Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties...Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.展开更多
At the first time,the finite element method was used to model and analyze the free vibration and transient response of non-uniform thickness bi-directional functionally graded sandwich porous(BFGSP)skew plates.The who...At the first time,the finite element method was used to model and analyze the free vibration and transient response of non-uniform thickness bi-directional functionally graded sandwich porous(BFGSP)skew plates.The whole BFGSP skew-plates is placed on a variable visco-elastic foundation(VEF)in the hygro-thermal environment and subjected to the blast load.The BFGSP skew-plate thickness is permitted to vary non-linearly over both the length and width of the skew-plate,thereby faithfully representing the real behavior of the structure itself.The analysis is based on a four-node planar quadrilateral element with eight degrees of freedom per node,which is approximated using Lagrange Q_(4)shape function and C^(1)level non-conforming Hermite shape function based on refined higher-order shear deformation plate theory.The forced vibration parameters of the non-uniform thickness BFGSP skew-plate are fully determined using Hamilton's principle and the Newmark-βdirect integration technique.Accuracy of the calculation program is validated by comparing its numerical results with those from reputable sources.Furthermore,a thorough assessment is conducted to determine the impact of various parameters on the free and forced vibration responses of the non-uniform thickness BFGSP skew-plate.The findings of the paper may be used in the development of civil and military structures in situations that are prone to exceptional forces,such as explosions and impacts load.展开更多
This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib...This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads.展开更多
The measurements of the streaming potential coefficient and the zeta potential of two consolidated samples saturated with four monovalent electrolytes at different electrolyte concentrations have been performed. The e...The measurements of the streaming potential coefficient and the zeta potential of two consolidated samples saturated with four monovalent electrolytes at different electrolyte concentrations have been performed. The experimental results show that the streaming potential coefficient and the zeta potential in magnitude both decrease with increasing electrolyte concentration for all electrolytes. It is also shown that there is a dependence of the streaming potential coefficient on types of electrolyte for a given sample. This is explained by the dependence of the zeta potential and the electrical conductivity on types of electrolyte. Additionally, the variation of the zeta potential with types of electrolyte is also reported and qualitatively explained. From experimental data on the streaming potential coefficient and the zeta potential, the empirical expressions between the streaming potential coefficients, the zeta potential and electrolyte concentration are also obtained. The obtained expressions have the similar forms to those available in literature. However, there is a deviation between them due to dissimilarities of fluid conductivity, fluid pH, mineral composition of porous materials and temperature.展开更多
The Lower Mekong Delta in Vietnam experiences widespread flooding annually. About 17 million people live in the Delta with agriculture as the major economic activity. The suspended sediment load in the Mekong River pl...The Lower Mekong Delta in Vietnam experiences widespread flooding annually. About 17 million people live in the Delta with agriculture as the major economic activity. The suspended sediment load in the Mekong River plays an important role in carrying contaminants and nutrients to the delta and changing the geomorphology of the delta river system. In recent decades, it is generally perceived that the flow and sediment transport in the Mekong River have changed due to climate change and development activities, but observed sediment data are lacking. Moreover, after natural floodplains, the sediment deposition has replaced by dense river systems as resulting in floodplain compartments protected by embankments. This study is aimed to investigate impacts of changing water flow on erosion/deposition in the Lower Mekong Delta. We used Mike 11 hydrodynamic model and sediment transport model for simulating the flow and sediment transport. Various scenarios were simulated based on anticipated upstream discharges. Our findings provide the positive and negative impacts to the changes in sediment transport on agriculture cultivation in the Lower Mekong Delta.展开更多
In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usua...In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usually havelarge size and various spatial resolutions. Thus, detecting objects in remote sensing images is very complicated. In this paper, we develop a model to detectobjects in remote sensing images based on the combination of picture fuzzy clustering and MapReduce method (denoted as MPFC). Firstly, picture fuzzy clustering is applied to segment the input images. Then, MapReduce is used to reducethe runtime with the guarantee of quality. To convert data for MapReduce processing, two new procedures are introduced, including Map_PFC and Reduce_PFC.The formal representation and details of two these procedures are presented in thispaper. The experiments on satellite image and remote sensing image datasets aregiven to evaluate proposed model. Validity indices and time consuming are usedto compare proposed model to picture fuzzy clustering model. The values ofvalidity indices show that picture fuzzy clustering integrated to MapReduce getsbetter quality of segmentation than using picture fuzzy clustering only. Moreover,on two selected image datasets, the run time of MPFC model is much less thanthat of picture fuzzy clustering.展开更多
