期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
Green Electrospun Silk Fibroin/Galactose Chitosan Composite Nanofibrous Scaffolds for Hepatic Tissue Engineering 被引量:1
1
作者 余凡 杨兴兴 +5 位作者 周晓菲 林思 潘潇涵 骆挌杰 马琳琳 王红声 《Journal of Donghua University(English Edition)》 EI CAS 2017年第1期142-146,共5页
The electrospun nanofibrous scaffolds made of proteins and polysaccharides were thought to be able to simulate the structure of natural extracellular matrix well.Silk fibroin(SF)and chitosan(CS)are probably the most w... The electrospun nanofibrous scaffolds made of proteins and polysaccharides were thought to be able to simulate the structure of natural extracellular matrix well.Silk fibroin(SF)and chitosan(CS)are probably the most widely used natural materials in biomedical fields including liver tissue engineering for their good properties and wide variety of sources.The asialoglycoprotein receptors of hepatocyte were reported to specifically recognize and interact with galactose.In this work,a green electrospun SF/galactosylated chitosan(GC)composite nanofibrous scaffold was fabricated and characterized.The data indicated that the addition of GC greatly influenced the spinning effect of SF aqueous solution,and the average diameter of the composite nanofibers was about 520nm.Moreover,the green electrospun SF/GC nanofibrous scaffolds were demonstrated significantly enhancing the adhesion and proliferation of hepatocyte(RH35)according to our data.The present study did a useful exploration on constructing scaffolds for liver regeneration by green electrospinning,and also laid a good foundation for the further applicative research of this green electrospun scaffolds in liver tissue engineering. 展开更多
关键词 liver tissue engineering ELECTROSPINNING galactose chitosan(GC) silk fibroin(SF)
下载PDF
Fabrication of a Bi-layer Tubular Scaffold Consisted of a Dense Nanofibrous Inner Layer and a Porous Nanoyarn Outer Layer for Vascular Tissue Engineering
2
作者 CHEN Jian-feng LIU Wei +4 位作者 WU Tong LI Da-wei ZHANG Jian-guang WANG Nan-ping MO Xiu-mei 《Journal of Donghua University(English Edition)》 EI CAS 2014年第5期718-722,共5页
Recent years, it has attracted more attentions to increase the porosity and pore size of nanofibrous scaffolds to provide the for the cells to grow into the small-diameter vascular grafts. In this study, a novel bi-la... Recent years, it has attracted more attentions to increase the porosity and pore size of nanofibrous scaffolds to provide the for the cells to grow into the small-diameter vascular grafts. In this study, a novel bi-layer tubular scaffold with an inner layer and an outer layer was fabricated. The inner layer was random collagen/poly ( L-lactide-co-caprolactone ) I P ( LLA- CL) ] nanofibrous mat fabricated by conventional electrospinning and the outer layer was aligned collagen/P (LLA-CL) nanoyarns prepared by a dynamic liquid dectrospinning method. Fourier transform infrared spectroscopy (FTIR) was used to characterize the chemical structure. Scanning electron microscopy ( SEM ) was employed to observe the morphology of the layers and the cross- sectioned bi-layer tubular scaffold. A liquid displacement method was employed to measure the porosities of the inner and outer layers. Stress-strain curves were obtained to evaluate the mechanical properties of the two different layers and the bi-layer membrane. The diameters of the nanofibers and the nanoyarns were (480 ± 197 ) nm and ( 19.66 ± 4.05 ) μm, respectively. The outer layer had a significantly higher porosity and a larger pore size than those of the inner layer. Furthermore, the bi-layer membrane showed a good mechanical property which was suitable as small-diameter vascular graft. The results indicated that the bi-layer tubular scaffold had a great potential application in small vascular tissue engineering. 展开更多
关键词 nanoyarn poly ( L-lactide-co-caprolactone ) [ P ( LLA-CL ) ] BI-LAYER tubular scaffold POROUS structure small vascular TISSUEENGINEERING
下载PDF
Mineralized Composite Nanofibrous Mats for Bone Tissue Engineering
3
作者 刘威 詹建朝 +4 位作者 吴桐 苏艳 莫秀梅 廖素三 RAMAKRISHNA Seeram 《Journal of Donghua University(English Edition)》 EI CAS 2013年第5期359-361,共3页
