The efficient and accurate approximate nonlinear filters have been widely used in the estimation of states and parameters of dynamical systems. In this paper, an adaptive divided difference filter is designed for prec...The efficient and accurate approximate nonlinear filters have been widely used in the estimation of states and parameters of dynamical systems. In this paper, an adaptive divided difference filter is designed for precise estimation of states and parameters of micromechanical gyro navigation system. Based on the investigation of nonlinear divided difference filter the adaptive divided difference filter(ADDF) was designed, which takes account of the incorrect time-varying noise statistics of dynamical systems and compensation of the nonlinearity effects neglected by linearization. And its performance is superior to that of DDF and extended Kalman filter(EKF). Simulation results indicate that the advantages of the proposed nonlinear filters make them attractive alternatives to the extended Kalman filter.展开更多
With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processin...With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noise- contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airbome gravity-gradiometry data from Vinton salt dome (south- west Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data.展开更多
Frontal upwelling is an important phenomenon in summer in the Yellow Sea(YS)and plays an essential role in the distribution of nutrients and biological species.In this paper,a three-dimensional hydrodynamic model is a...Frontal upwelling is an important phenomenon in summer in the Yellow Sea(YS)and plays an essential role in the distribution of nutrients and biological species.In this paper,a three-dimensional hydrodynamic model is applied to investigate the characteristics and influencing factors of frontal upwelling in the YS.The results show that the strength and distribution of frontal upwelling are largely dependent on the topography and bottom temperature fronts.The frontal upwelling in the YS is stronger and narrower near the eastern coast than near the western coast due to the steeper shelf slope.Moreover,external forcings,such as the meridional wind speed and air temperature in summer and the air temperature in the preceding winter and spring,have certain influences on the strength of frontal upwelling.An increase in air temperature in the previous winter and spring weakens the frontal upwelling in summer;in contrast,an increase in air temperature in summer strengthens the frontal upwelling.When the southerly wind in summer increases,the upwelling intensifies in the western YS and weakens in the eastern YS.The air temperature influences the strength of upwelling by changing the baroclinicity in the frontal region.Furthermore,the meridional wind speed in summer affects frontal upwelling via Ekman pumping.展开更多
A high power diode-pumped diffusion-bonded Tm:YLF laser operating at 1889.5nm with a FWHM linewidth of less than 0.1 nm is reported. A Brewster plate and two Fabry-Perot etalons are inserted in the laser cavity for s...A high power diode-pumped diffusion-bonded Tm:YLF laser operating at 1889.5nm with a FWHM linewidth of less than 0.1 nm is reported. A Brewster plate and two Fabry-Perot etalons are inserted in the laser cavity for spectral narrowing and stabilization. Under an incident pump power of 136.8 W, 46.1 W of output power is achieved, corresponding to an optical-to-optical conversion efficiency of 33.7% and a slope efficiency of 42.8%. The laser wavelength shift of only 0.07nm with the incident pump power from 20.1 W to 136.8W is observed. The M2 factor at maximum output power is calculated to be 2.3 in the x-axis and 2.0 in the y-axis, respectively.展开更多
A theoretical analysis was conducted on the intrinsic bond between multi-point responses caused by the same single vibration in phase sensitive optical time-domain reflectometer(OTDR). Temporal similarity of signals c...A theoretical analysis was conducted on the intrinsic bond between multi-point responses caused by the same single vibration in phase sensitive optical time-domain reflectometer(OTDR). Temporal similarity of signals collected from adjacent sample locations were investigated. Referring to correlation coefficient as well as the relative energy level, a method of extracting disturbed position in φ-OTDR based on signal relevance evaluation is proposed to perform fast screening of massive φ-OTDR raw data to pinpoint those signals with significance.展开更多