Introduction The International Conference on Asian and Pacific Coasts(APAC)is an international conference to promote academic and technical exchange on coastal related studies that include coastal engineering and coas...Introduction The International Conference on Asian and Pacific Coasts(APAC)is an international conference to promote academic and technical exchange on coastal related studies that include coastal engineering and coastal environmental problems,among the Asian and Pacific countries/regions.APAC展开更多
In this paper we investigate the existence and stability of periodic solutions(on a half-line R_(+))and almost periodic solutions on the whole line time-axis R to the Boussinesq system on several classes of unbounded ...In this paper we investigate the existence and stability of periodic solutions(on a half-line R_(+))and almost periodic solutions on the whole line time-axis R to the Boussinesq system on several classes of unbounded domains of R^(n) in the framework of interpolation spaces.For the linear Boussinesq system we combine the L^(p)—L^(q)-smoothing estimates and interpolation functors to prove the existence of bounded mild solutions.Then,we prove the existence of periodic solutions by invoking Massera’s principle.We also prove the existence of almost periodic solutions.Then we use the results of the linear Boussinesq system to establish the existence,uniqueness and stability of the small periodic and almost periodic solutions to the Boussinesq system using fixed point arguments and interpolation spaces.Our results cover and extend the previous ones obtained in[13,34,38].展开更多
Fusing satellite(remote sensing)images is an interesting topic in processing satellite images.The result image is achieved through fusing information from spectral and panchromatic images for sharpening.In this paper,...Fusing satellite(remote sensing)images is an interesting topic in processing satellite images.The result image is achieved through fusing information from spectral and panchromatic images for sharpening.In this paper,a new algorithm based on based the Artificial bee colony(ABC)algorithm with peak signalto-noise ratio(PSNR)index optimization is proposed to fusing remote sensing images in this paper.Firstly,Wavelet transform is used to split the input images into components over the high and low frequency domains.Then,two fusing rules are used for obtaining the fused images.The first rule is“the high frequency components are fused by using the average values”.The second rule is“the low frequency components are fused by using the combining rule with parameter”.The parameter for fusing the low frequency components is defined by using ABC algorithm,an algorithm based on PSNR index optimization.The experimental results on different input images show that the proposed algorithm is better than some recent methods.展开更多
Fusing medical images is a topic of interest in processing medical images.This is achieved to through fusing information from multimodality images for the purpose of increasing the clinical diagnosis accuracy.This fus...Fusing medical images is a topic of interest in processing medical images.This is achieved to through fusing information from multimodality images for the purpose of increasing the clinical diagnosis accuracy.This fusion aims to improve the image quality and preserve the specific features.The methods of medical image fusion generally use knowledge in many differentfields such as clinical medicine,computer vision,digital imaging,machine learning,pattern recognition to fuse different medical images.There are two main approaches in fusing image,including spatial domain approach and transform domain approachs.This paper proposes a new algorithm to fusion multimodal images.This algorithm is based on Entropy optimization and the Sobel operator.Wavelet transform is used to split the input images into components over the low and high frequency domains.Then,two fusion rules are used for obtaining the fusing images.Thefirst rule,based on the Sobel operator,is used for high frequency components.The second rule,based on Entropy optimization by using Particle Swarm Optimization(PSO)algorithm,is used for low frequency components.Proposed algorithm is implemented on the images related to central nervous system diseases.The experimental results of the paper show that the proposed algorithm is better than some recent methods in term of brightness level,the contrast,the entropy,the gradient and visual informationfidelity for fusion(VIFF),Feature Mutual Information(FMI)indices.展开更多
Saline intrusion is a hot issue and has always been of concern in the VMD(Vietnamese Mekong Delta),especially in the context of many changes of impact factors such as upstream flows and SLR(Sea Levels Rise).Vulnerabil...Saline intrusion is a hot issue and has always been of concern in the VMD(Vietnamese Mekong Delta),especially in the context of many changes of impact factors such as upstream flows and SLR(Sea Levels Rise).Vulnerability to changes in the upstream flows and SLR ismust-have reasons for updated and interpreted information.This information is used for exploiting of soil and water resources.MIKE 11 model was successfully applied to assess the saline intrusion.The study provided the picture of the saline intrusion in the dry season from January to May in the VMD in the existing situation(2015 and 2016)and the future(2030 and 2050)under the impact of flow at Kratie in various