Composite nanofibrous mats consisting of poly( L-lactideco-ε-caprolactone)( PLCL) and collagen type I( COL) were fabricated by electrospinning,and ten times simulated body fluid(10SBF) were employed to mineralize nan... Composite nanofibrous mats consisting of poly( L-lactideco-ε-caprolactone)( PLCL) and collagen type I( COL) were fabricated by electrospinning,and ten times simulated body fluid(10SBF) were employed to mineralize nanofibrous mats. Ballshaped hydroxyapatite( HA) was deposited on the surface of nanofibrous mats in 1. 5 h at room temperature. Human fetal osteoblasts( hFob) were seeded to investigate their proliferation and differentiation on mineralized composite nanofibrous mats. The results showed that hFob grew well on mineralized composite nanofibrous mats and alkaline phosphatase( ALP) activity of hFob on mineralized composite nanofibrous mats at 14 d was much higher than that on untreated nanofibrous mats. Moreover,the expression of osteocalcin of cells on mineralized composite nanofibrous mats was also much higher than those on untreated nanofibrous mats at 7 d and 14 d. This mineralized composite nanofibrous mats may have a great potential for bone tissue engineering. 展开更多
关键词 electrospnning nanofibrous MAT MINERALIZATION BONE TISSUE ENGINEERING
下载PDF
Advances in clinical applications of bioceramics in the new regenerative medicine era
4
作者 Noha Elshazly Fayza Eid Nasr +2 位作者 Ayat Hamdy Safa Saied Mohamed Elshazly 《World Journal of Clinical Cases》 SCIE 2024年第11期1863-1869,共7页
In this editorial,we comment on the hard and soft tissue applications of different ceramic-based scaffolds prepared by different mechanisms such as 3D printing,sol-gel,and electrospinning.The new concept of regenerati... In this editorial,we comment on the hard and soft tissue applications of different ceramic-based scaffolds prepared by different mechanisms such as 3D printing,sol-gel,and electrospinning.The new concept of regenerative medicine relies on biomaterials that can trigger in situ tissue regeneration and stem cell recruitment at the defect site.A large percentage of these biomaterials is ceramic-based as they provide the essential requirements of biomaterial principles such as tailored multisize porosity,antibacterial properties,and angiogenic properties.All these previously mentioned properties put bioceramics on top of the hierarchy of biomaterials utilized to stimulate tissue regeneration in soft and hard tissue wounds.Multiple clinical applications registered the use of these materials in triggering soft tissue regeneration in healthy and diabetic patients such as bioactive glass nanofibers.The results were promising and opened new frontiers for utilizing these materials on a larger scale.The same results were mentioned when using different forms and formulas of bioceramics in hard defect regeneration.Some bioceramics were used in combination with other polymers and biological scaffolds to improve their regenerative and mechanical properties.All this progress will enable a larger scale of patients to receive such services with ease and decrease the financial burden on the government. 展开更多
关键词 Regenerative medicine BIOCERAMICS Chronic wounds Bone defects Clinical applications
下载PDF
Expert consensus on pediatric orthodontic therapies of malocclusions in children 被引量:1
5
作者 Chenchen Zhou Peipei Duan +22 位作者 Hong He Jinlin Song Min Hu Yuehua Liu Yan Liu Jie Guo Fang Jin Yang Cao Lingyong Jiang Qingsong Ye Min Zhu Beizhan Jiang Wenhua Ruan Xiao Yuan Huang Li Rui Zou Yulou Tian Li Gao Rui Shu Jianwei Chen Renkai Liu Shujuan Zou Xiaobing Li 《International Journal of Oral Science》 SCIE CAS CSCD 2024年第2期186-196,共11页
Malocclusion,identified by the World Health Organization(WHO)as one of three major oral diseases,profoundly impacts the dental-maxillofacial functions,facial esthetics,and long-term development of~260 million children... Malocclusion,identified by the World Health Organization(WHO)as one of three major oral diseases,profoundly impacts the dental-maxillofacial functions,facial esthetics,and long-term development of~260 million children in China.Beyond its physical manifestations,malocclusion also significantly influences the psycho-social well-being of these children.Timely intervention in malocclusion can foster an environment conducive to dental-maxillofacial development and substantially decrease the incidence of malocclusion or reduce the severity and complexity of malocclusion in the permanent dentition,by mitigating the negative impact of abnormal environmental influences on the growth.Early orthodontic treatment encompasses accurate identification and treatment of dental and maxillofacial morphological and functional abnormalities during various stages of dental-maxillofacial development,ranging from fetal stages to the early permanent dentition phase.From an economic and societal standpoint,the urgency for effective early orthodontic treatments for malocclusions in childhood cannot be overstated,underlining its profound practical and social importance.This consensus paper discusses the characteristics and the detrimental effects of malocclusion in children,emphasizing critical need for early treatment.It elaborates on corresponding core principles and fundamental approaches in early orthodontics,proposing comprehensive guidance for preventive and interceptive orthodontic treatment,serving as a reference for clinicians engaged in early orthodontic treatment. 展开更多