Low-cost Global Navigation Satellite System(GNSS)devices offer a cost-effective alternative to traditional GNSS systems,making GNSS technology accessible to a wider range of applications.Nevertheless,low-cost GNSS dev...Low-cost Global Navigation Satellite System(GNSS)devices offer a cost-effective alternative to traditional GNSS systems,making GNSS technology accessible to a wider range of applications.Nevertheless,low-cost GNSS devices often face the challenges in effectively capturing and tracking satellite signals,which leads to losing the observations at certain frequencies.Moreover,the observation peculiarities of low-cost devices are in contradistinction to those of traditional geodetic GNSS receivers.In this contribution,a low-cost PPP-RTK model that considers the unique characteristics of different types of measurements is developed and its performance is fully evaluated with u-blox F9P receivers equipped with three distinctive antenna configurations:vertical dipole,microstrip patch,and helix antennas.Several static and kinematic experiments in different scenarios are conducted to verify the effectiveness of the proposed method.The results indicate that the mixed-frequency PPP-RTK model outperforms the traditional dual-frequency one with higher positioning accuracy and fixing percentage.Among the three low-cost antennas tested,the vertical dipole antenna demonstrates the best performance under static conditions and shows a comparable performance as geodetic antennas with a positioning accuracy of 0.02 m,0.01 m and 0.07 m in the east,north,and up components,respectively.Under low-speed kinematic scenarios,the helix antenna outperforms the other two with a positioning accuracy of(0.07 m,0.07 m,0.34 m).Furthermore,the helix antenna is also proved to be the best choice for vehicle navigation with an ambiguity fixing rate of over 95%and a positioning accuracy of(0.13 m,0.14 m,0.36 m).展开更多
We propose here a novel method for position fixing in the micron scale by combining the convolutional neural network(CNN) architecture and speckle patterns generated in a multimode fiber. By varying the splice offset ...We propose here a novel method for position fixing in the micron scale by combining the convolutional neural network(CNN) architecture and speckle patterns generated in a multimode fiber. By varying the splice offset between a single mode fiber and a multimode fiber, speckles with different patterns can be generated at the output of the multimode fiber. The CNN is utilized to learn these specklegrams and then predict the offset coordinate. Simulation results show that predicted positions with the precision of 2 μm account for 98.55%.This work provides a potential high-precision two-dimensional positioning method.展开更多
Satellite integrity monitoring is vital to satellite-based augmentation systems,and can provide the confdence of the diferential corrections for each monitored satellite satisfying the stringent safety-of-life require...Satellite integrity monitoring is vital to satellite-based augmentation systems,and can provide the confdence of the diferential corrections for each monitored satellite satisfying the stringent safety-of-life requirements.Satellite integrity information includes the user diferential range error and the clock-ephemeris covariance which are used to deduce integrity probability.However,the existing direct statistic methods sufer from a low integrity bounding percentage.To address this problem,we develop an improved covariance-based method to determine satellite integrity information and evaluate its performance in the range domain and position domain.Compared with the direct statistic method,the integrity bounding percentage is improved by 24.91%and the availability by 5.63%.Compared with the covariance-based method,the convergence rate for the user diferential range error is improved by 8.04%.The proposed method is useful for the satellite integrity monitoring of a satellite-based augmentation system.展开更多
An in-line high efficient polarizer, composed of magnetic-ionic-liquid-adorned(MIL-adorned) hollow-core anti-resonant fiber(HARF), is theoretically proposed and experimentally demonstrated. The protocol is based on th...An in-line high efficient polarizer, composed of magnetic-ionic-liquid-adorned(MIL-adorned) hollow-core anti-resonant fiber(HARF), is theoretically proposed and experimentally demonstrated. The protocol is based on the selective conversion of polarization mode into leaky mode and attenuates quickly in MIL and the polarizer is featured by the magnetically tunable polarization extinction ratio(PER) and the thermally controllable operation bandwidth.展开更多
文摘The efficient and accurate approximate nonlinear filters have been widely used in the estimation of states and parameters of dynamical systems. In this paper, an adaptive divided difference filter is designed for precise estimation of states and parameters of micromechanical gyro navigation system. Based on the investigation of nonlinear divided difference filter the adaptive divided difference filter(ADDF) was designed, which takes account of the incorrect time-varying noise statistics of dynamical systems and compensation of the nonlinearity effects neglected by linearization. And its performance is superior to that of DDF and extended Kalman filter(EKF). Simulation results indicate that the advantages of the proposed nonlinear filters make them attractive alternatives to the extended Kalman filter.