frequencies of 18%,50%and 85%based on the time series of 2001-2016,and SLR according to RCP(Representative Concentration Pathway)4.5 scenario of MONRE(Ministry of Natural Resources and Environment)of Vietnam issued in 2016.The results show that in the year 2015 the ASI(Saline Intrusion Area)in the VMD was relatively low due to moderate tidal level and high Kratie discharge(P=18%).The scenario like the situation in 2016 and in the future ASI increased significantly compared to the 2015 baseline scenario which shows that the VMD is very vulnerable to saline intrusion.Based on multivariate regression analysis,the study also presented the formulas for the relationship between the ASI of 0.25 g/L,2.5 g/L and 4.0 g/L thresholds and the impact factors such as the average discharge at Kratie and the maximum daily tidal level in East Coast during the dry season from January to May.With an adjusted R2 at 0.913-0.974,these formulas are believed to be reliable for predicting ASIs based on the Kratie flow and the East Coast tidal level.展开更多
Clustering is a crucial method for deciphering data structure and producing new information.Due to its significance in revealing fundamental connections between the human brain and events,it is essential to utilize cl...Clustering is a crucial method for deciphering data structure and producing new information.Due to its significance in revealing fundamental connections between the human brain and events,it is essential to utilize clustering for cognitive research.Dealing with noisy data caused by inaccurate synthesis from several sources or misleading data production processes is one of the most intriguing clustering difficulties.Noisy data can lead to incorrect object recognition and inference.This research aims to innovate a novel clustering approach,named Picture-Neutrosophic Trusted Safe Semi-Supervised Fuzzy Clustering(PNTS3FCM),to solve the clustering problem with noisy data using neutral and refusal degrees in the definition of Picture Fuzzy Set(PFS)and Neutrosophic Set(NS).Our contribution is to propose a new optimization model with four essential components:clustering,outlier removal,safe semi-supervised fuzzy clustering and partitioning with labeled and unlabeled data.The effectiveness and flexibility of the proposed technique are estimated and compared with the state-of-art methods,standard Picture fuzzy clustering(FC-PFS)and Confidence-weighted safe semi-supervised clustering(CS3FCM)on benchmark UCI datasets.The experimental results show that our method is better at least 10/15 datasets than the compared methods in terms of clustering quality and computational time.展开更多
<span style="white-space:normal;">This paper studies the influence factors of atoms number (N) at temperature (T) and after annealing time (t) on the structure shape and the plastic deformation of Poly...<span style="white-space:normal;">This paper studies the influence factors of atoms number (N) at temperature (T) and after annealing time (t) on the structure shape and the plastic deformation of Polyethylene C</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">H</span><sub style="white-space:normal;">4</sub><span style="white-space:normal;"> (PE) by the Molecular Dynamics (MD) method with Dreading pair interaction, cyclic boundary conditions and plastic deformation of Polyethylene (PE) be done by stretching method according to the z-axis. The results of structure, plastic deformation of PE are analyzed through size (l), the total energy of the system (E</span><sub style="white-space:normal;">tot</sub><span style="white-space:normal;">), shape and associated energy (E</span><sub style="white-space:normal;">bond</sub><span style="white-space:normal;">), angular binding energy (E</span><sub style="white-space:normal;">angle</sub><span style="white-space:normal;">), energy E</span><sub style="white-space:normal;">dihedral</sub><span style="white-space:normal;">, interactive energy Vander Walls (E</span><sub style="white-space:normal;">non-bonding</sub><span style="white-space:normal;">). When increasing N, t leads to the number of structural units of Face-Centred Cubic (FCC), Body-Centered Cubic (BCC) and Hexagonal Close-Packed (HCP) increasing, but Amorphous (Amor) decreases while the angle between the atoms is a constant corresponding to 109.5</span>°<span style="white-space:normal;">. Besides, the length of the link (r) increases from r = 1.529 </span>Å<span style="white-space:normal;"> to r = 1.558 </span>Å<span style="white-space:normal;"> while the plastic deformation energy of PE gets an enormous change and the bonding angle at 109.27</span>°<span style="white-space:normal;">. The length of the link r = 1.529 </span>Å<span style="white-space:normal;"> and the size (l) of the PE material increase from l = 3.73 nm to l = 6.63 nm while the total energy of system (E</span><sub style="white-space:normal;">total</sub><span style="white-space:normal;">) decreases from E</span><sub style="white-space:normal;">total</sub><span style="white-space:normal;"> = <span style="white-space:nowrap;">−</span>1586 eV to E</span><sub style="white-space:normal;">total</sub><span style="white-space:normal;"> = <span style="white-space:nowrap;">−</span>7891 eV with the transition temperature is T = 103 K. Increasing the number of atoms leads to increasing the length of the link. The total energy E</span><sub style="white-space:normal;">total </sub><span style="white-space:normal;">of the system decreases, but the number of structural units in FCC, HCP, BCC and Amor increase, which leads to the length of the link increases, the E</span><sub style="white-space:normal;">total</sub><span style="white-space:normal;"> decreases, and there is a change in the plastic deformation characteristics of PE. In contrast, increasing T leads to the plastic deformation increases, and PE moves from the amorphous state to the liquid state. The obtained results are very significant for future experimental research.</span>展开更多
