-ionizations initiated by the O-,X-,and M-modes shows prominent differences in the breakdown time,location,and wave absorption.In the case of O-mode polarization,microwave absorption occurs for a relatively shorter duration,resulting in a bell-shaped electron-temperature(Te)temporal profile.Microwave absorption is dominant in the case of the X-mode,leading to a broader Te temporal profile.The M-mode discharge contains features of both the X-and O-modes.Efficient plasma pre-ionization is achieved in the X-mode polarization for the intermediate TF strengths(with a central toroidal magnetic field B0=0.075 T).Traces of the electron-number density show a similar tendency,as revealed by Te.These results suggest that the X-mode is the best candidate for efficient plasma pre-ionization at low filled gas pressures(10-2 Pa)in small tokamaks.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10605013 and 10975075the Fundamental Research Funds for the Central Universities
文摘In the system of several interacting spins,geometric phases have been researched intensively.However,the studies are mainly focused on the adiabatic case (Berry phase),so it is necessary for us to study the non-adiabaticcounterpart (Aharonov and Anandan phase).In this paper,we analyze both the non-degenerate and degenerate geometricphase of Lipkin-Meskov-Glick type model,which has many application in Bose-Einstein condensates and entanglementtheory.Furthermore,in order to calculate degenerate geometric phases,the Floquet theorem and decomposition ofoperator are generalized.And the general formula is achieved.
基金Supported by the National Natural Science Foundation of China under Grant No.10975075Program for New Century Excellent Talents in University,and the Project-sponsored 5 by SRF for ROCS,SEM
文摘The polynomial algebra is a deformed su(2) algebra. Here, we use polynomial algebra az a method to solve a series of deformed oscillators. Thus, we find a series of physics systems corresponding with polynomial algebra with different highest orders.
文摘Interference between the two Bose-Einstein condensates with collision and dissipation is investigated. Itis found that when the two condensates are initially in the coherent state, the interference intensity is affected by thecollision and dissipation, but for the initial Fock state, it is only related to the dissipation. Whether the initial stateis in the coherent state or in a Fock state, the fidelity time has nothing to do with collision. For the initial coherentstate, the fidelity loss rate is zero, but for the initial Fock state, it is determined by the initial particle number of thetwo condensates and dissipation.
基金Supported by the Nankai Zhide Foundation,the National Science Foundation for Post-doctoral Scientists of China under Grant No 2018M631726the National Natural Science Foundation of China under Grant No 11875167the Fundamental Research Funds for the Central Universities under Grant No 63191507
文摘Quantum contextuality is one kind of quantumness that distinguishes quantum mechanics from classical theory.As the simplest exclusivity graph,quantum contextuality of the n-cycle graph has been reviewed,while only for odd n the quantumness can be revealed.Motivated by this,we propose the degree of non-commutativity and the degree of uncertainty to measure the quantumness in the n-cycle graphs.As desired,these two measures can detect the quantumness of any n-cycle graph when n≥4.
基金supported by the National Natural Science Foundation of China(Grant Nos.11475088 and 11275024)the Fund from the Ministry of Science and Technology of China(Grant No.2013YQ030595-3)
文摘We propose a scheme of acoustic spherical cloaking by means of background irrotational flow in compressible fluid.The background flow forms a virtual curved spacetime and directs the sound waves to bypass the cloaked objects. To satisfy the laws of real fluid, we show that spatially distributed mass source and momentum source are necessary to supply. The propagation of sound waves in this system is studied via both geometric acoustics approximation and full wave approach.The analytic solution of sound fields is obtained for plane wave incidence. The results reveal the effect of phase retardation(or lead) in comparison with the ordinary transformation-acoustic cloak. In addition, the ability of cloaking is also evaluated for unideal background flows by analyzing the scattering cross section.