关键词 PERMANENT stated CHILDREN
下载PDF
Aldehyde-Sodium Alginate and Amino-Gelatin Preparation as Soft Tissue Adhesive
6
作者 袁柳 耿晓华 +2 位作者 李家俊 孙彬彬 莫秀梅 《Journal of Donghua University(English Edition)》 EI CAS 2014年第4期503-506,共4页
Sodium alginate and gelatin are both remarkable natural biomaterials; they all have been extensively applied in tissue engineering and other relative fields,due to their low price and good biocompatibility. In this pa... Sodium alginate and gelatin are both remarkable natural biomaterials; they all have been extensively applied in tissue engineering and other relative fields,due to their low price and good biocompatibility. In this paper,we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate( A-SA). Gelatin was modified with ethylenediamine( ED) in the presence of water-soluble1-ethyl-3( 3-dimethylaminopropyl) carbodiimide( EDC) to introduce additional amino groups to get amino-gelatin. Upon mixing the A-SA and amino-gelatin aqueous solutions together,a gel rapidly formed based on the Schiff's base reaction between the aldehyde groups in A-SA and the amino groups in amino-gelatin.Fourier transform infrared spectroscopy( FTIR) analysis confirmed the characteristic peak of Schiff's base group in the hydrogel. The gelation time measure has confirmed the gelation time is dependent on the aldehyde group content in A-SA and amino group content in amino-gelatin. The fasted hydrogel formation takes place within 30 s. The entire test suggested that this gel could be a promising candidate as soft tissue adhesive. 展开更多
关键词 oxidized sodium alginate amino-gelatin adhesive agent
下载PDF
Study of the inflammatory activating process in the early stage of Fusobacterium nucleatum infected PDLSCs 被引量:1
7
作者 Yushang Wang Lihua Wang +8 位作者 Tianyong Sun Song Shen Zixuan Li Xiaomei Ma Xiufeng Gu Xiumei Zhang Ai Peng Xin Xu Qiang Feng 《International Journal of Oral Science》 SCIE CAS CSCD 2023年第1期113-126,共14页
Fusobacterium nucleatum(F.nucleatum)is an early pathogenic colonizer in periodontitis,but the host response to infection with this pathogen remains unclear.In this study,we built an F.nucleatum infectious model with h... Fusobacterium nucleatum(F.nucleatum)is an early pathogenic colonizer in periodontitis,but the host response to infection with this pathogen remains unclear.In this study,we built an F.nucleatum infectious model with human periodontal ligament stem cells(PDLSCs)and showed that F.nucleatum could inhibit proliferation,and facilitate apoptosis,ferroptosis,and inflammatory cytokine production in a dose-dependent manner.The F.nucleatum adhesin Fad A acted as a proinflammatory virulence factor and increased the expression of interleukin(IL)-1β,IL-6 and IL-8.Further study showed that Fad A could bind with PEBP1 to activate the Raf1-MAPK and IKK-NF-κB signaling pathways.Time-course RNA-sequencing analyses showed the cascade of gene activation process in PDLSCs with increasing durations of F.nucleatum infection.NFκB1 and NFκB2 upregulated after 3 h of F.nucleatum-infection,and the inflammatory-related genes in the NF-κB signaling pathway were serially elevated with time.Using computational drug repositioning analysis,we predicted and validated that two potential drugs(piperlongumine and fisetin)could attenuate the negative effects of F.nucleatum-infection.Collectively,this study unveils the potential pathogenic mechanisms of F.nucleatum and the host inflammatory response at the early stage of F.nucleatum infection. 展开更多
关键词 INFLAMMATORY DRUGS PDL
下载PDF
New clinical application of digital intraoral scanning technology in occlusal reconstruction:A case report 被引量:2
8
作者 Chao Hou Hua-Zhang Zhu +4 位作者 Bai Xue Hong-Jie Song Ying-Bei Yang Xiao-Xue Wang Hui-Qiang Sun 《World Journal of Clinical Cases》 SCIE 2023年第15期3522-3532,共11页