Hydropower has made a significant contribution to the economic development of Vietnam,thus it is important to monitor the safety of hydropower dams for the good of the country and the people.In this paper,dam horizont...Hydropower has made a significant contribution to the economic development of Vietnam,thus it is important to monitor the safety of hydropower dams for the good of the country and the people.In this paper,dam horizontal displacement is analyzed and then forecasted using three methods:the multi-regression model,the seasonal integrated auto-regressive moving average(SARIMA)model and the back-propagation neural network(BPNN)merging models.The monitoring data of the Hoa Binh Dam in Vietnam,including horizontal displacement,time,reservoir water level,and air temperature,are used for the experiments.The results indicate that all of these three methods can approximately describe the trend of dam deformation despite their different forecast accuracies.Hence,their short-term forecasts can provide valuable references for the dam safety.展开更多
This study assessed the quality and biological activity of Vietnamese single-bulb black garlic(SBG)by investigating the effect of different temperatures(60,65,70,and 75℃)on physicochemical properties during the heat ...This study assessed the quality and biological activity of Vietnamese single-bulb black garlic(SBG)by investigating the effect of different temperatures(60,65,70,and 75℃)on physicochemical properties during the heat treatment process.The optimal treating conditions accounted for the highest concentration of antioxidants were 70℃for 42 days.The SBG.70 had a higher content of reducing sugar,protein,flavonoid,and polyphenol in comparison with the white garlic and the others.Antioxidant activity of single-bulb white garlic and SBG were measured via DPPH,phosphomolybdenum,and H2O2 radicals,as well as a reduction potential.The antimicrobial activity was assessed by the multi-concentration dilution method;the sample treated at 70℃displayed the strongest activity against four microbial strains with MIC values for S.aureus,P.aeruginosa,B.cereus,and C.albicans of 64,128,128,and 64μg/mL,respectively.Additionally,only two SBG samples aged at 70℃and 75℃were bacteriostatic to E.coli with MIC values of 32 and 64μg/mL,respectively.展开更多
Landslide susceptibility maps (LSMs) are very crucial for planningpolicies in hazardous areas. However, the accuracy and reliability ofLSMs depend on available data and the selection of suitable methods.This study is ...Landslide susceptibility maps (LSMs) are very crucial for planningpolicies in hazardous areas. However, the accuracy and reliability ofLSMs depend on available data and the selection of suitable methods.This study is conducted to produce LSMs by combinations of machinelearning methods and weighting techniques for Ha Giang province,Vietnam, where has limited data. In study area, we gather 11 landslideconditioning factors and establish a landslide inventory map.Computing the weights of classes (or factors) is very important toprepare data for machine learning methods to generate LSMs. Wefrst use frequency ratio (FR) and analytic hierarchy process (AHP)techniques to generate the weights. Then, random forest (RF), supportvector machine (SVM), logistic regression (LR), and AHP methods arecombined with FR and AHP weights to yield accurate and reliableLSMs. Finally, the performance of these methods is evaluated by fivestatistical metrics, ROC and R-index. The empirical results have shownthat RF is the best method in terms of R-index and the five metrics, i.e.TP rate (0.9661), FP rate (0.0), ACC (0.9835), MAE (0.0046), and RMSE(0.0350) for this study area. This study opens the perspective of weightbasedmachine learning methods for landslide susceptibility mapping.展开更多
The major challenge in photothermal therapy(PTT)is to develop nanocomposites that simultaneously exhibit bioimaging and PTT under a single near-infrared(NIR)irradiation with high therapeutic efficiency.Herein,we prese...The major challenge in photothermal therapy(PTT)is to develop nanocomposites that simultaneously exhibit bioimaging and PTT under a single near-infrared(NIR)irradiation with high therapeutic efficiency.Herein,we present a multifunctional nanocomposite synthesized by linking NaYF_(4):Yb^(3+),Er^(3+)upconversion nanoparticles(UCNPs)with gold nanorods(AuNR)to exhibit fluorescence label-ing,local temperature sensing and photothermal functions simul-taneously with a single NIR laser excitation.The AuNR-NaYF_(4):Yb^(3+),Er^(3+)nanocomposite particles displayed better photothermal prop-erties compared with pure AuNRs or a blend of AuNRs and NaYF_(4):Yb^(3+),Er^(3+)UCNPs.The temperature-dependent upconversion lumi-nescence(UCL)property was used to determine local temperature at the nanocomposite particles,which is useful for selecting appro-priate irradiation dosage for PTT.The therapeutic performance of the nanocomposites in PTT for OML-1 oral cancer cells was deter-mined.For cell labeling,we successfully labeled streptavidin-linked nanocomposite particles on the surface of OML-1 oral cancer using anti-human epidermal growth factor receptor 2(anti-Her2)anti-body.Finally,the nanocomposite particles caused exceptional destruction of cancer cells up to 70%dead cells under 976 nm laser irradiation for only one min at 0.3 W/cm^(2)which is below the maximal permissible exposure of human skin.展开更多
文摘Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.