基金the Sub-project of National Science and Technology Major Project of China(No.2016ZX05027-002-003)the National Natural Science Foundation of China(No.41404089)+1 种基金the State Key Program of National Natural Science of China(No.41430322)the National Basic Research Program of China(973 Program)(No.2015CB45300)
文摘With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noise- contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airbome gravity-gradiometry data from Vinton salt dome (south- west Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data.
基金The National Key Research and Development Project under contract No.2017YFC1403400the National Key Research and Development Program of China under contract No.2016YFC1402501+2 种基金the National Natural Science Foundation of China under contract No.41806164the Open Fund Project of Key Laboratory of Marine Environmental Information Technology,Ministry of Natural Resourcesthe Shandong Joint Fund for Marine Science Research Centers under contract No.U1406401.
文摘Frontal upwelling is an important phenomenon in summer in the Yellow Sea(YS)and plays an essential role in the distribution of nutrients and biological species.In this paper,a three-dimensional hydrodynamic model is applied to investigate the characteristics and influencing factors of frontal upwelling in the YS.The results show that the strength and distribution of frontal upwelling are largely dependent on the topography and bottom temperature fronts.The frontal upwelling in the YS is stronger and narrower near the eastern coast than near the western coast due to the steeper shelf slope.Moreover,external forcings,such as the meridional wind speed and air temperature in summer and the air temperature in the preceding winter and spring,have certain influences on the strength of frontal upwelling.An increase in air temperature in the previous winter and spring weakens the frontal upwelling in summer;in contrast,an increase in air temperature in summer strengthens the frontal upwelling.When the southerly wind in summer increases,the upwelling intensifies in the western YS and weakens in the eastern YS.The air temperature influences the strength of upwelling by changing the baroclinicity in the frontal region.Furthermore,the meridional wind speed in summer affects frontal upwelling via Ekman pumping.
基金Supported by the National Natural Science Foundation of China under Grant No 61308009, the China Postdoctoral Science Foundation under Grant No 2013M540288, and the Fundamental Research Funds for the Central Universities under Grant No HIT.NSRIF.2014044.
文摘A high power diode-pumped diffusion-bonded Tm:YLF laser operating at 1889.5nm with a FWHM linewidth of less than 0.1 nm is reported. A Brewster plate and two Fabry-Perot etalons are inserted in the laser cavity for spectral narrowing and stabilization. Under an incident pump power of 136.8 W, 46.1 W of output power is achieved, corresponding to an optical-to-optical conversion efficiency of 33.7% and a slope efficiency of 42.8%. The laser wavelength shift of only 0.07nm with the incident pump power from 20.1 W to 136.8W is observed. The M2 factor at maximum output power is calculated to be 2.3 in the x-axis and 2.0 in the y-axis, respectively.
基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20230925)the National Natural Science Foundation of China(Grant Nos.12372055 and 52375110).
基金supported by the Research and Development of Natural Gas Pipeline Network and Station Intelligent Control System by China National Petroleum Corporation Limited (No.2021DJ7304)the National Natural Science Foundation of China (No.62105307)。
文摘A theoretical analysis was conducted on the intrinsic bond between multi-point responses caused by the same single vibration in phase sensitive optical time-domain reflectometer(OTDR). Temporal similarity of signals collected from adjacent sample locations were investigated. Referring to correlation coefficient as well as the relative energy level, a method of extracting disturbed position in φ-OTDR based on signal relevance evaluation is proposed to perform fast screening of massive φ-OTDR raw data to pinpoint those signals with significance.