BACKGROUND Digital intraoral scanning,although developing rapidly,is rarely used in occlusal reconstruction.To compensate for the technical drawbacks of current occlusal reconstruction techniques,such as time consumpt... BACKGROUND Digital intraoral scanning,although developing rapidly,is rarely used in occlusal reconstruction.To compensate for the technical drawbacks of current occlusal reconstruction techniques,such as time consumption and high technical requirements,digital intraoral scanning can be used in clinics.This report aims to provide a way of selecting the most suitable maxillo-mandibular relationship(MMR)during recovery.CASE SUMMARY A 68-year-old man with severely worn posterior teeth underwent occlusal reconstruction with fixed prosthesis using digital intraoral scanning.A series of digital models in different stages of treatment were obtained,subsequently compared,and selected using digital intraoral scanning together with traditional measurements,such as cone beam computed tomography,joint imaging,and clinical examination.Using digital intraoral scanning,the MMR in different stages of treatment was accurately recorded,which provided feasibility for deciding the best occlusal reconstruction treatment,made the treatment process easier,and improved patient satisfaction.CONCLUSION This case report highlights the clarity,recordability,repeatability,and selectivity of digital intraoral scanning to replicate and transfer the MMR during occlusal reconstruction,expanding new perspectives for its design,fabrication,and postoperative evaluation. 展开更多
关键词 Occlusal reconstruction Digital intraoral scanning Maxillo-mandibular relationship Cone beam computed tomography Case report
下载PDF
Osteogenic potential of human periosteum-derived progenitor cells in PLGA scaffold using allogeneic serum 被引量:8
9
作者 ZHENG Yi-xiong RINGE Jochen +3 位作者 LIANG Zhong LOCH Alexander CHEN Li SITTINGER Michael 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第10期817-824,共8页
The use of periosteum-derived progenitor cells (PCs) combined with bioresorbable materials is an attractive approach for tissue engineering. The aim of this study was to characterize the osteogenic differentiation o... The use of periosteum-derived progenitor cells (PCs) combined with bioresorbable materials is an attractive approach for tissue engineering. The aim of this study was to characterize the osteogenic differentiation of PC in 3-dimensional (3D) poly-lactic-co-glycolic acid (PLGA) fleeces cultured in medium containing allogeneic human serum. PCs were isolated and expanded in monolayer culture. Expanded cells of passage 3 were seeded into PLGA constructs and cultured in osteogenic medium for a maximum period of 28 d. Morphological, histological and cell viability analyses of three-dimensionally cultured PCs were performed to elucidate osseous synthesis and deposition of a calcified matrix. Furthermore, the mRNA expression of type Ⅰ collagen, osteocalcin and osteonectin was semi-quantitively evaluated by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The fibrin gel immobilization technique provided homogeneous PCs distribution in 3D PLGA constructs. Live-dead staining indicated a high viability rate of PCs inside the PLGA scaffolds. Secreted nodules ofneo-bone tissue formation and the presence of matrix mineralization were confirmed by positive yon Kossa staining. The osteogenic differentiation of PCs was further demonstrated by the detection of type I collagen, osteocalcin and osteonectin gene expression. The results of this study support the concept that this tissue engineering method presents a promising method for creation of new bone in vivo. 展开更多
关键词 Tissue engineering Poly-lactic-co-glycolic acid polymer Periosteum-derived progenitor cells 3-dimensional culture
下载PDF
Spatiotemporal microRNA profile in peripheral nerve regeneration:miR-138 targets vimentin and inhibits Schwann cell migration and proliferation 被引量:6
10
作者 Travis B.Sullivan Litchfield C.Robert +6 位作者 Patrick A.Teebagy Shannon E.Morgan Evan W.Beatty Bryan J.Cicuto Peter K.Nowd Kimberly M.Rieger-Christ David J.Bryan 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第7期1253-1262,共10页
While the peripheral nervous system has regenerative ability,restoration of sufficient function remains a challenge.Vimentin has been shown to be localized in axonal growth fronts and associated with nerve regeneratio... While the peripheral nervous system has regenerative ability,restoration of sufficient function remains a challenge.Vimentin has been shown to be localized in axonal growth fronts and associated with nerve regeneration,including myelination,neuroplasticity,kinase signaling in nerve axoplasm,and cell migration;however,the mechanisms regulating its expression within Schwann cell(SC) remain unexplored.The aim of this study was to profile the spatial and temporal expression profile of micro RNA(mi RNA) in a regenerating rat sciatic nerve after transection,and explore the potential role of mi R-138-5 p targeting vimentin in SC proliferation and migration.A rat sciatic nerve transection model,utilizing a polyethylene nerve guide,was used to investigate mi RNA expression at 7,14,30,60,and 90 days during nerve regeneration.Relative levels of mi RNA expression were determined using microarray analysis and subsequently validated with quantitative real-time polymerase