文摘At the first time,the finite element method was used to model and analyze the free vibration and transient response of non-uniform thickness bi-directional functionally graded sandwich porous(BFGSP)skew plates.The whole BFGSP skew-plates is placed on a variable visco-elastic foundation(VEF)in the hygro-thermal environment and subjected to the blast load.The BFGSP skew-plate thickness is permitted to vary non-linearly over both the length and width of the skew-plate,thereby faithfully representing the real behavior of the structure itself.The analysis is based on a four-node planar quadrilateral element with eight degrees of freedom per node,which is approximated using Lagrange Q_(4)shape function and C^(1)level non-conforming Hermite shape function based on refined higher-order shear deformation plate theory.The forced vibration parameters of the non-uniform thickness BFGSP skew-plate are fully determined using Hamilton's principle and the Newmark-βdirect integration technique.Accuracy of the calculation program is validated by comparing its numerical results with those from reputable sources.Furthermore,a thorough assessment is conducted to determine the impact of various parameters on the free and forced vibration responses of the non-uniform thickness BFGSP skew-plate.The findings of the paper may be used in the development of civil and military structures in situations that are prone to exceptional forces,such as explosions and impacts load.
文摘This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads.
文摘The measurements of the streaming potential coefficient and the zeta potential of two consolidated samples saturated with four monovalent electrolytes at different electrolyte concentrations have been performed. The experimental results show that the streaming potential coefficient and the zeta potential in magnitude both decrease with increasing electrolyte concentration for all electrolytes. It is also shown that there is a dependence of the streaming potential coefficient on types of electrolyte for a given sample. This is explained by the dependence of the zeta potential and the electrical conductivity on types of electrolyte. Additionally, the variation of the zeta potential with types of electrolyte is also reported and qualitatively explained. From experimental data on the streaming potential coefficient and the zeta potential, the empirical expressions between the streaming potential coefficients, the zeta potential and electrolyte concentration are also obtained. The obtained expressions have the similar forms to those available in literature. However, there is a deviation between them due to dissimilarities of fluid conductivity, fluid pH, mineral composition of porous materials and temperature.
文摘The Lower Mekong Delta in Vietnam experiences widespread flooding annually. About 17 million people live in the Delta with agriculture as the major economic activity. The suspended sediment load in the Mekong River plays an important role in carrying contaminants and nutrients to the delta and changing the geomorphology of the delta river system. In recent decades, it is generally perceived that the flow and sediment transport in the Mekong River have changed due to climate change and development activities, but observed sediment data are lacking. Moreover, after natural floodplains, the sediment deposition has replaced by dense river systems as resulting in floodplain compartments protected by embankments. This study is aimed to investigate impacts of changing water flow on erosion/deposition in the Lower Mekong Delta. We used Mike 11 hydrodynamic model and sediment transport model for simulating the flow and sediment transport. Various scenarios were simulated based on anticipated upstream discharges. Our findings provide the positive and negative impacts to the changes in sediment transport on agriculture cultivation in the Lower Mekong Delta.
基金funded by Thuyloi University Foundation for Science and Technologyunder Grant Number TLU.STF.19-02.
文摘In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usually havelarge size and various spatial resolutions. Thus, detecting objects in remote sensing images is very complicated. In this paper, we develop a model to detectobjects in remote sensing images based on the combination of picture fuzzy clustering and MapReduce method (denoted as MPFC). Firstly, picture fuzzy clustering is applied to segment the input images. Then, MapReduce is used to reducethe runtime with the guarantee of quality. To convert data for MapReduce processing, two new procedures are introduced, including Map_PFC and Reduce_PFC.The formal representation and details of two these procedures are presented in thispaper. The experiments on satellite image and remote sensing image datasets aregiven to evaluate proposed model. Validity indices and time consuming are usedto compare proposed model to picture fuzzy clustering model. The values ofvalidity indices show that picture fuzzy clustering integrated to MapReduce getsbetter quality of segmentation than using picture fuzzy clustering only. Moreover,on two selected image datasets, the run time of MPFC model is much less thanthat of picture fuzzy clustering.