基金National Natural Science Foundation of China,41974027,Xingxing Li42204017,Xin Li+2 种基金National Postdoctoral Program for Innovative Talents,China,BX20220239,Xin Lithe special fund of Hubei Luojia Laboratory,220100006,Xin Lithe Fundamental Research Funds for the Central Universities,2042022kf1001,Xin Li.
文摘Low-cost Global Navigation Satellite System(GNSS)devices offer a cost-effective alternative to traditional GNSS systems,making GNSS technology accessible to a wider range of applications.Nevertheless,low-cost GNSS devices often face the challenges in effectively capturing and tracking satellite signals,which leads to losing the observations at certain frequencies.Moreover,the observation peculiarities of low-cost devices are in contradistinction to those of traditional geodetic GNSS receivers.In this contribution,a low-cost PPP-RTK model that considers the unique characteristics of different types of measurements is developed and its performance is fully evaluated with u-blox F9P receivers equipped with three distinctive antenna configurations:vertical dipole,microstrip patch,and helix antennas.Several static and kinematic experiments in different scenarios are conducted to verify the effectiveness of the proposed method.The results indicate that the mixed-frequency PPP-RTK model outperforms the traditional dual-frequency one with higher positioning accuracy and fixing percentage.Among the three low-cost antennas tested,the vertical dipole antenna demonstrates the best performance under static conditions and shows a comparable performance as geodetic antennas with a positioning accuracy of 0.02 m,0.01 m and 0.07 m in the east,north,and up components,respectively.Under low-speed kinematic scenarios,the helix antenna outperforms the other two with a positioning accuracy of(0.07 m,0.07 m,0.34 m).Furthermore,the helix antenna is also proved to be the best choice for vehicle navigation with an ambiguity fixing rate of over 95%and a positioning accuracy of(0.13 m,0.14 m,0.36 m).
基金the Out standing Youth Science Fund of Hunan Provincial Natural Science Foundation(No.2019JJ20023)the National Natural Science Foundation of China(NSFC)(No.11974427).
文摘We propose here a novel method for position fixing in the micron scale by combining the convolutional neural network(CNN) architecture and speckle patterns generated in a multimode fiber. By varying the splice offset between a single mode fiber and a multimode fiber, speckles with different patterns can be generated at the output of the multimode fiber. The CNN is utilized to learn these specklegrams and then predict the offset coordinate. Simulation results show that predicted positions with the precision of 2 μm account for 98.55%.This work provides a potential high-precision two-dimensional positioning method.
基金supported by the Research Startup Funds from Tianjin University of Technology under Grant 01002101.
文摘Satellite integrity monitoring is vital to satellite-based augmentation systems,and can provide the confdence of the diferential corrections for each monitored satellite satisfying the stringent safety-of-life requirements.Satellite integrity information includes the user diferential range error and the clock-ephemeris covariance which are used to deduce integrity probability.However,the existing direct statistic methods sufer from a low integrity bounding percentage.To address this problem,we develop an improved covariance-based method to determine satellite integrity information and evaluate its performance in the range domain and position domain.Compared with the direct statistic method,the integrity bounding percentage is improved by 24.91%and the availability by 5.63%.Compared with the covariance-based method,the convergence rate for the user diferential range error is improved by 8.04%.The proposed method is useful for the satellite integrity monitoring of a satellite-based augmentation system.
基金This work has been supported by the Youth Innovation Fund of Tianjin Navigation Instruments Research Institute(No.QN-19-02-GX)。
文摘An in-line high efficient polarizer, composed of magnetic-ionic-liquid-adorned(MIL-adorned) hollow-core anti-resonant fiber(HARF), is theoretically proposed and experimentally demonstrated. The protocol is based on the selective conversion of polarization mode into leaky mode and attenuates quickly in MIL and the polarizer is featured by the magnetically tunable polarization extinction ratio(PER) and the thermally controllable operation bandwidth.