chain reaction.In vitro assays were conducted with cultured Schwann cells transfected with mi RNA mimics and assessed for migratory and proliferative potential.The top seven dysregulated mi RNAs reported in this study have been implicated in cell migration elsewhere,and GO and KEGG analyses predicted activities essential to wound healing.Transfection of one of these,mi RNA-138-5 p,into SCs reduced cell migration and proliferation.mi R-138-5 p has been shown to directly target vimentin in cancer cells,and the luciferase assay performed here in rat Schwann cells confirmed it.These results detail a role of mi R-138-5 p in rat peripheral nerve regeneration and expand on reports of it as an important regulator in the peripheral nervous system. 展开更多
关键词 non-coding RNA neural regeneration nerve guide sciatic nerve transection peripheral nerve injury wound healing Gene Ontology processes Kyoto Encyclopedia of Genes and Genomes pathways microarray luciferase assay
下载PDF
Three-dimensional Expansion:In Suspension Culture of SD Rat's Osteoblasts in a Rotating Wall Vessel Bioreactor 被引量:4
11
作者 KE-DONG SONG TIAN-QINGLIU +3 位作者 XIANG-QIN LI ZHAN-FENG CUI XIANG-YU SUN AND XUE-HU MA 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2007年第2期91-98,共8页
Objective To study large-scale expansion of SD (Sprague-Dawley) rat's osteoblasts in suspension culture in a rotating wall vessel bioreactor (RWVB). Methods The bioreactor rotation speeds were adjusted in the ran... Objective To study large-scale expansion of SD (Sprague-Dawley) rat's osteoblasts in suspension culture in a rotating wall vessel bioreactor (RWVB). Methods The bioreactor rotation speeds were adjusted in the range of 0 to 20 rpm, which could provide low shear on the rnicrocarriers around 1 dyn/cm^2. The cells were isolated via sequential digestions of neonatal (less than 3 days old) SD rat calvaria. After the primary culture and several passages, the cells were seeded onto the microcarriers and cultivated in T-flask, spinner flask and RWVB respectively. During the culture period, the cells were counted and observed under the inverted microscope for morphology every 12 h. After 7 days, the cells were evaluated with scanning electron microscope (SEM) for histological examination of the aggregates. Also, the hematoxylin-eosin (HE) staining and alkaline phosphatase (ALP) staining were performed. Moreover, von-Kossa staining and Alizarin Red S staining were carded out for mineralized nodule formation. Results The results showed that in RWVB, the cells could be expanded by more than ten times and they presented better morphology and vitality and stronger ability to form bones. Conclusions The developed RWVB can provide the culture environment with a relatively low shear force and necessary three-dimensional (3D) interactions among cells and is suitable for osteopath expansion in vitro. 展开更多
关键词 OSTEOBLAST BIOREACTOR MICROCARRIER Tissue engineering Laminar flow
下载PDF
Noggin versus basic fibroblast growth factor on the differentiation of human embryonic stem cells 被引量:2
12
作者 Yan Zhang Junmei Zhou +2 位作者 Zhenfu Fang Manxi Jiang Xuejin Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第23期2171-2177,共7页
The difference between Noggin and basic fibroblast growth factor for the neural precursor differen- tiation from human embryonic stem cells has not been studied. In this study, 100 tJg/L Noggin or 20 IJg/L basic fibro... The difference between Noggin and basic fibroblast growth factor for the neural precursor differen- tiation from human embryonic stem cells has not been studied. In this study, 100 tJg/L Noggin or 20 IJg/L basic fibroblast growth factor in serum-free neural induction medium was used to differen- tiate human embryonic stem cells H14 into neural precursors using monolayer differentiation. Two weeks after induction, significantly higher numbers of neural rosettes formed in the Noggin-induced group than the basic fibroblast growth factor-induced group, as detected by phase contrast micro- scope. Immunofluorescence staining revealed expression levels of Nestin, [3-111 Tubulin and Sox-1 were higher in the induced cells and reverse-transcription PCR showed induced cells expressed Nestin, Sox-1 and Neurofilament mRNA. Protein and mRNA expression in the Noggin-induced group was increased compared with the basic fibroblast growth factor-induced group. Noggin has a greater effect than basic fibroblast growth factor on the induction of human embryonic stem cell differentiation into neural precursors by monolayer differentiation, as Noggin accelerates and in- creases the differentiation of neural precursors. 展开更多