文摘Introduction The International Conference on Asian and Pacific Coasts(APAC)is an international conference to promote academic and technical exchange on coastal related studies that include coastal engineering and coastal environmental problems,among the Asian and Pacific countries/regions.APAC
基金financially supported by the Vietnam National Foundation for Science and Technology Development under grant number 101.02-2021.04financially supported by Vietnam Ministry of Education and Training under Project B2022-BKA-06.
文摘In this paper we investigate the existence and stability of periodic solutions(on a half-line R_(+))and almost periodic solutions on the whole line time-axis R to the Boussinesq system on several classes of unbounded domains of R^(n) in the framework of interpolation spaces.For the linear Boussinesq system we combine the L^(p)—L^(q)-smoothing estimates and interpolation functors to prove the existence of bounded mild solutions.Then,we prove the existence of periodic solutions by invoking Massera’s principle.We also prove the existence of almost periodic solutions.Then we use the results of the linear Boussinesq system to establish the existence,uniqueness and stability of the small periodic and almost periodic solutions to the Boussinesq system using fixed point arguments and interpolation spaces.Our results cover and extend the previous ones obtained in[13,34,38].
文摘Fusing satellite(remote sensing)images is an interesting topic in processing satellite images.The result image is achieved through fusing information from spectral and panchromatic images for sharpening.In this paper,a new algorithm based on based the Artificial bee colony(ABC)algorithm with peak signalto-noise ratio(PSNR)index optimization is proposed to fusing remote sensing images in this paper.Firstly,Wavelet transform is used to split the input images into components over the high and low frequency domains.Then,two fusing rules are used for obtaining the fused images.The first rule is“the high frequency components are fused by using the average values”.The second rule is“the low frequency components are fused by using the combining rule with parameter”.The parameter for fusing the low frequency components is defined by using ABC algorithm,an algorithm based on PSNR index optimization.The experimental results on different input images show that the proposed algorithm is better than some recent methods.
文摘Fusing medical images is a topic of interest in processing medical images.This is achieved to through fusing information from multimodality images for the purpose of increasing the clinical diagnosis accuracy.This fusion aims to improve the image quality and preserve the specific features.The methods of medical image fusion generally use knowledge in many differentfields such as clinical medicine,computer vision,digital imaging,machine learning,pattern recognition to fuse different medical images.There are two main approaches in fusing image,including spatial domain approach and transform domain approachs.This paper proposes a new algorithm to fusion multimodal images.This algorithm is based on Entropy optimization and the Sobel operator.Wavelet transform is used to split the input images into components over the low and high frequency domains.Then,two fusion rules are used for obtaining the fusing images.Thefirst rule,based on the Sobel operator,is used for high frequency components.The second rule,based on Entropy optimization by using Particle Swarm Optimization(PSO)algorithm,is used for low frequency components.Proposed algorithm is implemented on the images related to central nervous system diseases.The experimental results of the paper show that the proposed algorithm is better than some recent methods in term of brightness level,the contrast,the entropy,the gradient and visual informationfidelity for fusion(VIFF),Feature Mutual Information(FMI)indices.
文摘Saline intrusion is a hot issue and has always been of concern in the VMD(Vietnamese Mekong Delta),especially in the context of many changes of impact factors such as upstream flows and SLR(Sea Levels Rise).Vulnerability to changes in the upstream flows and SLR ismust-have reasons for updated and interpreted information.This information is used for exploiting of soil and water resources.MIKE 11 model was successfully applied to assess the saline intrusion.The study provided the picture of the saline intrusion in the dry season from January to May in the VMD in the existing situation(2015 and 2016)and the future(2030 and 2050)under the impact of flow at Kratie in various frequencies of 18%,50%and 85%based on the time series of 2001-2016,and SLR according to RCP(Representative Concentration Pathway)4.5 scenario of MONRE(Ministry of Natural Resources and Environment)of Vietnam issued in 2016.The results show that in the year 2015 the ASI(Saline Intrusion Area)in the VMD was relatively low due to moderate tidal level and high Kratie discharge(P=18%).The scenario like the situation in 2016 and in the future ASI increased significantly compared to the 2015 baseline scenario which shows that the VMD is very vulnerable to saline intrusion.Based on multivariate regression analysis,the study also presented the formulas for the relationship between the ASI of 0.25 g/L,2.5 g/L and 4.0 g/L thresholds and the impact factors such as the average discharge at Kratie and the maximum daily tidal level in East Coast during the dry season from January to May.With an adjusted R2 at 0.913-0.974,these formulas are believed to be reliable for predicting ASIs based on the Kratie flow and the East Coast tidal level.
