Eye health has become a global health concern and attracted broad attention.Over the years,researchers have proposed many state-of-the-art convolutional neural networks(CNNs)to assist ophthalmologists in diagnosing oc...Eye health has become a global health concern and attracted broad attention.Over the years,researchers have proposed many state-of-the-art convolutional neural networks(CNNs)to assist ophthalmologists in diagnosing ocular diseases efficiently and precisely.However,most existing methods were dedicated to constructing sophisticated CNNs,inevitably ignoring the trade-off between performance and model complexity.To alleviate this paradox,this paper proposes a lightweight yet efficient network architecture,mixeddecomposed convolutional network(MDNet),to recognise ocular diseases.In MDNet,we introduce a novel mixed-decomposed depthwise convolution method,which takes advantage of depthwise convolution and depthwise dilated convolution operations to capture low-resolution and high-resolution patterns by using fewer computations and fewer parameters.We conduct extensive experiments on the clinical anterior segment optical coherence tomography(AS-OCT),LAG,University of California San Diego,and CIFAR-100 datasets.The results show our MDNet achieves a better trade-off between the performance and model complexity than efficient CNNs including MobileNets and MixNets.Specifically,our MDNet outperforms MobileNets by 2.5%of accuracy by using 22%fewer parameters and 30%fewer computations on the AS-OCT dataset.展开更多
Cataracts are the leading cause of visual impairment and blindness globally.Over the years,researchers have achieved significant progress in developing state-of-the-art machine learning techniques for automatic catara...Cataracts are the leading cause of visual impairment and blindness globally.Over the years,researchers have achieved significant progress in developing state-of-the-art machine learning techniques for automatic cataract classification and grading,aiming to prevent cataracts early and improve clinicians′diagnosis efficiency.This survey provides a comprehensive survey of recent advances in machine learning techniques for cataract classification/grading based on ophthalmic images.We summarize existing literature from two research directions:conventional machine learning methods and deep learning methods.This survey also provides insights into existing works of both merits and limitations.In addition,we discuss several challenges of automatic cataract classification/grading based on machine learning techniques and present possible solutions to these challenges for future research.展开更多
基金Stable Support Plan Program,Grant/Award Number:20200925174052004Shenzhen Natural Science Fund,Grant/Award Number:JCYJ20200109140820699+2 种基金National Natural Science Foundation of China,Grant/Award Number:82272086Guangdong Provincial Department of Education,Grant/Award Numbers:2020ZDZX3043,SJZLGC202202Guangdong Provincial Key Laboratory,Grant/Award Number:2020B121201001。
文摘Eye health has become a global health concern and attracted broad attention.Over the years,researchers have proposed many state-of-the-art convolutional neural networks(CNNs)to assist ophthalmologists in diagnosing ocular diseases efficiently and precisely.However,most existing methods were dedicated to constructing sophisticated CNNs,inevitably ignoring the trade-off between performance and model complexity.To alleviate this paradox,this paper proposes a lightweight yet efficient network architecture,mixeddecomposed convolutional network(MDNet),to recognise ocular diseases.In MDNet,we introduce a novel mixed-decomposed depthwise convolution method,which takes advantage of depthwise convolution and depthwise dilated convolution operations to capture low-resolution and high-resolution patterns by using fewer computations and fewer parameters.We conduct extensive experiments on the clinical anterior segment optical coherence tomography(AS-OCT),LAG,University of California San Diego,and CIFAR-100 datasets.The results show our MDNet achieves a better trade-off between the performance and model complexity than efficient CNNs including MobileNets and MixNets.Specifically,our MDNet outperforms MobileNets by 2.5%of accuracy by using 22%fewer parameters and 30%fewer computations on the AS-OCT dataset.
基金supported by National Natural Science Foundation of China(No.8210072776)Guangdong Provincial Department of Education,China(No.2020ZD ZX3043)+2 种基金Guangdong Provincial Key Laboratory,China(No.2020B121201001)Shenzhen Natural Science Fund,China(No.JCYJ20200109140820699)the Stable Support Plan Program,China(No.20200925174052004).
文摘Cataracts are the leading cause of visual impairment and blindness globally.Over the years,researchers have achieved significant progress in developing state-of-the-art machine learning techniques for automatic cataract classification and grading,aiming to prevent cataracts early and improve clinicians′diagnosis efficiency.This survey provides a comprehensive survey of recent advances in machine learning techniques for cataract classification/grading based on ophthalmic images.We summarize existing literature from two research directions:conventional machine learning methods and deep learning methods.This survey also provides insights into existing works of both merits and limitations.In addition,we discuss several challenges of automatic cataract classification/grading based on machine learning techniques and present possible solutions to these challenges for future research.