关键词 neural regeneration stem cells basic fibroblast growth factor NOGGIN human embryonic stem cells neural precursors neural differentiation grants-supported paper NEUROREGENERATION
下载PDF
Applications of stem cells and bioprinting for potential treatment of diabetes 被引量:2
13
作者 Shweta Anil Kumar Monica Delgado +1 位作者 Victor E Mendez Binata Joddar 《World Journal of Stem Cells》 SCIE CAS 2019年第1期13-32,共20页
Currently, there does not exist a strategy that can reduce diabetes and scientists are working towards a cure and innovative approaches by employing stem cellbased therapies. On the other hand, bioprinting technology ... Currently, there does not exist a strategy that can reduce diabetes and scientists are working towards a cure and innovative approaches by employing stem cellbased therapies. On the other hand, bioprinting technology is a novel therapeutic approach that aims to replace the diseased or lost β-cells, insulin-secreting cells in the pancreas, which can potentially regenerate damaged organs such as the pancreas. Stem cells have the ability to differentiate into various cell lines including insulinproducing cells. However, there are still barriers that hamper the successful differentiation of stem cells into β-cells. In this review, we focus on the potential applications of stem cell research and bioprinting that may be targeted towards replacing the β-cells in the pancreas and may offer approaches towards treatment of diabetes. This review emphasizes on the applicability of employing both stem cells and other cells in 3 D bioprinting to generate substitutes for diseased β-cells and recover lost pancreatic functions. The article then proceeds to discuss the overall research done in the field of stem cell-based bioprinting and provides future directions for improving the same for potential applications in diabetic research. 展开更多
关键词 BIOPRINTING Tissue engineering PLURIPOTENT STEM CELLS Mesenchymal STEM CELLS HUMAN embryonic STEM Adult HUMAN liver CELLS β-cells Islet CELLS Biomaterials Bioink STEM cell DIABETES
下载PDF
CD133 and membrane microdomains:Old facets for future hypotheses 被引量:1
14
作者 Christine A Fargeas Jana Karbanová +1 位作者 József Jászai Denis Corbeil 《World Journal of Gastroenterology》 SCIE CAS CSCD 2011年第36期4149-4152,共4页
Understanding all facets of membrane microdomains in normal and cancerous cells within the digestive tract is highly important,not only from a clinical point of view,but also in terms of our basic knowledge of cellula... Understanding all facets of membrane microdomains in normal and cancerous cells within the digestive tract is highly important,not only from a clinical point of view,but also in terms of our basic knowledge of cellular transformation.By studying the normal and cancer stem cell-associated molecule CD133 (prominin-1),novel aspects of the organization and dynamics of polarized epithelial cells have been revealed during the last decade.Its association with particular membrane microdomains is highly relevant in these contexts and might also offer new avenues in diagnosis and/or targeting of cancer stem cells. 展开更多
关键词 AC133 Cancer CD133 Membrane microdomains Membrane vesicles Prominin-1 Stem cell
下载PDF
Numerical Simulation of Microcarrier Motion in a Rotating Wall Vessel Bioreactor 被引量:1
15
作者 ZHI-HAO JU TIAN-QING LIU +1 位作者 XUE-Hu MA ZHAN-FENG CUI 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2006年第3期163-168,共6页
Objective To analyze the forces of rotational wall vessel (RWV) bioreactor on small tissue pieces or microcarrier particles and to determine the tracks of microcarrier particles in RWV bioreactor. Methods The motion... Objective To analyze the forces of rotational wall vessel (RWV) bioreactor on small tissue pieces or microcarrier particles and to determine the tracks of microcarrier particles in RWV bioreactor. Methods The motion of the microcarrier in the rotating wall vessel (RWV) bioreactor with both the inner and outer cylinders rotating was modeled by numerical simulation. Results The continuous trajectory of microcarrier particles, including the possible collision with the wall was obtained. An expression between the minimum rotational speed difference of the inner and outer cylinders and the microcarrier particle or aggregate radius could avoid collisions with either wall. The range of microcarrier radius or tissue size, which could be safely cultured in the RWV bioreactor, in terms of shear stress level, was determined. Conclusion The model works well in describing the trajectory of a heavier microcarrier particle in rotating wall vessel. 展开更多
关键词 Tissue engineering BIOREACTOR Rotating wall vessel Numerical simulation
下载PDF
Comparison of Osteogenesis Between Two Kinds of Stem Cells from Goat Combined Calcium Phosphate Cement in Tissue Engineering 被引量:1