基金This research is funded by Graduate University of Science and Technology under grant number GUST.STS.DT2020-TT01。
文摘Clustering is a crucial method for deciphering data structure and producing new information.Due to its significance in revealing fundamental connections between the human brain and events,it is essential to utilize clustering for cognitive research.Dealing with noisy data caused by inaccurate synthesis from several sources or misleading data production processes is one of the most intriguing clustering difficulties.Noisy data can lead to incorrect object recognition and inference.This research aims to innovate a novel clustering approach,named Picture-Neutrosophic Trusted Safe Semi-Supervised Fuzzy Clustering(PNTS3FCM),to solve the clustering problem with noisy data using neutral and refusal degrees in the definition of Picture Fuzzy Set(PFS)and Neutrosophic Set(NS).Our contribution is to propose a new optimization model with four essential components:clustering,outlier removal,safe semi-supervised fuzzy clustering and partitioning with labeled and unlabeled data.The effectiveness and flexibility of the proposed technique are estimated and compared with the state-of-art methods,standard Picture fuzzy clustering(FC-PFS)and Confidence-weighted safe semi-supervised clustering(CS3FCM)on benchmark UCI datasets.The experimental results show that our method is better at least 10/15 datasets than the compared methods in terms of clustering quality and computational time.
文摘<span style="white-space:normal;">This paper studies the influence factors of atoms number (N) at temperature (T) and after annealing time (t) on the structure shape and the plastic deformation of Polyethylene C</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">H</span><sub style="white-space:normal;">4</sub><span style="white-space:normal;"> (PE) by the Molecular Dynamics (MD) method with Dreading pair interaction, cyclic boundary conditions and plastic deformation of Polyethylene (PE) be done by stretching method according to the z-axis. The results of structure, plastic deformation of PE are analyzed through size (l), the total energy of the system (E</span><sub style="white-space:normal;">tot</sub><span style="white-space:normal;">), shape and associated energy (E</span><sub style="white-space:normal;">bond</sub><span style="white-space:normal;">), angular binding energy (E</span><sub style="white-space:normal;">angle</sub><span style="white-space:normal;">), energy E</span><sub style="white-space:normal;">dihedral</sub><span style="white-space:normal;">, interactive energy Vander Walls (E</span><sub style="white-space:normal;">non-bonding</sub><span style="white-space:normal;">). When increasing N, t leads to the number of structural units of Face-Centred Cubic (FCC), Body-Centered Cubic (BCC) and Hexagonal Close-Packed (HCP) increasing, but Amorphous (Amor) decreases while the angle between the atoms is a constant corresponding to 109.5</span>°<span style="white-space:normal;">. Besides, the length of the link (r) increases from r = 1.529 </span>Å<span style="white-space:normal;"> to r = 1.558 </span>Å<span style="white-space:normal;"> while the plastic deformation energy of PE gets an enormous change and the bonding angle at 109.27</span>°<span style="white-space:normal;">. The length of the link r = 1.529 </span>Å<span style="white-space:normal;"> and the size (l) of the PE material increase from l = 3.73 nm to l = 6.63 nm while the total energy of system (E</span><sub style="white-space:normal;">total</sub><span style="white-space:normal;">) decreases from E</span><sub style="white-space:normal;">total</sub><span style="white-space:normal;"> = <span style="white-space:nowrap;">−</span>1586 eV to E</span><sub style="white-space:normal;">total</sub><span style="white-space:normal;"> = <span style="white-space:nowrap;">−</span>7891 eV with the transition temperature is T = 103 K. Increasing the number of atoms leads to increasing the length of the link. The total energy E</span><sub style="white-space:normal;">total </sub><span style="white-space:normal;">of the system decreases, but the number of structural units in FCC, HCP, BCC and Amor increase, which leads to the length of the link increases, the E</span><sub style="white-space:normal;">total</sub><span style="white-space:normal;"> decreases, and there is a change in the plastic deformation characteristics of PE. In contrast, increasing T leads to the plastic deformation increases, and PE moves from the amorphous state to the liquid state. The obtained results are very significant for future experimental research.</span>
基金This research was funded by the China Scholarship Council(CSC)and partially supported by the Project 911(Vietnam).The data analysis was carried out as a part of the second author’s PhD studies at the School of Geodesy and Geomatics,Wuhan University,People’s Republic of China[grant number 2011GXZN02].
