期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Seismogenic model of the 2023 M_(W)5.5 Pingyuan earthquake in North China Plain and its tectonic implications
1
作者 Shiguang Wang Libo Han +5 位作者 Junju Xie Liping Fan Xiang Huang Jinmeng Bi Hongfeng Yang Lihua Fang 《Earthquake Science》 2024年第6期499-513,共15页
The 6 August 2023 M_(W)5.5 Pingyuan earthquake is the largest earthquake in the central North China Plain(NCP)over the past two decades.Due to the thick sedimentary cover,no corresponding active faults have been repor... The 6 August 2023 M_(W)5.5 Pingyuan earthquake is the largest earthquake in the central North China Plain(NCP)over the past two decades.Due to the thick sedimentary cover,no corresponding active faults have been reported yet in the epicenter area.Thus,this earthquake presents a unique opportunity to delve into the buried active faults beneath the NCP.By integrating strong ground motion records,high-precision aftershock sequence relocation,and focal mechanism solutions,we gain insights into the seismotectonics of the Pingyuan earthquake.The aftershocks are clustered at depths ranging from 15 to 20 km and delineate a NE-SW trend,consistent with the distribution of ground motion records.A NE-SW nodal plane(226°)of the focal mechanism solutions is also derived from regional waveform inversion,suggesting that the mainshock was dominated by strike-slip motion with minor normal faulting component.Integrating regional geological data,we propose that an unrecognized fault between the NE-SW trending Gaotang and Lingxian-Yangxin faults is the seismogenic fault of this event.Based on the S-wave velocity structure beneath the NCP,this fault probably extends into the lower crust with a high angle.Considering the tectonic regime and stress state,we speculate that the interplay of shear strain between the Amurian and South China blocks and the hot upwelling magma from the subducted paleo Pacific flat slab significantly contributed to the generation of the Pingyuan earthquake. 展开更多
关键词 Pingyuan earthquake aftershock relocation focal mechanism S-wave velocity structure North China Plain
下载PDF
Three-dimensional high-resolution velocity structure imaging and seismicity study of Yangbi Ms6.4 earthquake 被引量:2
2
作者 Ma Yong Zhang Hai-Jiang +1 位作者 Gao Lei Bi Jin-Meng 《Applied Geophysics》 SCIE CSCD 2021年第4期579-591,595,共14页
In this study,based on the body wave arrival data of 5506 earthquakes recorded by 32 fi xed stations and 94 temporary stations in Yangbi and surrounding areas,the source parameters of Yangbi Ms6.4 earthquake sequence ... In this study,based on the body wave arrival data of 5506 earthquakes recorded by 32 fi xed stations and 94 temporary stations in Yangbi and surrounding areas,the source parameters of Yangbi Ms6.4 earthquake sequence and three-dimensional(3-D)fi ne Vp,Vs,and Vp/Vs were inverted by using the consistency-constrained double-diff erence tomography method.The results showed that the focal depth after relocation was mostly in the range of 3–10 km,evidently nearly horizontally distributed,and concentrated in the weak area of the high-velocity body or at the side of the high-low-velocity body transition zone toward the high-velocity body,showing a good corresponding relationship with the velocity structure.The velocity structure in the Yangbi area has remarkably uneven characteristics.The seismic activity area is dominated by high-velocity bodies prone to brittle fracture near the surface.As the depth increases,low-velocity anomalies appear.A signifi cant diff erence was observed in the wave velocity ratio between the upper and lower sides of the seismically dense strip.Based on the focal mechanism of the Yangbi Ms6.4 earthquake and the fine 3-D velocity structure,this article concludes that the Yangbi Ms6.4 earthquake was caused by a strong regional tectonic stress concentrated in the relatively weak area by hard high-velocity bodies on the northwest sides.The Ms5.6 foreshock broke the inherent balance of regional stress and promoted the occurrence of the Yangbi Ms6.4 mainshock.Afterward,the stress was adjusted to a new equilibrium state through a large number of aftershocks,forming a foreshock–mainshock–aftershock type of seismic activity model.Based on the activity law of the Yangbi Ms6.4 earthquake sequence and characteristics of the 3D velocity structure distribution,this paper speculates that the seismogenic structure of the Yangbi earthquake was possibly a northwest strike-slip buried fault with a depth of 3–10 km on the southwest side of the Weixi–Qiaohou fault. 展开更多
关键词 Tangshan fault double-diff erence tomography velocity structure seismic activity Vp/Vs inversion
下载PDF
Three-dimensional velocity structure and tectonic characteristics of earthquake area in Yibin 被引量:1
3
作者 Ma Yong Bi Jin-Meng and Gao Lei 《Applied Geophysics》 SCIE CSCD 2019年第3期267-276,394,共11页
In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal par... In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal parameters and three-dimensional(3 D)body-wave high-resolution velocity structures at depths of 0–30 km were retrieved by double-difference tomography.Results show that there is a good correspondence between the spatial distribution of the relocated earthquakes and velocity structures,which were concentrated mainly in the high-velocity-anomaly region or edge of high-velocity region.Velocity structure of P-and S-waves in the Yibin area clearly shows lateral inhomogeneity.The distribution characteristics of the P-and S-waves near the surface are closely related to the geomorphology and geologic structure.The low-velocity anomaly appears at the depth of 15–25 km,which is affected by the lower crust current.The Junlian–Gongxian and Gongxian–Changning earthquake areas,which are the two most earthquake-prone areas in the Yibin region,clearly differ in earthquake distribution and tectonic characteristics.We analyzed the structural characteristics of the Junlian–Gongxian and Gongxian–Changning earthquake areas on the basis of the 3 D bodywave velocity structures in the Yibin region.We found that although most seismicity in the Yibin area is caused by fluid injection,the spatial position of seismicity is controlled by the velocity structures of the middle and upper crust and local geologic structure.Fine-scale 3 D velocity structures in the Yibin area provide important local reference information for further understanding the crustal medium,seismogenic structure,and seismicity. 展开更多