16
作者 赵伟 陆家瑜 +5 位作者 郝永明 张秀丽 瞿晓辉 华丽 曹春花 邹德荣 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第5期628-635,共8页
To explore the possible mechanism of osteogenesis for deciduous teeth stem cells (DTSCs) in vivo/ vitro, stem cells from goat deciduous teeth (SGDs) were firstly isolated, induced and transplanted into immunocompromis... To explore the possible mechanism of osteogenesis for deciduous teeth stem cells (DTSCs) in vivo/ vitro, stem cells from goat deciduous teeth (SGDs) were firstly isolated, induced and transplanted into immunocompromised mice. The SGDs's mineralization pattern and osteogenesis were compared with bone marrow messenchymal stem cells (BMMSCs) from goats. SGDs have similar osteogenic differentiation pattern in vitro and bone-like tissue formation mechanism in vivo to BMMSCs; moreover SGDs have stronger alkaline phosphatase (ALP) gene expression and osteopontin (OPN) gene expression levels than BMMSCs; also SGDs can form more bone-like tissues than BMMSCs when cell-scaffold compounds are transplanted into immunocompromised mice. This pre-clinical study in a large-animal model confirms that DTSCs may be an appropriate source of stem cells in repairing bone defects with tissue engineering. 展开更多
关键词 stem cells from goat deciduous teeth (SGDs) MINERALIZATION OSTEOGENESIS bone marrow mesenchymal stem cells (BMMSCs) tissue engineering
原文传递
The role of extracellular matrix in age-related conduction disorders: a forgotten player? 被引量:1
17
作者 Cristiano Spadaccio Alberto Rainer +5 位作者 Pamela Mozetic Marcella Trombetta Robert A Dion RaffaeleBarbato Francesco Nappi Massimo Chello 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2015年第1期76-82,共7页
Cardiovascular aging is a physiological process gradually leading to structural degeneration and functional loss of all the cardiac and vascular components. Conduction system is also deeply influenced by the aging pro... Cardiovascular aging is a physiological process gradually leading to structural degeneration and functional loss of all the cardiac and vascular components. Conduction system is also deeply influenced by the aging process with relevant reflexes in the clinical side. Age-related arrhythmias carry significant morbidity and mortality and represent a clinical and economical burden. An important and unjustly unrecognized actor in the pathophysiology of aging is represented by the extracellular matrix (ECM) that not only structurally supports the heart determining its mechanical and functional properties, but also sends a biological signaling regulating cellular function and maintaining tissue homeostasis. At the biophysical level, cardiac ECM exhibits a peculiar degree of anisotropy, which is among the main determinants of the conductive properties of the specialized electrical conduction system. Age-associated alterations of cardiac ECM are therefore able to profoundly affect the function of the conduction system with striking impact on the patient clinical conditions. This review will focus on the ECM changes that occur during aging in the heart conduction system and on their translation to the clinical scenario. Potential diagnostic and therapeutical perspectives arising from the knowledge on ECM age-associated alterations are further discussed. 展开更多
关键词 Ageing ARRHYTHMIA CARDIAC Conduction system Extracellular matrix
下载PDF
Periodontitis may induce gut microbiota dysbiosis via salivary microbiota 被引量:14
18
作者 Jun Bao Lili Li +5 位作者 Yangheng Zhang Min Wang Faming Chen Shaohua Ge Bin Chen Fuhua Yan 《International Journal of Oral Science》 SCIE CAS CSCD 2022年第3期349-359,共11页
The aim of this study was to identify whether periodontitis induces gut microbiota dysbiosis via invasion by salivary microbes.First,faecal and salivary samples were collected from periodontally healthy participants(P... The aim of this study was to identify whether periodontitis induces gut microbiota dysbiosis via invasion by salivary microbes.First,faecal and salivary samples were collected from periodontally healthy participants(PH group,n=16)and patients with severe periodontitis(SP group,n=21)and analysed by 16S ribosomal RNA sequencing.Significant differences were observed in both the faecal and salivary microbiota between the PH and SP groups.Notably,more saliva-sourced microbes were observed in the faecal samples of the SP group.Then,the remaining salivary microbes were transplanted into C57BL6/J mice(the C-PH group and the C-SP group),and it was found that the composition of the gut microbiota of the C-SP group was significantly different from that of the C-PH group,with Porphyromonadaceae and Fusobacterium being significantly enriched in the C-SP group.In the colon,the C-SP group showed significantly reduced crypt depth and zonula occludens-1 expression.The m RNA expression levels of pro-inflammatory cytokines,chemokines and tight junction proteins were significantly higher in the C-SP group.To further investigate whether salivary bacteria could persist in the intestine,the salivary microbiota was stained with carboxyfluorescein diacetate succinimidyl ester and transplanted into mice.We found that salivary microbes from both the PH group and the SP group could persist in the gut for at least 24 h.Thus,our data demonstrate that periodontitis may induce gut microbiota dysbiosis through the influx of salivary microbes. 展开更多