文摘Hydropower has made a significant contribution to the economic development of Vietnam,thus it is important to monitor the safety of hydropower dams for the good of the country and the people.In this paper,dam horizontal displacement is analyzed and then forecasted using three methods:the multi-regression model,the seasonal integrated auto-regressive moving average(SARIMA)model and the back-propagation neural network(BPNN)merging models.The monitoring data of the Hoa Binh Dam in Vietnam,including horizontal displacement,time,reservoir water level,and air temperature,are used for the experiments.The results indicate that all of these three methods can approximately describe the trend of dam deformation despite their different forecast accuracies.Hence,their short-term forecasts can provide valuable references for the dam safety.
文摘This study assessed the quality and biological activity of Vietnamese single-bulb black garlic(SBG)by investigating the effect of different temperatures(60,65,70,and 75℃)on physicochemical properties during the heat treatment process.The optimal treating conditions accounted for the highest concentration of antioxidants were 70℃for 42 days.The SBG.70 had a higher content of reducing sugar,protein,flavonoid,and polyphenol in comparison with the white garlic and the others.Antioxidant activity of single-bulb white garlic and SBG were measured via DPPH,phosphomolybdenum,and H2O2 radicals,as well as a reduction potential.The antimicrobial activity was assessed by the multi-concentration dilution method;the sample treated at 70℃displayed the strongest activity against four microbial strains with MIC values for S.aureus,P.aeruginosa,B.cereus,and C.albicans of 64,128,128,and 64μg/mL,respectively.Additionally,only two SBG samples aged at 70℃and 75℃were bacteriostatic to E.coli with MIC values of 32 and 64μg/mL,respectively.
基金supported by the Research on scientific basis to develop a set of criteria and to identify the areas highly-susceptible to landslides,debris flows,flash floods in the mountainous and hilly regions of Vietnam.Funded by Ministry of Natural Resources and Environment(MONRE)[TNMT.2021.02.08].
文摘Landslide susceptibility maps (LSMs) are very crucial for planningpolicies in hazardous areas. However, the accuracy and reliability ofLSMs depend on available data and the selection of suitable methods.This study is conducted to produce LSMs by combinations of machinelearning methods and weighting techniques for Ha Giang province,Vietnam, where has limited data. In study area, we gather 11 landslideconditioning factors and establish a landslide inventory map.Computing the weights of classes (or factors) is very important toprepare data for machine learning methods to generate LSMs. Wefrst use frequency ratio (FR) and analytic hierarchy process (AHP)techniques to generate the weights. Then, random forest (RF), supportvector machine (SVM), logistic regression (LR), and AHP methods arecombined with FR and AHP weights to yield accurate and reliableLSMs. Finally, the performance of these methods is evaluated by fivestatistical metrics, ROC and R-index. The empirical results have shownthat RF is the best method in terms of R-index and the five metrics, i.e.TP rate (0.9661), FP rate (0.0), ACC (0.9835), MAE (0.0046), and RMSE(0.0350) for this study area. This study opens the perspective of weightbasedmachine learning methods for landslide susceptibility mapping.
基金This work was supported by Ministry of Science and Technology,Taiwan,under Grant Nos.MOST 107-2923-M-194-001-MY3 and MOST 107-2112-M-194-011-MY3 and Center for Nano Bio-Detection from The Featured Research Areas College Development Plan of National Chung Cheng University.
文摘The major challenge in photothermal therapy(PTT)is to develop nanocomposites that simultaneously exhibit bioimaging and PTT under a single near-infrared(NIR)irradiation with high therapeutic efficiency.Herein,we present a multifunctional nanocomposite synthesized by linking NaYF_(4):Yb^(3+),Er^(3+)upconversion nanoparticles(UCNPs)with gold nanorods(AuNR)to exhibit fluorescence label-ing,local temperature sensing and photothermal functions simul-taneously with a single NIR laser excitation.The AuNR-NaYF_(4):Yb^(3+),Er^(3+)nanocomposite particles displayed better photothermal prop-erties compared with pure AuNRs or a blend of AuNRs and NaYF_(4):Yb^(3+),Er^(3+)UCNPs.The temperature-dependent upconversion lumi-nescence(UCL)property was used to determine local temperature at the nanocomposite particles,which is useful for selecting appro-priate irradiation dosage for PTT.The therapeutic performance of the nanocomposites in PTT for OML-1 oral cancer cells was deter-mined.For cell labeling,we successfully labeled streptavidin-linked nanocomposite particles on the surface of OML-1 oral cancer using anti-human epidermal growth factor receptor 2(anti-Her2)anti-body.Finally,the nanocomposite particles caused exceptional destruction of cancer cells up to 70%dead cells under 976 nm laser irradiation for only one min at 0.3 W/cm^(2)which is below the maximal permissible exposure of human skin.