关键词 Yibin area double-difference tomography method 3D P・wave and S・wave velocity structure structural characteristics
下载PDF
Three-dimensional crustal velocity structure and activity characteristics of the Madoi Ms7.4 earthquake in 2021
4
作者 Ma Yong Zhang Hai-Jiang +1 位作者 Gao Lei and Chen Zhi-Gang 《Applied Geophysics》 SCIE CSCD 2022年第4期590-602,605,共14页
In this paper,using natural earthquake P-wave arrival time data recorded by the seismic network in the surrounding area of Madoi,the three-dimensional fine P-wave crustal velocity structure at depths above 60 km in th... In this paper,using natural earthquake P-wave arrival time data recorded by the seismic network in the surrounding area of Madoi,the three-dimensional fine P-wave crustal velocity structure at depths above 60 km in the epicenter of the Madoi Ms7.4 earthquake was inverted using the double-difference seismic tomography method.On the basis of the relocation of the source of the aftershock sequence,we summarized the strip-shaped distribution characteristics along the strike of the Jiangcuo fault,revealing the significant heterogeneity of the crustal velocity structure in the source area.Research has found that most of the Madoi Ms7.4 aftershocks were located in the weak area of the high-speed anomaly in the upper crust.The focal depth changed with the velocity structure,showing obvious fluctuation and segmentation characteristics.There was a good correspondence between the spatial distribution and the velocity structure.The high-velocity bodies of the upper crust in the hypocenter area provided a medium environment for earthquake rupture,the low-velocity bodies of the middle crust formed the deep material,and the migration channel and the undulating shape of the high-speed body in the lower crust corroborated the strong pushing action in the region.The results confirmed that under the continuous promotion of tectonic stress in the Madoi area,the high-speed body of the Jiangcuo fault blocked the migration of weak materials in the middle crust.When the stress accumulation exceeded the limit,the Madoi Ms7.4 earthquake occurred.Meanwhile,the nonuniform velocity structure near the fault plane determined the location of the main shock and the spatiotemporal distribution of the aftershock sequence. 展开更多
关键词 Madoi Ms7.4 earthquake double-difference tomography 3D velocity structure seismic activity characteristics
下载PDF
A Review on the Research Progress in Operational Earthquake Forecasting(OEF)in the World
5
作者 Bi Jinmeng Jiang Changsheng 《Earthquake Research in China》 CSCD 2018年第1期1-14,共14页
In this paper,the research progress of the Operational Earthquake Forecasting( OEF) is introduced from the major areas of concern,the concept of probability gain,hybrid model development,and the application to earthqu... In this paper,the research progress of the Operational Earthquake Forecasting( OEF) is introduced from the major areas of concern,the concept of probability gain,hybrid model development,and the application to earthquake disaster reduction. Due to the development of OEF based on the global "Collaboratory for the Study of Earthquake Predictability( CSEP) " plan,it provides a significant technical foundation for earthquake forecast modeling and a practical foundation for solving the actual problems in earthquake preparedness and disaster mitigation. Therefore, related research and technical ideas provide inspirational and referential significance for earthquake forecasting/prediction. 展开更多
关键词 OPERATIONAL earthquake forecasting Probability gain Hybrid model EMERGENCY EVACUATION SEISMIC FORTIFICATION
下载PDF
Design and implementation of low-cost geomagnetic field monitoring equipment for high-density deployment
6
作者 Sun Lu-Qiang Bai Xian-Fu +3 位作者 Kang Jian Zeng Ning Zhu Hong Zhang Ming-Dong 《Applied Geophysics》 SCIE CSCD 2024年第3期505-512,618,共9页
The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,the... The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,they studied local magnetic field anomalies over the Chinese mainland for earthquake prediction.Owing to the years of research on the seismomagnetic relationship,earthquake prediction experts have concluded that the compressive magnetic effect,tectonic magnetic effect,electric magnetic fluid effect,and other factors contribute to preearthquake magnetic anomalies.However,this involves a small magnitude of magnetic field changes.It is difficult to relate them to the abnormal changes of the extremely large magnetic field in regions with extreme earthquakes owing to the high cost of professional geomagnetic equipment,thereby limiting large-scale deployment.Moreover,it is difficult to obtain strong magnetic field changes before an earthquake.The Tianjin Earthquake Agency has developed low-cost geomagnetic field observation equipment through the Beijing–Tianjin–Hebei geomagnetic equipment test project.The new system was used to test the availability of equipment and determine the findings based on big data.. 展开更多
关键词 geomagnetic field earthquake prediction low cost high density big data
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部