关键词 Periodontitis may induce gut microbiota dysbiosis via salivary microbiota
下载PDF
Stem cell microencapsulation maintains stemness in inflammatory microenvironment 被引量:1
19
作者 Yajun Zhao Yilin Shi +8 位作者 Huiqi Yang Mengmeng Liu Lanbo Shen Shengben Zhang Yue Liu Jie Zhu Jing Lan Jianhua Li Shaohua Ge 《International Journal of Oral Science》 SCIE CAS CSCD 2022年第4期549-560,共12页
Maintaining the stemness of the transplanted stem cell spheroids in an inflammatory microenvironment is challenging but important in regenerative medicine. Direct delivery of stem cells to repair periodontal defects m... Maintaining the stemness of the transplanted stem cell spheroids in an inflammatory microenvironment is challenging but important in regenerative medicine. Direct delivery of stem cells to repair periodontal defects may yield suboptimal effects due to the complexity of the periodontal inflammatory environment. Herein, stem cell spheroid is encapsulated by interfacial assembly of metal-phenolic network(MPN) nanofilm to form a stem cell microsphere capsule. Specifically, periodontal ligament stem cells(PDLSCs) spheroid was coated with FeⅢ/tannic acid coordination network to obtain spheroid@[FeⅢ-TA] microcapsules. The formed biodegradable MPN biointerface acted as a cytoprotective barrier and exhibited antioxidative, antibacterial and anti-inflammatory activities, effectively remodeling the inflammatory microenvironment and maintaining the stemness of PDLSCs. The stem cell microencapsulation proposed in this study can be applied to multiple stem cells with various functional metal ion/polyphenol coordination, providing a simple yet efficient delivery strategy for stem cell stemness maintenance in an inflammatory environment toward a better therapeutic outcome. 展开更多
关键词 INFLAMMATORY protective MAINTAIN
下载PDF
Patient-specific induced pluripotent stem cells as“disease-in-adish”models for inherited cardiomyopathies and channelopathies–15 years of research
20
作者 Miruna Mihaela Micheu Ana-Maria Rosca 《World Journal of Stem Cells》 SCIE 2021年第4期281-303,共23页
Among inherited cardiac conditions,a special place is kept by cardiomyopathies(CMPs)and channelopathies(CNPs),which pose a substantial healthcare burden due to the complexity of the therapeutic management and cause ea... Among inherited cardiac conditions,a special place is kept by cardiomyopathies(CMPs)and channelopathies(CNPs),which pose a substantial healthcare burden due to the complexity of the therapeutic management and cause early mortality.Like other inherited cardiac conditions,genetic CMPs and CNPs exhibit incomplete penetrance and variable expressivity even within carriers of the same pathogenic deoxyribonucleic acid variant,challenging our understanding of the underlying pathogenic mechanisms.Until recently,the lack of accurate physiological preclinical models hindered the investigation of fundamental cellular and molecular mechanisms.The advent of induced pluripotent stem cell(iPSC)technology,along with advances in gene editing,offered unprecedented opportunities to explore hereditary CMPs and CNPs.Hallmark features of iPSCs include the ability to differentiate into unlimited numbers of cells from any of the three germ layers,genetic identity with the subject from whom they were derived,and ease of gene editing,all of which were used to generate“disease-in-a-dish”models of monogenic cardiac conditions.Functionally,iPSC-derived cardiomyocytes that faithfully recapitulate the patient-specific phenotype,allowed the study of disease mechanisms in an individual-/allele-specific manner,as well as the customization of therapeutic regimen.This review provides a synopsis of the most important iPSC-based models of CMPs and CNPs and the potential use for modeling disease mechanisms,personalized therapy and deoxyribonucleic acid variant functional annotation. 展开更多
关键词 Induced pluripotent stem cells CARDIOMYOPATHY CHANNELOPATHY Genes Mutation Deoxyribonucleic acid variants
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部